JPS588504A - Gas separation membrane comprising polysulfone hollow fiber - Google Patents
Gas separation membrane comprising polysulfone hollow fiberInfo
- Publication number
- JPS588504A JPS588504A JP10660181A JP10660181A JPS588504A JP S588504 A JPS588504 A JP S588504A JP 10660181 A JP10660181 A JP 10660181A JP 10660181 A JP10660181 A JP 10660181A JP S588504 A JPS588504 A JP S588504A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- solvent
- separation membrane
- heat treatment
- polysulfone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
本発明社気体分離用ポリスルホン中空識雑膜及びその製
造方法Kr1lする。さらに詳しくは。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a polysulfone hollow membrane for gas separation and a method for producing the same. More details.
機械的強度が大きく、耐熱性1.、耐薬品性を持ち。High mechanical strength and heat resistance 1. , has chemical resistance.
優れた分離効率と気体透過速度の大きい気体分離用ポリ
スルホン中空繊維膜及びその製造方決に関するものであ
る。The present invention relates to a polysulfone hollow fiber membrane for gas separation with excellent separation efficiency and high gas permeation rate, and a method for producing the same.
従来から高分子膜を用いて気体分離を行う場合。Conventionally, gas separation is performed using polymer membranes.
膜構造を非対称膜として、できるだけ緻密層の厚ざを薄
くシ、気体の透過速度を大きくする必要のあるζどが知
られていた。これらの要件をある程度満した分離膜とし
ては、酢酸セルロース非対称膜があり、この素材で気体
分離を行った文献もみられる。しかし耐熱性、耐薬品性
1機械的強度等様々な化学的、物理的欠点を有しており
、工業化されるに到っていない。It is known that the membrane structure is an asymmetric membrane, the thickness of the dense layer is made as thin as possible, and the gas permeation rate is required to be increased. As a separation membrane that satisfies these requirements to some extent, there is a cellulose acetate asymmetric membrane, and there are also literatures that describe gas separation using this material. However, it has various chemical and physical drawbacks such as heat resistance, chemical resistance, mechanical strength, etc., and has not been commercialized yet.
こQ4C代る膜が種々検討されており、かかる素材の一
つである高い機械強度を−持ち、耐熱性、耐薬品性のあ
るポリスルホン系1itQ1に関しては、特開昭54−
26283や特開昭55−31474に多孔膜の製法が
述べられている。一方気体分離に関しては非対称膜の製
造方法として特開昭51−129880にポリスルホン
重合物溶液組成とキャスティング液組成について述べら
れているが、ポリスルホン中空繊維気体分離膜の製造方
法については見当らない。又中空繊維膜の製法に関して
は、ジャーナル・オプ・アプライドサイエンスVo12
0.2377ページ〜2394ページ(1976年)K
示されているが、これは多孔質中空繊維及びそれを用い
た複合膜に関するものである。これら既に開示された文
献により、ポリスルホン中空繊維膜を製造した場合、得
られた膜が多孔質、であったり、支持体の上にキャステ
ィングする膜製法のために中空糸膜が得られなかったり
して、目的とする気体分離膜を得ることが困難であった
・
本発明者等はかかる問題点を克服すべく鋭意検討した結
果、ii式決によりポリスルホン中空繊維を紡糸した後
、ドープ液中の非溶剤の分子量に応じた温度で、該中空
繊維を熱処理するととKより。Various membranes to replace this Q4C have been studied, and one such material, polysulfone-based 1itQ1, which has high mechanical strength, heat resistance, and chemical resistance, has been described in Japanese Patent Application Laid-Open No. 1983-1999.
26283 and JP-A-55-31474 describe methods for producing porous membranes. On the other hand, regarding gas separation, JP-A-51-129880 describes the composition of a polysulfone polymer solution and the composition of a casting liquid as a method for producing an asymmetric membrane, but there is no mention of a method for producing a polysulfone hollow fiber gas separation membrane. Regarding the manufacturing method of hollow fiber membranes, please refer to Journal of Applied Science Vol. 12.
0.2377 pages to 2394 pages (1976)K
However, this relates to porous hollow fibers and composite membranes using the same. According to these previously disclosed documents, when polysulfone hollow fiber membranes are manufactured, the resulting membranes may be porous or hollow fiber membranes may not be obtained due to the membrane manufacturing method of casting onto a support. Therefore, it was difficult to obtain the desired gas separation membrane. As a result of intensive study to overcome this problem, the present inventors found that after spinning polysulfone hollow fibers using the II method, When the hollow fibers are heat-treated at a temperature depending on the molecular weight of the non-solvent, K.
高性能の分離係数と透過速度を持った気体分離膜が得ら
れることを見出した。It has been found that a gas separation membrane with high performance separation coefficient and permeation rate can be obtained.
本発明において用いられるポリスルホン系樹脂とは
υ
を繰返し単位に持つポリスルホンを代表例として挙げる
仁とができる。The polysulfone resin used in the present invention includes polysulfone having υ as a repeating unit as a representative example.
本発明I/c訃いて、上記ポリスルホン系樹脂を用いて
昼式法で中空繊維、を製造する場合、特に製造工程を限
定し々いが、ドープ液調整工程、環状ノズルよりのドー
プ液押出工程、溶媒蒸発工程、凝固工程、延伸工程等に
より成る。According to the present invention I/C, when producing hollow fibers using the above-mentioned polysulfone resin by a daytime method, the production process is particularly limited, but the dope solution adjustment process and the dope solution extrusion process from an annular nozzle are , a solvent evaporation process, a coagulation process, a stretching process, etc.
ポリスルホン系樹脂を非プロトン性極性溶剤に溶解し1
次いで、非溶剤を添加して均一なドープ液を調整するが
、非プロトン性極性溶剤としては。Polysulfone resin is dissolved in an aprotic polar solvent.
A non-solvent is then added to prepare a uniform dope solution, but as an aprotic polar solvent.
N、N−ジメチルホルムアミド、2ジメチルアセトアミ
ド、ジメチルスルホキVド、N−メチル−2−ピロリド
ン、N−エチル−2−ピロリドン、N−メチル−2−ピ
ペリドン、スルホフン、テトツメ5−
チル尿素、塩化メチレン等及びこれらの混合物を例示す
ることができる。非プロトン性極性溶剤の添加量は1通
常20〜80重量%(以下−はすべて重量−を表わす)
、好ましくti30〜60%である。ドープ液濃度が低
す虻ると安定゛な紡糸が困′IIKなると共に1分離膜
の分離係数が悪くなる。N,N-dimethylformamide, 2-dimethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-2-piperidone, sulfofun, 5-tylurea, chloride Examples include methylene and mixtures thereof. The amount of aprotic polar solvent added is usually 20 to 80% by weight (hereinafter, all - represents weight).
, preferably ti is 30 to 60%. If the concentration of the dope solution becomes too low, stable spinning becomes difficult and the separation coefficient of the separation membrane deteriorates.
一方ドープ液濃度が高すぎると分離膜の気体透過量が少
くなって好ましくない。紡糸して得られる中空繊維膜が
スキンwIIK比較的小さな孔径を持った多孔質構造と
なっている必要があり、非溶剤としては、水又は一般式
R−(OH)n
で示される水溶性アルコールで1代表的には、メチルア
ルコール、エチルアルコール、イソプロピルアルコール
、ブチルアルコール、1.3−フロパンジオール、’!
、3−ブタンジオール、1,4−ブタンジオール、2,
3−ブタンジオール、エチレングリコール、グリセリン
1,2,3.4−ブタンテトラオール、ペンタエリスリ
トール等を例示できる。好6−
ましくFi、Rは炭素数が1〜4.nが1〜2である。On the other hand, if the concentration of the dope solution is too high, the amount of gas permeation through the separation membrane will decrease, which is not preferable. The hollow fiber membrane obtained by spinning must have a porous structure with a relatively small pore size, and the non-solvent may be water or a water-soluble alcohol represented by the general formula R-(OH)n. 1 Typical examples include methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, 1,3-furopanediol, '!
, 3-butanediol, 1,4-butanediol, 2,
Examples include 3-butanediol, ethylene glycol, glycerin 1,2,3.4-butanetetraol, and pentaerythritol. Preferably, Fi and R have 1 to 4 carbon atoms. n is 1-2.
又は一般式HO+CH* ・CRY−)rnOHで示さ
れるグリコール類で代表的にFi、ジエチレンクリコー
ル、lJエチレングリコール、フロピレンゲリコール等
を例示できる。好ましくei、mが2〜4である。又こ
れらから選ばれる2種以上の混合物であってもよい。非
溶剤の分子量が大きくなると紡糸後に得られる中空繊維
膜の孔径が大きくなり、熱処理を行ってもガス透過量は
多くなるが、良好な分離性能が得られず、好ましくない
。Alternatively, representative examples of glycols represented by the general formula HO+CH*·CRY-)rnOH include Fi, diethylene glycol, lJ ethylene glycol, and fluoropylene gelylcol. Preferably ei and m are 2-4. It may also be a mixture of two or more selected from these. If the molecular weight of the non-solvent increases, the pore size of the hollow fiber membrane obtained after spinning increases, and even if heat treatment is performed, the amount of gas permeation will increase, but good separation performance will not be obtained, which is not preferable.
非溶剤の添加量は、θ〜20%、好ましくは5〜20チ
である。添加量が多すぎるとポリスルホン系樹脂の沈澱
が生じるのス注意を要する。The amount of non-solvent added is θ~20%, preferably 5~20%. If the amount added is too large, the polysulfone resin will precipitate, so care must be taken.
非プロトン性極性溶剤濃度と非溶剤1度によりドープ液
中のポリスルホン系樹脂の濃度は必然的に決ってくるが
、1・0〜70チ好ましくは30〜60チである。The concentration of the polysulfone resin in the dope solution is inevitably determined by the concentration of the aprotic polar solvent and the concentration of the non-solvent, but it is from 1.0 to 70, preferably from 30 to 60.
以上により調整されたドープ液から中空繊維を紡糸する
工程は、i1式法にjす、中空繊維用ノメルi用いて紡
糸し、適当な空間距離をおいて岩謀の一部を蒸発させた
後、水又は水と有機溶剤の混合物中で凝固させて巻き取
る。必要ならは延伸を行う。得られた中空繊維は表面ス
キンIIIK比較的小さい孔径を持つ多孔膜であるが、
この要件を満たすKFi種々の条件を調整する必要があ
り1例えば既に述べたドープ液調整条件以外に、ドープ
液温度、溶媒蒸発時間、空間距離、凝固浴組成、凝固浴
温度、延伸倍率等の調整が必要である。The process of spinning hollow fibers from the dope solution prepared as described above is carried out using the I1 method. After spinning using a hollow fiber yarn and evaporating a part of the fibers at an appropriate spatial distance, , coagulate in water or a mixture of water and an organic solvent, and wind up. Stretch if necessary. The resulting hollow fibers are surface skin IIIK porous membranes with relatively small pore sizes;
It is necessary to adjust various KFi conditions to meet this requirement.1 For example, in addition to the dope solution adjustment conditions already mentioned, adjustment of dope solution temperature, solvent evaporation time, spatial distance, coagulation bath composition, coagulation bath temperature, stretching ratio, etc. is necessary.
さらに詳1111には、ドープ液温度を20〜100℃
、溶媒蒸発時間をθ秒〜30秒、空間距離を0■〜10
00■、凝固温度をθ℃〜50℃、砥伸倍率を0.8倍
〜2倍に調整するのが望ましい。Furthermore, in detail 1111, the temperature of the dope solution is set at 20 to 100°C.
, solvent evaporation time θ seconds ~ 30 seconds, spatial distance 0 ■ ~ 10 seconds
It is desirable to adjust the coagulation temperature to θ°C to 50°C and the grinding ratio to 0.8 to 2 times.
次いで得られた中空繊維膜に熱処理を施す、熱処理はい
かなる方法であっても良く1例えば、飽和蒸気又は過熱
蒸気による処理、空気による加熱処理−油浴中における
加熱処理、熱板接触による加!?!ll処理、その他赤
外線やマイクロ波による加熱処理も可能である。又中空
繊維を巻き取って後に熱処理を行1つても、又は紡糸後
であって巻取るまでの、中空繊維の走行中に熱処理を行
うことも可能である。Next, the obtained hollow fiber membrane is heat-treated by any method. For example, treatment with saturated steam or superheated steam, heat treatment with air - heat treatment in an oil bath, heat treatment by contact with a hot plate, etc. ? ! ll treatment and other heat treatments using infrared rays or microwaves are also possible. It is also possible to perform the heat treatment once after the hollow fiber is wound up, or it is also possible to perform the heat treatment while the hollow fiber is running after spinning and before being wound up.
熱処理の温度は120℃以上で融点以下1時間は0.0
1秒以上で60分以下の範囲が望ましく。The temperature of heat treatment is 120℃ or higher and 0.0 for 1 hour below the melting point.
A range of 1 second or more and 60 minutes or less is desirable.
好ましくは、170℃以上で融点以下が良い。親水性の
非溶剤を入れて凝固速度を遅らせスキン層を緻密にする
のであるが、ドープ液中に使用した非溶剤の分子量が大
きい時は、熱処理前の中空繊維膜の孔径は大きく、非溶
剤の分子量が小さい時社、比較的小さい孔径の膜が得ら
れるO従って非溶剤の分子量に耐じて、非溶剤の分子量
力監大きいときは、熱処理温度を高く1分子量のtJ\
さいときは熱処理温度は低くして、中空繊維膜のごく表
面のスキン層のみが緻密な状態で1分離効率力;高く。Preferably, the temperature is 170°C or higher and lower than the melting point. A hydrophilic non-solvent is added to slow down the coagulation rate and make the skin layer denser. However, when the molecular weight of the non-solvent used in the dope is large, the pore size of the hollow fiber membrane before heat treatment is large, and the non-solvent When the molecular weight of the non-solvent is small, a film with a relatively small pore size can be obtained.
When the heat treatment temperature is low, only the skin layer on the very surface of the hollow fiber membrane is dense and the separation efficiency is high.
ガス透過量が大きくなる様な膜が得られる様に熱処理条
件を調整するのが良い。又紡糸後巻取った中空繊維は比
較的低温で長時間の熱処理を行い。It is preferable to adjust the heat treatment conditions so that a film with a large gas permeation rate can be obtained. In addition, the hollow fibers wound up after spinning are heat treated at relatively low temperatures for a long period of time.
走行中の中空繊維は融点近くで短時間の熱処理を9− 施すのが望ましい。The running hollow fibers undergo a short heat treatment near their melting point. It is desirable to apply
以上本発明により、耐熱性、耐薬品性に優れ。As described above, the present invention has excellent heat resistance and chemical resistance.
機゛械的強度が大きく、しかも分離係数が高く、透過速
度の大きい、新規なる気体分離用ポリスルホン中空繊維
膜を得ることができる。It is possible to obtain a novel polysulfone hollow fiber membrane for gas separation that has high mechanical strength, high separation coefficient, and high permeation rate.
本発明によって得られた気体分離用ポリスルホン中空繊
維膜は、酸素、窒素、ヘリウム、アルゴン、ネオン、炭
酸ガス、−酸化炭素、硫化水素。The polysulfone hollow fiber membrane for gas separation obtained by the present invention can be used to separate oxygen, nitrogen, helium, argon, neon, carbon dioxide, -carbon oxide, and hydrogen sulfide.
亜硫酸ガス、二酸化窒素、メタン、主タン、プロパン、
エチレン、プロピレン、ブチレン、ソの能代分子ガス状
化合物の分離、濃縮に、更には気液混合物中の気体分離
、その他の目的に対して適用することができる。Sulfur dioxide gas, nitrogen dioxide, methane, main thane, propane,
It can be applied to the separation and concentration of Noshiro molecular gaseous compounds such as ethylene, propylene, butylene, and so on, as well as gas separation in gas-liquid mixtures and other purposes.
以下の実施例により1本発明をさらに具体的に説明する
が、本発明は何らこれらの実施例に限定されるものでは
ない。The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to these examples at all.
実施例1゜
ポリアリールエーテルスルホン(UDEL P3500
ユニオンカーバイド社製)50部を第、1表に示す混合
溶剤50部に溶解、脱泡せしめて均一なドー10−
プ液を作製した。このドープを95℃に維持してシース
コアタイプの紡糸口金を介して紡出し、空気中を200
■走行せしめた後、第1表に示す割合に調整された混合
溶剤を30チ含む、あらかじめ10℃に調整された水溶
液中に導いて、脱溶剤凝固せしめた。スコア部には、上
記の混合溶剤を含む水溶液を導入した。次いで、固化し
た中空繊維膜は、凝固浴より引き出され、連続的に水洗
。Example 1 Polyarylether sulfone (UDEL P3500
(manufactured by Union Carbide Co., Ltd.) was dissolved in 50 parts of the mixed solvent shown in Table 1 and defoamed to prepare a uniform dope solution. This dope was maintained at 95°C and spun through a sheath core type spinneret, and then spun in air at 200°C.
(2) After running, it was introduced into an aqueous solution containing 30 g of a mixed solvent adjusted to the proportions shown in Table 1 and adjusted to a temperature of 10°C in advance to remove the solvent and solidify it. An aqueous solution containing the above mixed solvent was introduced into the scoring section. The solidified hollow fiber membrane is then pulled out of the coagulation bath and continuously washed with water.
乾燥した。Dry.
得られた該中空繊維膜を、第1表に示す条件で。The obtained hollow fiber membrane was subjected to the conditions shown in Table 1.
飽和蒸気中で熱処理した。得られた中空繊維のバブリン
グポイントは30kf/d以上であった。Heat treated in saturated steam. The bubbling point of the obtained hollow fiber was 30 kf/d or more.
得られた該中空繊維膜を2mICカットし、150本を
束ねてU字型に曲げ、開放端をエポキシ樹脂で接着した
後1通常実験室で使用する気体分離実験装置に装着して
空気、の透過実験を1.0kr/dの加圧下で行った。The resulting hollow fiber membranes were cut into 2m ICs, 150 pieces were bundled together, bent into a U shape, and the open ends were glued with epoxy resin. Permeation experiments were conducted under an applied pressure of 1.0 kr/d.
空気は中空繊維の外部から供給され、透過せしめた気体
を該繊維の中空部から取り出し、流量と組成を測定して
、気体の透過性能を評価した・
実施例2゜
ポリアリールエーテルスルホン(UDEL P3500
ユニtンカ−t<4ド社製)50部をN−メチルピロリ
ドン47部とエチレングリコール3部よ〜り成る混合溶
媒に溶解、脱泡せしめて均一なドープ液を作製した。こ
れを実施例IKおける方法と同じ条件で紡糸し、飽和蒸
気中180℃、10分間の熱処理を行い、バブリングポ
イント30kF/cIA以上の中空繊維膜を得た。この
中空繊維膜を実施例1と同方法で、気体の透過性能を測
定した。結果を第2表に示した。Air was supplied from the outside of the hollow fiber, and the permeated gas was taken out from the hollow part of the fiber, and the flow rate and composition were measured to evaluate the gas permeation performance. Example 2 Polyarylether sulfone (UDEL P3500)
A homogeneous dope solution was prepared by dissolving 50 parts of Unit Card <4 (manufactured by Do Co., Ltd.) in a mixed solvent consisting of 47 parts of N-methylpyrrolidone and 3 parts of ethylene glycol and defoaming. This was spun under the same conditions as in Example IK and heat treated in saturated steam at 180° C. for 10 minutes to obtain a hollow fiber membrane with a bubbling point of 30 kF/cIA or higher. The gas permeation performance of this hollow fiber membrane was measured in the same manner as in Example 1. The results are shown in Table 2.
第 2 表 13−Table 2 13-
Claims (7)
ン中空繊維気体分離膜。(1) It has an asymmetric structure with a dense surface layer. A polysulfone hollow fiber gas separation membrane having a puzzle point of 20-/- or more.
に溶解し、これに非溶剤を加えて均一溶液となし、該溶
液を中空l!維膜とした後%処理する特許請求の範囲第
(1)項記載の分離膜6(2) Polysulfone resin is dissolved in an aprotic polar solvent, a non-solvent is added to it to make a homogeneous solution, and the solution is poured into a hollow l! Separation membrane 6 according to claim (1), which is treated after being made into a fibrous membrane.
項記載の分離膜。(3) Scope No. (2) of the patent application in which the polysulfone resin is expressed in folded units
Separation membrane described in section.
ルムアミド、ジメチルアセトアミド、ジメチルスルホキ
Vド、N−フルキルピロリドン、スルホラン、テトラメ
チル尿素、塩化メチレンである特許請求の範囲第(2)
項記載の分離膜。(4) Claim No. 2 in which the aprotic polar solvent is = NtN-dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-furkylpyrrolidone, sulfolane, tetramethylurea, methylene chloride
Separation membrane described in section.
される特許請求の範囲第(2)項記載の分離膜。(6) The separation membrane according to claim (2), wherein the non-solvent is represented by HO+CHs -CHY-0+mH.
特許請求の範囲第(り項記載の分離膜。(7) The separation membrane according to claim 1, wherein the heat treatment temperature is 120° C. or higher and lower than the melting point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10660181A JPS588504A (en) | 1981-07-08 | 1981-07-08 | Gas separation membrane comprising polysulfone hollow fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10660181A JPS588504A (en) | 1981-07-08 | 1981-07-08 | Gas separation membrane comprising polysulfone hollow fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS588504A true JPS588504A (en) | 1983-01-18 |
Family
ID=14437648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10660181A Pending JPS588504A (en) | 1981-07-08 | 1981-07-08 | Gas separation membrane comprising polysulfone hollow fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS588504A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5851911A (en) * | 1981-09-22 | 1983-03-26 | Asahi Chem Ind Co Ltd | Preparation of aromatic polyether sulfone hollow yarn type semi-permeable membrane |
JPS59228017A (en) * | 1983-06-07 | 1984-12-21 | Nitto Electric Ind Co Ltd | Preparation of hollow yarn membrane of aromatic polysulfone |
US5591397A (en) * | 1990-05-22 | 1997-01-07 | Alcon Laboratories, Inc. | Double redox system for disinfecting contact lenses |
KR100392470B1 (en) * | 2000-07-31 | 2003-07-22 | 학교법인 한양학원 | Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby |
KR100656805B1 (en) | 2005-03-18 | 2006-12-20 | 학교법인연세대학교 | Method for preparing microporous polyether sulfone membrane using steam induction phase transition process and nonsolvent induction phase transition process |
JP2012505973A (en) * | 2008-10-17 | 2012-03-08 | ソルベイ・アドバンスト・ポリマーズ・エルエルシー | Fibers or foils obtained from polymers having high Tg and methods for their production |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51129880A (en) * | 1975-04-23 | 1976-11-11 | Envirogenics Syst | Gas separation membrane |
JPS5531474A (en) * | 1978-08-29 | 1980-03-05 | Nitto Electric Ind Co Ltd | Selective permeable membrane |
JPS5771606A (en) * | 1980-10-23 | 1982-05-04 | Kanegafuchi Chem Ind Co Ltd | Dry polysulfone semipermeable membrane and manufacture thereof |
JPS5782515A (en) * | 1980-11-05 | 1982-05-24 | Kanegafuchi Chem Ind Co Ltd | Hollow fibrous membrane and its preparation |
JPS5794304A (en) * | 1980-12-03 | 1982-06-11 | Sumitomo Chem Co Ltd | Gas separating membrane made of polysulfone hollow fiber and its manufacture |
-
1981
- 1981-07-08 JP JP10660181A patent/JPS588504A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51129880A (en) * | 1975-04-23 | 1976-11-11 | Envirogenics Syst | Gas separation membrane |
JPS5531474A (en) * | 1978-08-29 | 1980-03-05 | Nitto Electric Ind Co Ltd | Selective permeable membrane |
JPS5771606A (en) * | 1980-10-23 | 1982-05-04 | Kanegafuchi Chem Ind Co Ltd | Dry polysulfone semipermeable membrane and manufacture thereof |
JPS5782515A (en) * | 1980-11-05 | 1982-05-24 | Kanegafuchi Chem Ind Co Ltd | Hollow fibrous membrane and its preparation |
JPS5794304A (en) * | 1980-12-03 | 1982-06-11 | Sumitomo Chem Co Ltd | Gas separating membrane made of polysulfone hollow fiber and its manufacture |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5851911A (en) * | 1981-09-22 | 1983-03-26 | Asahi Chem Ind Co Ltd | Preparation of aromatic polyether sulfone hollow yarn type semi-permeable membrane |
JPS59228017A (en) * | 1983-06-07 | 1984-12-21 | Nitto Electric Ind Co Ltd | Preparation of hollow yarn membrane of aromatic polysulfone |
US5591397A (en) * | 1990-05-22 | 1997-01-07 | Alcon Laboratories, Inc. | Double redox system for disinfecting contact lenses |
KR100392470B1 (en) * | 2000-07-31 | 2003-07-22 | 학교법인 한양학원 | Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby |
KR100656805B1 (en) | 2005-03-18 | 2006-12-20 | 학교법인연세대학교 | Method for preparing microporous polyether sulfone membrane using steam induction phase transition process and nonsolvent induction phase transition process |
JP2012505973A (en) * | 2008-10-17 | 2012-03-08 | ソルベイ・アドバンスト・ポリマーズ・エルエルシー | Fibers or foils obtained from polymers having high Tg and methods for their production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2635051B2 (en) | Irregular gas separation membrane | |
US5820659A (en) | Multicomponent or asymmetric gas separation membranes | |
JP5598679B2 (en) | Hollow fiber, dope solution composition for forming hollow fiber, and method for producing hollow fiber using the same | |
JP3581937B2 (en) | Highly selective asymmetric thin film for gas separation and method for producing the same | |
JP2566973B2 (en) | Method for forming hollow fiber irregular gas separation membrane | |
JPH05509029A (en) | Defect-free ultra-high flux asymmetric membrane | |
JPH03267130A (en) | Gas separation hollow fiber membrane and its manufacturing method | |
Shieh et al. | Gas separation performance of poly (4-vinylpyridine)/polyetherimide composite hollow fibers | |
JPH09136985A (en) | Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof | |
JP2017515663A (en) | Skinned asymmetric poly (phenylene ether) copolymer membrane, gas separation device, and production method thereof | |
JP2006528057A (en) | Monolithically skinned asymmetric membrane with solvent resistance | |
JPS6351921A (en) | Multicomponent gas separating membrane | |
Liu et al. | Effects of spinning temperature on the morphology and performance of poly (ether sulfone) gas separation hollow fiber membranes | |
KR101461199B1 (en) | Composite hollow fiber membrane for separation of carbon dioxide/methane in the biogas purification process, membrane module comprising the same and manufacturing method thereof | |
KR100835655B1 (en) | Gas separation membrane production method and gas separation membrane prepared therefrom | |
JPS588504A (en) | Gas separation membrane comprising polysulfone hollow fiber | |
KR100644366B1 (en) | Mass production method of polymer hollow fiber membrane for asymmetric gas separation | |
KR100381463B1 (en) | Membrane Formation by dual quenched method | |
JPH0542288B2 (en) | ||
JP2688882B2 (en) | Method for producing composite membrane for gas separation | |
JP2539799B2 (en) | Method for manufacturing gas selective permeable membrane | |
CN117138605A (en) | Ultralow-pressure reverse osmosis membrane and preparation method thereof | |
KR101503395B1 (en) | Preparation method of support membrane for recovering hydrocarbon and support membrane prepared therefrom | |
JP2002126479A (en) | Porous membrane, gas separating membrane and method of manufacturing for the same | |
JP2017029871A (en) | Asymmetric gas separation membrane and method for separating and recovering gas |