[go: up one dir, main page]

JPS5887744A - Strobo scanning electron microscope - Google Patents

Strobo scanning electron microscope

Info

Publication number
JPS5887744A
JPS5887744A JP56185837A JP18583781A JPS5887744A JP S5887744 A JPS5887744 A JP S5887744A JP 56185837 A JP56185837 A JP 56185837A JP 18583781 A JP18583781 A JP 18583781A JP S5887744 A JPS5887744 A JP S5887744A
Authority
JP
Japan
Prior art keywords
electrons
sample
electron microscope
scanning electron
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56185837A
Other languages
Japanese (ja)
Inventor
Motosuke Miyoshi
元介 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56185837A priority Critical patent/JPS5887744A/en
Publication of JPS5887744A publication Critical patent/JPS5887744A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/266Measurement of magnetic or electric fields in the object; Lorentzmicroscopy
    • H01J37/268Measurement of magnetic or electric fields in the object; Lorentzmicroscopy with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はストロが走査型電子顕微11K1.D、特に試
料表面からの放出電子のうち反射電子を検出して試料表
面電位の波形を観察し得るようにした顕微鏡に関する・ 一般に1表面に電位のある試料に電子ぜ一ムを照射する
ときに試料表面から放出する二次電子は、試料表面電位
の影響を受けてそOエネルギ分布が変化することが知ら
れている。そこで、電子ビームをグローブとして利用し
て試料表面電位を機械的に接触することなく検出するこ
とが可能である。電子ビームをグローブとして用いると
、(a)1μ以下の直径のプローブに細く絞ることがで
きるので微小領域の測定が可能であり、(b)外部から
ビーム位置を精度よく制御できるので簡単に任意の場所
の電圧を測定できる等の特徴がある。この特徴を利用し
、試料表面電位を電子グローブで検出して検出結果を表
示する走査型電子顕微鏡(sm)が実現されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to a scanning electron microscope 11K1. D. Particularly related to a microscope capable of observing the waveform of the sample surface potential by detecting reflected electrons out of the electrons emitted from the sample surface.Generally, when an electron beam is irradiated onto a sample whose surface has a potential. It is known that the energy distribution of secondary electrons emitted from the sample surface changes under the influence of the sample surface potential. Therefore, it is possible to detect the sample surface potential without mechanical contact by using the electron beam as a glove. When an electron beam is used as a glove, (a) it can be narrowed down to a probe with a diameter of 1 μm or less, making it possible to measure minute areas; and (b) the beam position can be precisely controlled from the outside, making it easy to perform arbitrary measurements. It has features such as being able to measure the voltage at a location. Taking advantage of this feature, a scanning electron microscope (sm) has been realized that detects the sample surface potential with an electronic glove and displays the detection results.

このS謂を用いれば、微細化の進んでいるLSI(大規
模集積回路)の内部動作の観測を行な  。
By using this so-called S, we can observe the internal operation of LSIs (Large-Scale Integrated Circuits), which are becoming increasingly miniaturized.

うことかでき、LSIの動作解析あるいは不良解析を行
なうことができ、非常に有効である。一方、IC−?L
SIの素子内部を伝搬する電気信号のような同期現象で
は、電位変化は毎回規則正しく繰り返して起る。したが
って、電位変化が数百kHz以上の高速であったとして
も、ある特定の位相だけに・ダルスミ子ビームを繰り返
し照射したとき得られる出力信号はこの位相での電位に
対応したものとなるので、試料表面上の希望する点にビ
ームを止めておき、試料励振と/4ルス電子ビームとの
位相差を電気的に変化させ、表示器の横軸に位相量を、
縦軸に二次電子信号量をそれぞれ入力することによって
、表示器上に希望点での電圧波形を表示することができ
る。
This is very effective as it allows analysis of LSI operation or failure analysis. On the other hand, IC-? L
In a synchronous phenomenon such as an electric signal propagating inside an SI element, potential changes occur regularly and repeatedly each time. Therefore, even if the potential changes are at a high speed of several hundred kHz or more, the output signal obtained when repeatedly irradiating the Dalsumiko beam only at a certain phase corresponds to the potential at this phase. The beam is stopped at a desired point on the sample surface, and the phase difference between the sample excitation and the /4 Luss electron beam is electrically changed, and the phase amount is displayed on the horizontal axis of the display.
By inputting the secondary electron signal amount on the vertical axis, the voltage waveform at a desired point can be displayed on the display.

このように、従来のSEMの持っている表面電位検出機
能にさらに・母ルスピームの発生機能を付加し、サンブ
リングの技術を適用したものが従来のメトロが走査型電
子顕微鏡である。即ち、とのストロ& SEMは、試料
表面に7母ルス電子ビームを照射するビーム照射部を有
するSEMと、上記ビーム照射部の・母ルス電子ビーム
照射と試料励振との同期をとるSEM制御部と、前記S
EM内で/IPルス電子ぎ一ム放射され九試料から放出
される二次電子を検出する二次電子検出器と、この二次
電子検出器の出力を映倫表示する表示器とを備えている
In this way, a conventional metro scanning electron microscope is a scanning electron microscope that adds a base pulse generation function to the surface potential detection function of a conventional SEM and applies sampling technology. In other words, the Stro & SEM includes a SEM that has a beam irradiation section that irradiates a sample surface with a 7-pulse electron beam, and an SEM control section that synchronizes the beam irradiation of the beam irradiation section with sample excitation. and the above S
It is equipped with a secondary electron detector that detects the secondary electrons emitted from the sample and a display that displays the output of the secondary electron detector. .

ところで、固体試料表面に電子ビームを照射すると、表
面からは種々の電子放出が発生するが、従来は二次電子
に着目して測定を行っていた。二次電子はエネルギが数
eV程度と非常に低く、表面の電位のポテンシャルの影
響を受は易い性質を持っている。即ち、表面に電位ポテ
ンシャルがあるとその分だけエネルギがシフトするため
、とのエネルギシ7ト量を測定すれば良い、この測定原
理岐二次電子に限らないが、二次電子ではエネルギが元
来小さいので、シフト量の影響が大きく、測定がやシ易
いことが挙げられる。
By the way, when the surface of a solid sample is irradiated with an electron beam, various types of electrons are emitted from the surface, but conventionally, measurements have been performed focusing on secondary electrons. Secondary electrons have a very low energy of about several eV and are easily influenced by the surface potential. In other words, if there is a potential on the surface, the energy shifts by that amount, so it is sufficient to measure the amount of energy.This measurement principle is not limited to secondary electrons, but for secondary electrons, energy is originally Since it is small, the influence of the shift amount is large and measurement is easy.

しかし、二次電子を利用する測定方法には幾つかの問題
点がある。二次電子は数eVと非常に低いエネルギであ
るため、もし測定点の近傍に別の電位が存在していると
、そこから発生した横方向電界の影響を受けて二次電子
の放出効率が変化し、その結果測定精度が悪くなる。更
に、エネルギの低い二次電子信号を効率良く集めるため
に、二次電子検出器を正電位にバイアスして引き出し電
界により二次電子を引き出す必要がちり、この電界が二
次電子の軌道に影響を与える。これらの問題の原因は二
次電子のエネルギが小さいことに起因している。
However, the measurement method using secondary electrons has several problems. Secondary electrons have a very low energy of several eV, so if another potential exists near the measurement point, the secondary electron emission efficiency will be affected by the lateral electric field generated there. changes, resulting in poor measurement accuracy. Furthermore, in order to efficiently collect low-energy secondary electron signals, it is necessary to bias the secondary electron detector to a positive potential and use an extraction electric field to extract the secondary electrons, and this electric field affects the trajectory of the secondary electrons. give. These problems are caused by the low energy of secondary electrons.

本発明は上記の事情に鑑みてなされたもので、試料表面
からの放出電子のうちの反射電子の特性に着目し、この
反射電子の特性を利用してその検出を行なうことによっ
て、横方向電界の影響を受は難く、引き出し電界を必要
とせず、測定の精度および再現性が良いストロI走査型
電子顕微傭を提供するものである。
The present invention has been made in view of the above circumstances, and focuses on the characteristics of backscattered electrons among the electrons emitted from the sample surface, and detects the backscattered electrons by utilizing the characteristics of the backscattered electrons. The object of the present invention is to provide a Stroh I scanning electron microscope that is not easily affected by the effects of irradiation, does not require an extraction electric field, and has good measurement accuracy and reproducibility.

以下、図面を参照して本発明の一実施例を詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は固体試料表面に電子ビームを照射したときに試
料表面から放出する電子のエネルギ分布を示すものであ
り、二次電子以外にもオーノエ電子や反射電子がある0
反射電子は、入射電子が試料固体原子との散乱で若干の
エネルギ損失をした後、そのまま再放出されるものであ
る。反射電子のエネルギのピークをE1入射電子のエネ
ルギをEoとすると、概略E/E0−0.9前後である
。第2図はE。” 100 aVのときのエネルギの分
布を示しており、反射電子のエネルギのピークEは略9
0 @V、二次電子のエネルギのピークは略10 eV
である。
Figure 1 shows the energy distribution of electrons emitted from the surface of a solid sample when the surface of the sample is irradiated with an electron beam.In addition to secondary electrons, there are Ohnoe electrons and backscattered electrons.
Backscattered electrons are incident electrons that are re-emitted as they are after some energy loss occurs due to scattering with sample solid atoms. If the peak energy of reflected electrons is E1 and the energy of incident electrons is Eo, it is approximately E/E0-0.9. Figure 2 is E. ” shows the energy distribution at 100 aV, and the energy peak E of the reflected electrons is approximately 9
0 @V, the energy peak of secondary electrons is approximately 10 eV
It is.

@3図に示すストロ/ 8EMにおいて、3oはSEM
本体、3ノは本体30内に配置される固体試料(たとえ
ばLSI)1.?、?は・ぐルス発生器、34はこのノ
4ルス発生器33からのノ9ルスにより制御されてビー
ム・tルスを発生するビーム・ンルス発生器である。上
記ノ4ルス発生器33は、ビーム・9ルスと試料表面の
電位変化とを所望の位相関係に設定するために、試料励
損とノルスミ子ビーム照射との同期をとる制御機能を兼
ね備えている。35は試料表面から放出される反射電子
を検出するために本体30内に設けられた反射電子検出
器であシ、たとえば入射電子の出射口周辺に取り付けら
れている。36はこの検出器35からの出力を増幅して
CRT等の映像表示器(図示せず)に供給するための増
幅器である。
@ In the Stro/8EM shown in Figure 3, 3o is SEM
1. Main body, No. 3 is a solid sample (for example, LSI) placed in the main body 30; ? ,? A beam generator 34 is a beam pulse generator that is controlled by the pulse from the pulse generator 33 and generates a beam pulse. The 4-lux generator 33 has a control function that synchronizes sample excitation and irradiation with the Norsum beam in order to set the desired phase relationship between the beam 9-lux and the potential change on the surface of the sample. . Reference numeral 35 denotes a backscattered electron detector provided within the main body 30 to detect backscattered electrons emitted from the surface of the sample, and is installed, for example, around the exit port for incident electrons. Reference numeral 36 denotes an amplifier for amplifying the output from the detector 35 and supplying the amplified output to a video display (not shown) such as a CRT.

上記構成のストロz sEM においては、ノ!ルス電
子ビームを試料表面に照射したときに試料表面から放出
される反射電子を反射電子検出器35で検出し、この検
出結果を映倫表示することKよって試料表面電位の波形
測定を行なうものである。
In the Stroz sEM with the above configuration, No! A backscattered electron detector 35 detects the backscattered electrons emitted from the sample surface when the sample surface is irradiated with a laser electron beam, and the waveform of the sample surface potential is measured by displaying the detection results visually. .

この場合、前述したように反射電子のエネルギは、二次
電子のエネルギに比べて充分高く、横方向電界の影響を
受は難く、引き出し電界を必要としない。このため、反
射電子検出器35と試料31との位置関係によって測定
精度が影響を受けることはない。
In this case, as described above, the energy of the reflected electrons is sufficiently higher than the energy of the secondary electrons, and is hardly affected by the lateral electric field, so that no extraction electric field is required. Therefore, the measurement accuracy is not affected by the positional relationship between the backscattered electron detector 35 and the sample 31.

また、反射電子検出器35は、従来の二次電子検出器と
は異なり、前述したように入射電子の出射口周辺に取り
付けることができる。この結果、試料31と反射電子検
出器35と入射電子ビームの位置関係は一義的に固定さ
れるので、測定の再現性も良い。
Further, unlike the conventional secondary electron detector, the backscattered electron detector 35 can be attached around the exit port of the incident electrons as described above. As a result, the positional relationship between the sample 31, the backscattered electron detector 35, and the incident electron beam is uniquely fixed, resulting in good measurement reproducibility.

上述したように本発明によれば、測定の精度および再現
性の良いストロが走査型電子顕微鏡番盪謳できる。
As described above, according to the present invention, it is possible to perform measurements using a scanning electron microscope with good measurement accuracy and reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固体試料表面に電子ビームを照射したときの放
出電子エネルギ分布を示す図、1g2図は第1図におい
て入射電子エネルdfg、が100 @Vのときの放出
電子エネルギ分布を示す図、第3図は本発明に係るスト
ロゴ走査型電子顕微鏡の一実施例を示す構成説明図であ
る。 30・・・SFJ/i本体、31・・・試料、33−・
ノ臂ルス発生器、34・・・ビーム・9ルス発生器、3
5・・・反射電子検出器。
Figure 1 is a diagram showing the energy distribution of emitted electrons when the surface of a solid sample is irradiated with an electron beam, Figure 1g2 is a diagram showing the energy distribution of emitted electrons when the incident electron energy dfg in Figure 1 is 100 @V, FIG. 3 is a configuration explanatory diagram showing an embodiment of a Strogo scanning electron microscope according to the present invention. 30...SFJ/i main body, 31...sample, 33-...
Arm lux generator, 34... Beam 9 lus generator, 3
5... Backscattered electron detector.

Claims (1)

【特許請求の範囲】[Claims] 試料表面K z4ルス電子ビームを照射するビーム照射
部を有する走査型電子顕微鏡と、上記ビーム照射部のノ
々ルス電子ビーム照射と試料励振との同期をとる制御部
と、前記走査型電子顕微鏡内でノヤルス電子ビーム照射
された試料から放出される反射電子を検出する反射電子
検出器とを具備することを特徴とするスト0−走査型電
子顕微鏡。
a scanning electron microscope having a beam irradiation section for irradiating a sample surface with a Kz4 Luss electron beam; a control section that synchronizes the Nonolus electron beam irradiation of the beam irradiation section with sample excitation; and a control section within the scanning electron microscope. 1. A scanning electron microscope comprising a backscattered electron detector for detecting backscattered electrons emitted from a sample irradiated with a Noyals electron beam.
JP56185837A 1981-11-19 1981-11-19 Strobo scanning electron microscope Pending JPS5887744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56185837A JPS5887744A (en) 1981-11-19 1981-11-19 Strobo scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56185837A JPS5887744A (en) 1981-11-19 1981-11-19 Strobo scanning electron microscope

Publications (1)

Publication Number Publication Date
JPS5887744A true JPS5887744A (en) 1983-05-25

Family

ID=16177740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56185837A Pending JPS5887744A (en) 1981-11-19 1981-11-19 Strobo scanning electron microscope

Country Status (1)

Country Link
JP (1) JPS5887744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211796B2 (en) 2003-05-27 2007-05-01 Kabushiki Kaisha Toshiba Substrate inspection apparatus, substrate inspection method and method of manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211796B2 (en) 2003-05-27 2007-05-01 Kabushiki Kaisha Toshiba Substrate inspection apparatus, substrate inspection method and method of manufacturing semiconductor device
US7462829B2 (en) 2003-05-27 2008-12-09 Kabushiki Kaisha Toshiba Substrate inspection apparatus, substrate inspection method and method of manufacturing semiconductor device
US7847250B2 (en) 2003-05-27 2010-12-07 Kabushiki Kaisha Toshiba Substrate inspection apparatus, substrate inspection method and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4573008A (en) Method for the contact-free testing of microcircuits or the like with a particle beam probe
US11043358B2 (en) Measuring apparatus and method of setting observation condition
US3678384A (en) Electron beam apparatus
JPS6333262B2 (en)
US7521677B2 (en) Method and device for distance measurement
JPS639807A (en) Method and device for measuring film thickness
US5146089A (en) Ion beam device and method for carrying out potential measurements by means of an ion beam
JPS5887744A (en) Strobo scanning electron microscope
JPH0467550A (en) Electron beam device and its image acquisition method
JPH0758297B2 (en) Non-contact potential measuring device
JPS6089050A (en) strobe scanning electron microscope
JPS63142825A (en) Auxiliary evaluation method for ic operation
Berger et al. Experimental determination of the probe profile in a dedicated scanning transmission electron microscope
JPS61156627A (en) Sample voltage measuring apparatus
JP3377958B2 (en) Test method and test apparatus for integrated circuit
JPH024442Y2 (en)
JPH0474981A (en) Electron beam test apparatus
JPH0618636A (en) Method and tester for testing device using ion beam
JPS597270A (en) Sample potential measuring device using electron beam
JPS6271158A (en) Analyzer for semiconductor device
JPS63121740A (en) Surface analyzing method and its device
JPS59207554A (en) Electron beam positioning control method for electron beam tester
JPS62150642A (en) Potential measurement device using charged beam
JPH0329867A (en) Observation of voltage distribution image by electron beam apparatus
JPS59114834A (en) Method for measuring deep impurity level or crystal defect level contained in semiconductor device