[go: up one dir, main page]

JPS5886614A - Controller for direct current feeding device - Google Patents

Controller for direct current feeding device

Info

Publication number
JPS5886614A
JPS5886614A JP56184685A JP18468581A JPS5886614A JP S5886614 A JPS5886614 A JP S5886614A JP 56184685 A JP56184685 A JP 56184685A JP 18468581 A JP18468581 A JP 18468581A JP S5886614 A JPS5886614 A JP S5886614A
Authority
JP
Japan
Prior art keywords
current
load
circuit
value
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56184685A
Other languages
Japanese (ja)
Other versions
JPH0213328B2 (en
Inventor
Takatomo Izume
井爪 孝友
Chihiro Okatsuchi
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56184685A priority Critical patent/JPS5886614A/en
Priority to US06/397,779 priority patent/US4499363A/en
Priority to GB08221812A priority patent/GB2103396B/en
Priority to DE19823228564 priority patent/DE3228564A1/en
Publication of JPS5886614A publication Critical patent/JPS5886614A/en
Publication of JPH0213328B2 publication Critical patent/JPH0213328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Control Of Electrical Variables (AREA)
  • Power Conversion In General (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To realize an economical device while improving reliability and facilitating construction by calculating a DC current from an AC current through simulation, and using it as an actual value current signal. CONSTITUTION:A load current is detected at an AC side as a DC voltage signal iac proportional to an AC current Iac through a current detector 13, rectifier 14, and resistance 15 connected as a load. The voltage signal iac is shaped by a load simulation circuit 16 into a current waveform equivalent to a welder DC current Idc, and its output is converted by a current value arithmetic circuit 17 into the effective value (or mean value) of the current, which is compared with a reference current value IR to control a current regulator 2 by a phase controller 9 through an amplifier 8 so that the deviation is brought to zero.

Description

【発明の詳細な説明】 VS発明の技術分野 本発明は、直流給電装置の制御装置に係り、より詳細に
は、交流電源から可制御マヲ弁から成る電流調整器およ
び整流回路を介して得られた制御された直流電力を直流
91萄に供給する直流給電装置の制御装置に、wAする
ものである。
DETAILED DESCRIPTION OF THE INVENTION VS Technical Field of the Invention The present invention relates to a control device for a DC power supply device, and more specifically, the present invention relates to a control device for a DC power supply device, and more specifically, the present invention relates to a control device for a DC power supply device, and more specifically, the present invention relates to a control device for a DC power supply device. The control device of the DC power supply device supplies the controlled DC power to the DC power source 91.

(2)従来技術 この種の゛装置の一例として、従来性われている直流式
溶#欅の電流制御装置の回路構成を第1図に示す、交流
電IJl/からサイリスタ等め可“制御電気弁から成る
電流調整器コを介して変圧器3の一次@に位相制御され
た交流電力を供給し、変圧器3の二次full K I
: ffi回路参を接続し、その整流出力を・直流負荷
すなわち溶接Iat極部jK供給・する。
(2) Prior Art As an example of this type of device, the circuit configuration of a conventional DC type melting current control device is shown in Figure 1. Phase-controlled AC power is supplied to the primary @ of the transformer 3 through a current regulator consisting of
: Connect the ffi circuit and supply its rectified output to the DC load, that is, the welding Iat pole jK.

溶III機電極部!に流れる直流電流を電流検出器4に
より検出し、その検出信号を増幅器7により増幅する。
Molten III machine electrode part! The current detector 4 detects the direct current flowing through the oscillator 4, and the detected signal is amplified by the amplifier 7.

このよう圧して検出された負荷電流実際値は電流基準工
Rと比較され、その偏差が増幅器tを介して位相制御器
デに供給される。この位相制御器りは、偏差が零になる
ようK、すなわち電流実際値が電流基準工RK擲しくな
るように、Iff流調整器コの通電位相を制御する。
The load current actual value detected in this way is compared with a current reference value R, and the deviation thereof is supplied via an amplifier t to a phase controller D. This phase controller controls the energization phase of the If flow regulator so that the deviation becomes zero, that is, the actual current value becomes equal to the current reference value RK.

(3)従来技斬の問題点 この従来装flKは次のような欠点があった。(3) Problems with conventional techniques This conventional flK had the following drawbacks.

の 溶接直流電流は一般[1〜3oKh @にの大電流
となるので、電流検出器tの挿入場所の確保が甲難であ
ったり、電流検出器が大形となり経済的に不利になった
りする。
The welding DC current is generally a large current of 1 to 3 oKh, so it is difficult to secure a place to insert the current detector, and the current detector is large, making it economically disadvantageous. .

■ 電流制御回路や電、気弁を収納した制御装置の設置
場所と変圧器および整流回路を収納した溶接機本体の設
置場所との間の距離は数十mにも達することが多く(変
圧器二次111には数十Xムの電流が流れるので最短距
離の配#にする必要があるため)、直流側電流を検出す
る方式ではi!ie線距離が長くなり、ノイズ等のトラ
ブルや、工事が高価になる。
■ The distance between the installation location of the control device, which houses the current control circuit, electrical and air valves, and the installation location of the welding machine body, which houses the transformer and rectifier circuit, is often several tens of meters (transformer Since a current of several tens of times flows through the secondary 111, it is necessary to arrange the wiring at the shortest distance), so in the method of detecting the DC side current, i! The IE line distance will be longer, causing problems such as noise, and construction costs will increase.

(→発明の目的 したがって本発明の目的は、このような欠点のない直流
給電装置の制御装置を提供することKある。
(→Object of the Invention) Therefore, an object of the present invention is to provide a control device for a DC power supply device that does not have such drawbacks.

(j1発明の構成 この目的を達成するために本発明は、交流側電流からシ
ミニレ−ジョンによりffi流1fl[流を算出してそ
れを電流実際値信号として用いることにより、経済的な
装置を実現で^るようにしたものである・ (77発明の実施例 以下、一実施例を示す第2図を参照して本発明の詳細な
説明する。第2図の主回路部分は機能的にはwk1図の
ものと実質的には同一であるが、説明の都合上、部分的
に等価回路で示されている。すなわち、ここでは変圧器
の図示は省略され、その分をも含めて交流側インダクタ
ンスIOが交流電流回路に挿入され。
(j1 Structure of the Invention In order to achieve this object, the present invention realizes an economical device by calculating the ffi current 1fl [current from the alternating current side current by similation and using it as the current actual value signal. (77 Embodiments of the Invention The present invention will be described in detail below with reference to FIG. 2 showing one embodiment.The main circuit portion of FIG. 2 is functionally as follows. It is substantially the same as the one in figure wk1, but for convenience of explanation, it is partially shown as an equivalent circuit.In other words, the illustration of the transformer is omitted here, and the AC side including that part is shown. An inductance IO is inserted into the alternating current circuit.

また負荷を含めて直流側回路は直流−インダクタンス/
/および直流側負荷抵抗12で示されている。インダク
タンス/lの値をり、負荷抵抗/Jの値をRとすれば、
直流側時定数丁は、!=し乍で表わされる。
In addition, the DC side circuit including the load is DC - inductance /
/ and DC side load resistance 12. If the value of inductance/l is R and the value of load resistance/J is R, then
The DC side time constant is ! It is expressed as =し乍.

この装置の負荷電流は交流側で変流器等の電流検出器/
3、整流器/lおよびその負荷と17て接続された抵抗
15を介して、交流電流Iacに比例した直流の電圧信
号iaaとして検出される。この電圧信号1acは負荷
シミュレー7目〕回路/AKより溶接機直流側電流Id
oと等価な電流波形和変換され、その出力は電流値演算
回路77により電流の実効値(または平均値→に変換さ
れ、電流基準X、と比較さ創。
The load current of this device is determined by a current detector such as a current transformer on the AC side.
3. It is detected as a DC voltage signal iaa proportional to the AC current Iac through a resistor 15 connected to the rectifier /l and its load 17. This voltage signal 1ac is the 7th load simulation circuit/AK from the welding machine DC side current Id
The current waveform sum equivalent to 0 is converted, and the output thereof is converted by the current value calculation circuit 77 into the effective value (or average value) of the current, and compared with the current reference X.

その偏差が零になるように増幅器lを介して位相制御器
りにより電流調整器−を制御する。
The current regulator is controlled by a phase controller via an amplifier l so that the deviation becomes zero.

位相制御器、りから電気弁のオン信号に同期して出力さ
れるパルスPによりタイマー回路/Iを駆動し、その出
力信号?、、P、により後述の電流HII mxs及び
tを求め比較演算(ロ)路19を用いて直流側主回路の
時定数と比較し、時定数選択回路コlの時定数が前記計
算された直流−主回路の時定数と一致するよう選択し、
切換回路−に上り自荷シ建ニレージョン回路16の時定
数を切換えるよう構成している。
The phase controller drives the timer circuit /I by the pulse P output in synchronization with the ON signal of the electric valve, and outputs the output signal ? , , P to obtain the currents HII mxs and t, which will be described later, and compare them with the time constant of the DC side main circuit using the comparison calculation (b) path 19, so that the time constant of the time constant selection circuit 1 becomes the DC current calculated above. −Selected to match the time constant of the main circuit,
The switching circuit is configured to switch the time constant of the self-contained construction lag circuit 16.

第2図の制御回路の動作を第3図に従って説明する。The operation of the control circuit shown in FIG. 2 will be explained according to FIG.

V毎ま直流側出力電圧、Iaは直流給電装置aCをシ之
ユシーシgノした自衛シ電ニレージョン回路14の出力
電圧、1lLeは交流憚電流Iaaを整流して得た工a
oK比例する電圧、Vgは電流11111isJの電気
弁をオ/させる点弧パルスを示す。
V is the output voltage on the DC side, Ia is the output voltage of the self-defense power ignition circuit 14 that is connected to the DC power supply device aC, and 1lLe is the output voltage a obtained by rectifying the AC current Iaa.
The voltage proportional to oK, Vg, indicates the firing pulse that turns on/off the electric valve with a current of 11111 isJ.

時刻t1で電流調整器コの電気弁を点弧パルスVgでオ
ンさせると、直流機には正電圧Vaが出力され、交流電
流工acが流れ始める(信号1ao参照)。溶接機装置
における交2流側インダクタ/ス10は直流伸イ/ダク
タンス//に比較して著しく小さいので、電流は整流回
路ダのWI環電流から交流側へ急速に転流する。
When the electric valve of the current regulator is turned on by the ignition pulse Vg at time t1, a positive voltage Va is output to the DC machine, and an AC current ac begins to flow (see signal 1ao). Since the AC/2 current side inductor 10 in the welding machine device is significantly smaller than the DC current/ductance, the current is rapidly commutated from the WI ring current of the rectifier circuit to the AC side.

直流電流工da 、交流m’tt* Iac ハ比例関
係をもって共に増加し、酪刻t、において直流電圧Va
が零圧なると、交流m*流工aQは急速に減少する。し
かし直流@電流1cは、直流伸イ/ダクタ/ス//のた
め、交流111に関係なく、整流回路参を通って循堺し
1時刻t!〜t4の間は特定PIT=L/Rに従って減
衰する。ここで時刻t、における交流1llllj流工
aaの値を工8とする。
The DC voltage Va and AC m'tt* Iac both increase in a proportional relationship, and the DC voltage Va
When the pressure becomes zero, the AC m*flow aQ rapidly decreases. However, the DC@current 1c circulates through the rectifier circuit regardless of the AC 111 because of the DC expansion A/ductor/S//, and the current 1c circulates through the rectifier circuit at 1 time t! During the period from t4 to t4, the signal attenuates according to the specific PIT=L/R. Here, it is assumed that the value of AC 1llllj current aa at time t is 8.

位相制御器りから、点弧パルスvgの立上り時′1il
l t 、よりやや逆んだ時刻t、で立上り。
From the phase controller, when the ignition pulse vg rises '1il
It rises at time t, which is slightly opposite to l t .

時刻1.よりやや遅れた時刻t、で立下るパルスPが出
力される。タイマー回路/lはパルスPの立上シでパル
スP、を、パルスPの立下シでパルスP、を出力する。
Time 1. A falling pulse P is output at a slightly later time t. The timer circuit /l outputs a pulse P when the pulse P rises and outputs a pulse P when the pulse P falls.

パルスPIsP、に基づいて比較演算回路19は、時刻
t4において点弧パルスvgにより一気弁をオンさせ、
交流側電流Macが立上った時刻t、において交流側電
流Macの慎重2を検出し、さらに時刻1.と1番よ9
時間間隔 1=1.−1雪を求める。
Based on the pulse PIsP, the comparison calculation circuit 19 turns on the valve at once with the ignition pulse vg at time t4,
At time t when the AC side current Mac rises, the cautious 2 of the AC side current Mac is detected, and then at time 1. and number 19
Time interval 1=1. -1 Find snow.

時刻1.〜t4の間は主回路直流電流は? == L/
it K従って減衰するから次の関係式が成立する。
Time 1. What is the main circuit DC current between ~t4? == L/
Since it K therefore attenuates, the following relational expression holds true.

(1)式から時定数Tは、 と表わされる。このようにして工1+”ff1e”の値
から主回路時定数Tを求めることができる。
From equation (1), the time constant T is expressed as follows. In this way, the main circuit time constant T can be determined from the value of f1+"ff1e".

比較演算回路19にて(2)式の計算をするため通常比
較演算回路/9jfCはマイクロプロセッサ−が用いら
れる。工、、工、の値を0−.2封ぐらいの数値に量子
化し、1nXM、 1n4はあらかじめ計算してマイ!
ロブ曹セッサの主起tiに格納しておく、また時間tの
計測は、時刻1、でゲートが開き1時刻t、6(てゲー
トが閉じるようにし、ゲートが開の間、時間計算に充分
なりロックパルスをカウントするカラyりを用いれば容
JAK行なうことができる。
Since the comparison calculation circuit 19 calculates equation (2), a microprocessor is normally used in the comparison calculation circuit/9jfC. Set the value of engineering,, engineering, to 0-. Quantize to a value of about 2 seals, calculate 1nXM, 1n4 in advance and write it!
To measure time t, the gate opens at time 1 and closes at time t and 6 (at time t and 6). This can be done by using a method that counts the lock pulses.

従って(2)式の解はマイクロプロセッサの本来の機能
である減算、除算で求めることができる。この様にして
求めた時定数〒に等しくなるよ’5負荷シミュレーショ
ン回路/基の時定数を合わせると、負荷シミュレーショ
ン回路/40時?数と主回路直流側時定数テにし全を一
致させることができるので、負荷シ建ニレージョン回路
l乙の出カニdの電流を電流値演算回路77により演算
して直流l!I1w流工meを求める。このようにして
直流側主回路電流を直接検出せず、交流側電流から貴荷
シ2ユレーシ曹ン回路を通すことにより検出することが
できる。
Therefore, the solution to equation (2) can be obtained by subtraction and division, which are the original functions of a microprocessor. The time constant obtained in this way will be equal to 〒.If we add the time constants of '5 load simulation circuit/base, we will get load simulation circuit/40 hours? Since it is possible to make them all match by setting the number and the time constant on the DC side of the main circuit, the current at the output d of the load shift circuit L is calculated by the current value calculation circuit 77, and the DC l! Find I1w flow me. In this way, the direct current side main circuit current is not directly detected, but can be detected by passing the AC side current through the precious load reduction circuit.

以上説明したように、負荷シイニレ−ショア回路14の
時定数が常に直流負荷回路の時定数に一致するようなマ
イナーループを設けることにより、交流側電流のみから
直流側電流を算出することが可能となる。
As explained above, by providing a minor loop in which the time constant of the load input shore circuit 14 always matches the time constant of the DC load circuit, it is possible to calculate the DC side current only from the AC side current. Become.

(η発明の変形例 第1図は、第1図の回路製雪を、計算機を使って実現し
た一実施例を示すものである。
(Variation of the Invention FIG. 1 shows an embodiment in which the circuit snowmaking shown in FIG. 1 is realized using a computer.

この実施例においては、負荷シイニレ−73ン回路16
の出力1aを〜勺変換器30を通してディジタル化し、
計算+1!(以下、OPUと称する)3/IICよりこ
のデー!を読み取る (l P T131はこのデータ
から電流値を演算してD/A変換器3コを通して出力す
る。一方パルスP! 。
In this embodiment, the load signal line 73 circuit 16
The output 1a of is digitized through a converter 30,
Calculation +1! (hereinafter referred to as OPU) 3/This day from IIC! (l P T131 calculates a current value from this data and outputs it through three D/A converters. On the other hand, pulse P!

P、出力はOPU3/への割込み入力として与えられ、
第3図に示した電流値I、と1雪を読み取り、演算して
時定数選択回路コlへ出力する。第参図では電流慎重1
 、* Ilを負荷シ建ニレーショア回路16の出カニ
dを紗み込む方式を採用しているため、パルスP1によ
り負荷シミュレーション回路16のフィルタをリセット
するようにしている。この様子を第5図゛に示す。
P, the output is given as an interrupt input to OPU3/,
The current values I and 1 shown in FIG. 3 are read, calculated, and output to the time constant selection circuit 1. In the figure below, current caution 1
, * Since a method is adopted in which the output d of the shore circuit 16 is used as a load source, the filter of the load simulation circuit 16 is reset by the pulse P1. This situation is shown in Figure 5.

第!図に第参図の負荷シ建ニレージョン回路/4と切換
回路−の部分の詳細構成を示し、パルスP、によりスイ
ッチSを動作させてフィルターコンデンサ参7をリセッ
トする様子を第1図に示す。
No.! The figure shows the detailed structure of the load construction/inversion circuit 4 and the switching circuit shown in Figure 1, and Figure 1 shows how the filter capacitor 7 is reset by operating the switch S with the pulse P.

ダイオード侮は理−的ダイオード(If方向電圧降下が
無いもの)が望ましく、演算増幅器を使用した回路で実
現できる。コ/デ/す蓼7は、直流側主回路゛のインダ
クタンス//をシミュレーションするための素子、抵抗
参9 、30 。
The diode is preferably a rational diode (one with no voltage drop in the If direction), and can be realized by a circuit using an operational amplifier. The code/de/system 7 includes elements and resistors 9, 30 for simulating the inductance of the main circuit on the DC side.

3/はコンデンサ幻の放電回路を構成し、時定数を決宇
する。折抗ダ9,30に並ダリのスイッチjコ、 !3
は切換回路工に相当し、スイッチjコ。
3/ constitutes a capacitor phantom discharge circuit and determines the time constant. A normal switch on the folding line 9 and 30! 3
corresponds to a switching circuit worker, and is a switch.

幻のオン・オフにより時定数が変化する。演算増幅器a
tはバッファ増幅器である。抵抗SSとスイッチ評は時
刻t4でコ/デ/す鈎をリセットするための回路である
0例えば、負荷シ建エレーショ/回路は第4図工dの実
線で示す時定数K、直流主回路は破線で示す時定数にな
っていたとすると、時刻1.で正確な電流値X鵞を求め
るためK、コンデンサ参7を時刻t4で放電し、負荷シ
電エレーシ目ン回路/4を正確な交流側電流1ao(i
ao ) 4C一致させるように動作させるものである
The time constant changes depending on the phantom on/off. operational amplifier a
t is a buffer amplifier. The resistor SS and the switch circuit are a circuit for resetting the CO/D/S hook at time t4. For example, the load shift/circuit has a time constant K shown by the solid line in Figure 4 d, and the DC main circuit is a broken line. Assuming that the time constant is as shown in , time 1. In order to obtain the accurate current value
ao) It is operated to match 4C.

以上は単相の主回路について説明したが、本発明を多相
半波整流回路や多相全波整流(ロ)路を有する直流―主
回路、にも適用できることはもちろんである。
Although a single-phase main circuit has been described above, it goes without saying that the present invention can also be applied to a DC-main circuit having a multi-phase half-wave rectifier circuit or a multi-phase full-wave rectifier (b) path.

また第参図の回路は計算機で一部分のみを処理している
が、tI/L参図の回路全体を計算機で実現することも
可能である。
Furthermore, although only a portion of the circuit shown in Figure 1 is processed by a computer, it is also possible to implement the entire circuit shown in tI/L using a computer.

(n発明の効果 以上説明したように本発明によれば、直流側主回路の大
電流を直接検出することなく、交流側の変圧器−次−の
小電流を変流器のような簡単な電流検出器を使用して検
出し、負荷シ電ユレーシvy回路により直流−主回路電
流を間接的に算出することができるので、非常に経済的
であると同時に、負荷端でなく制御装置側で電流検出が
できるので、工事が非常に簡単である。さらK、ロボッ
ト溶接部の場合、直流側主回路は可動部分が多く配線の
断?a婢による信頼性の低下が著しいが、本発明では固
定側から電流を検出し得るので信頼性が著しく向上する
(N Effects of the Invention As explained above, according to the present invention, the small current of the transformer on the AC side - the next - can be detected using a simple method such as a current transformer, without directly detecting the large current in the main circuit on the DC side. Since it is possible to detect using a current detector and calculate the DC-main circuit current indirectly by using the load oscillation circuit, it is very economical, and at the same time, it can be detected at the control device side rather than at the load end. Since the current can be detected, the construction work is very simple.Furthermore, in the case of robot welding parts, the main circuit on the DC side has many moving parts, and reliability decreases significantly due to wiring breaks, but with the present invention, Since the current can be detected from the fixed side, reliability is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の制御装置を示す回路図、第1図は本発明
の一実施例を示す回路図、第3図は第2図の装置の動作
を説明するための線図、第ダ図は本発明の他の実施例を
示す要部の回路図、第tlfiは第参図の装置の要部の
詳細を示す回路図、第を図は第1図の回路ve蓋の一1
作をt明するため・7)線図である。 ハ・・交fII重源、コ・・・電流−整器、3・・・変
比器、弘・・・整流Lc!l路、!・・・溶接榊電極部
、り・・・位相制御・・・電流検出器、/6・・・負荷
シ2ユレーシNノ回路、17・・・電流値演算回路、l
ト・・タイオー回路、19・・・比較演算回路、コト・
・時定数選択回路、30・・・〜勺変換器、31・・・
計算機(OPU)、jコ・・・D/A変換器。
FIG. 1 is a circuit diagram showing a conventional control device, FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 3 is a line diagram for explaining the operation of the device shown in FIG. 2, and FIG. 1 is a circuit diagram of the main part showing another embodiment of the present invention, No. tlfi is a circuit diagram showing details of the main part of the device shown in FIG.
7) Diagram to clarify the work. C... AC fII heavy source, C... Current-rectifier, 3... Ratio transformer, Hiroshi... Rectifier Lc! l road,! ...Welding Sakaki electrode part, R...Phase control...Current detector, /6...Load shunt N circuit, 17...Current value calculation circuit, l
G...Tai-O circuit, 19...Comparison calculation circuit, Koto...
・Time constant selection circuit, 30... ~ Converter, 31...
Computer (OPU), jco...D/A converter.

Claims (1)

【特許請求の範囲】 交流電源から可制御電気弁から成る電流調整aIおよび
整流回路を介して得られた制御された直流電流を、イン
ダクタ7スを有する直流負荷に供給する直流給電装量の
制御装置において。 負荷電流を交流側で検出する電流検出装置と、この電流
検出装置の検出出力と直流負荷の模擬された時定数とに
従って前記電流調整器のオフ区間をも含めて直流負荷に
流れる直流電流をシ建ニレ−ジョンする負荷シミュレー
タ1フ回路と、この負荷シミュレータ1フ回路によって
シ建エレーシayされた直流電流が目標値に一致するよ
うに前記電流調整器を制御する制御器と、前記可制御電
気弁に印加される交流電源の電圧がゼロ時点t、の交流
電流検出値x1と、前記可制御電気弁のオン直後t、の
交流電流検出値I!とさらに前記2つの交流電流検出値
I、、I、の時間間隔t(”t4− ”t )とから前
記直流負荷の時定数丁を算出し、前記負荷シミュレーシ
:i17回路の時定数が前記計算された時定数Tに郷し
くなる様に切換える切換簡略とを設けたことを特徴とす
る直流給電装置の制御装置。
[Claims] Control of the amount of DC power supply equipment that supplies a controlled DC current obtained from an AC power source through a current adjustment aI and rectifier circuit consisting of a controllable electric valve to a DC load having an inductor. In the device. A current detection device detects the load current on the AC side, and a DC current flowing through the DC load including the off period of the current regulator is simulated according to the detection output of the current detection device and a simulated time constant of the DC load. a load simulator 1 circuit that is erected; a controller that controls the current regulator so that the DC current erected by the load simulator 1 circuit matches a target value; The detected alternating current value x1 at time t when the voltage of the alternating current power supply applied to the valve is zero, and the detected alternating current value I! at time t immediately after the controllable electric valve is turned on! Further, the time constant of the DC load is calculated from the time interval t ("t4-"t) of the two AC current detection values I, , I, and the time constant of the load simulation: i17 circuit is calculated as follows. 1. A control device for a DC power supply device, characterized in that a control device for a DC power supply device is provided with a simple switching device for switching to suit a calculated time constant T.
JP56184685A 1981-07-30 1981-11-18 Controller for direct current feeding device Granted JPS5886614A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56184685A JPS5886614A (en) 1981-11-18 1981-11-18 Controller for direct current feeding device
US06/397,779 US4499363A (en) 1981-07-30 1982-07-13 DC Power source
GB08221812A GB2103396B (en) 1981-07-30 1982-07-28 Dc power source and control apparatus therefor
DE19823228564 DE3228564A1 (en) 1981-07-30 1982-07-30 DC POWER SUPPLY SYSTEM WITH RELATED CONTROL AND CONTROL SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184685A JPS5886614A (en) 1981-11-18 1981-11-18 Controller for direct current feeding device

Publications (2)

Publication Number Publication Date
JPS5886614A true JPS5886614A (en) 1983-05-24
JPH0213328B2 JPH0213328B2 (en) 1990-04-04

Family

ID=16157574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184685A Granted JPS5886614A (en) 1981-07-30 1981-11-18 Controller for direct current feeding device

Country Status (1)

Country Link
JP (1) JPS5886614A (en)

Also Published As

Publication number Publication date
JPH0213328B2 (en) 1990-04-04

Similar Documents

Publication Publication Date Title
CA1171907A (en) Pulsed thyristor trigger control circuit
US6191563B1 (en) Energy saving power control system
US4935691A (en) Phase switched power controller
EP1806836A1 (en) Universal motor speed controller
US5591249A (en) Flue gas conditioning method for intermittently energized precipitation
US4383900A (en) Apparatus and method for measuring the IR drop free cathodic protection potential created by a rectifier and controlling rectifier operation to achieve a desired level thereof
US6605918B2 (en) System and method for compensating the reading of noncontinuous AC sinusoidal currents
JPS5886614A (en) Controller for direct current feeding device
US4499363A (en) DC Power source
US4565958A (en) AC Line voltage regulator with controlled energy dispenser
JPH0212672B2 (en)
US5506477A (en) Method of sensing the rms value of a waveform
JPH0211924B2 (en)
US6813124B1 (en) Transformer over-current protection with RMS sensing and voltage fold-back
JP5128883B2 (en) Excitation control device
JPS61271466A (en) Welding current detection circuit
JPH0521122Y2 (en)
JPS58106617A (en) Alternating current stabilized power supply device
JPH0634637B2 (en) Time division control type automatic voltage regulator
JPH0323344A (en) Electronic control type governor for engine generator
Nola Pulsed thyristor trigger control circuit
JPS61228515A (en) Controller for dc power supply
JPS6030190B2 (en) Margin angle control device for inverse conversion device
JPH03183387A (en) Speed controller provided with intermittent current compensation feature
JPH0283605A (en) Electrification angle control circuit