JPS5882925A - Method of controlling distribution of flow of particulate material - Google Patents
Method of controlling distribution of flow of particulate materialInfo
- Publication number
- JPS5882925A JPS5882925A JP17877481A JP17877481A JPS5882925A JP S5882925 A JPS5882925 A JP S5882925A JP 17877481 A JP17877481 A JP 17877481A JP 17877481 A JP17877481 A JP 17877481A JP S5882925 A JPS5882925 A JP S5882925A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- gas
- branch pipe
- phase fluid
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 12
- 239000011236 particulate material Substances 0.000 title abstract 4
- 239000012530 fluid Substances 0.000 claims abstract description 33
- 239000007787 solid Substances 0.000 claims abstract description 13
- 239000007789 gas Substances 0.000 claims description 25
- 239000012159 carrier gas Substances 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 6
- 239000008187 granular material Substances 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- 239000000463 material Substances 0.000 abstract 1
- 239000003245 coal Substances 0.000 description 20
- 239000012071 phase Substances 0.000 description 19
- 239000000446 fuel Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 101100165918 Caenorhabditis elegans cam-1 gene Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G53/00—Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
- B65G53/34—Details
- B65G53/66—Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air Transport Of Granular Materials (AREA)
Abstract
Description
【発明の詳細な説明】
零発’!Aは粉粒体を気相して複数の送給先へ分配する
場合の流源制御方法に関する。[Detailed description of the invention] Zero shot'! A relates to a flow source control method when distributing powder or granular material to a plurality of destinations in a vapor phase.
曽て高炉で使用する燃料はコークスだけであったが、高
炉技術の発展により羽口から高炉内へ補助燃料として重
油が吹き込まれるよう忙なり、更にM近のエネルギ事情
を反映して上記重油に替えて微粉炭を使用する試み75
;盛んに行われている。In the past, the only fuel used in blast furnaces was coke, but with the development of blast furnace technology, heavy oil was injected into the blast furnace from the tuyere as an auxiliary fuel. Attempt to use pulverized coal instead75
;It is actively practiced.
羽口から品炉内へ微粉炭を吹き込む場合、高炉状況を安
定させるために微粉炭の総吹込み飯を安定させること及
び微粉炭の各羽口力・らの吹込み量をIII及的に均一
化することが要求される。When blowing pulverized coal into the blast furnace from the tuyere, it is necessary to stabilize the total amount of pulverized coal being blown into the blast furnace and to adjust the amount of pulverized coal blown into each tuyere to stabilize the blast furnace condition. Uniformity is required.
然るにキャリアガスを用いて微粉炭を高炉内へ吹き込む
従来法においては、固気2相流体の流量測定方法が確立
されていないために、各羽口力・らの吹込み練の制御が
殆ど行われていないというのが実情である。固気2相流
体の流値を測定する流緘計としては、ベンチュリー差圧
式、#J圧式、コリオリ式、静電容量式等が知られてい
る力;、固気2相びL体の気体流量と固体流量を・分離
して固体流−を特定する流被計は、測定精度、安定性の
点で間粗があり、吹込み量の制御には使用できるもので
はなかった。However, in the conventional method of injecting pulverized coal into the blast furnace using a carrier gas, there is no established method for measuring the flow rate of solid-gas two-phase fluid, so it is difficult to control the blowing mixing of each tuyere force. The reality is that this is not the case. Venturi differential pressure type, #J pressure type, Coriolis type, capacitance type, etc. are known flowmeters for measuring the flow value of solid-gas two-phase fluid. Flowmeters that separate the flow rate from the solids flow rate to identify the solids flow have poor measurement accuracy and stability, and cannot be used to control the amount of injection.
本発明はこのような背景のもとになされたものであり、
固気2相流体又は固体の流量の直接的測定によることな
く粉粒体を埒等に分配し得る方2法を堤案じたものでち
る。The present invention was made against this background,
Two methods are proposed that allow granular material to be distributed into a mass without directly measuring the flow rate of a solid-gas two-phase fluid or a solid.
本発明方法は、粉粒体の沈1年速度より十分大きな流速
を有する固気2相流体を分配すると、各分配支管の固気
2相流体の流量は、各分配支管の出口圧力によって異る
が、各分配支管における固気比はほぼ等しくなることに
看目し、金粉体流檄及び全気体流量から固気比を演算し
、この固気比と各分配支管内の固気2相流体の圧力とか
ら、各分配支管に固気2相流体を均等分配した場合の分
配支管の直管部の一定長部分での圧力損失(以下圧損と
いう)を演算し、この圧損が固気2相流体の分配後の各
分配支管の同部分での圧損と等しくなるように制(至)
をするものである。In the method of the present invention, when a solid-gas two-phase fluid having a flow rate sufficiently higher than the one-year sedimentation rate of powder and granules is distributed, the flow rate of the solid-gas two-phase fluid in each distribution branch pipe varies depending on the outlet pressure of each distribution branch pipe. However, noting that the solid-air ratio in each distribution branch pipe is almost equal, the solid-air ratio is calculated from the gold powder flow and the total gas flow rate, and the solid-air ratio and the solid-air two-phase in each distribution branch pipe are calculated. From the pressure of the fluid, calculate the pressure loss (hereinafter referred to as pressure loss) in a fixed length section of the straight pipe section of the distribution branch pipe when the solid-gas two-phase fluid is equally distributed to each distribution branch pipe, and calculate this pressure loss as the solid-gas 2 phase fluid. Control the pressure drop to be equal to the pressure drop in the same part of each distribution branch pipe after distributing the phase fluid.
It is something that does.
以下本発明を高炉の各羽目へ微粉体を分配送給する実施
例を示す図面に基いて詳述する。図面は本発明方法の実
施状態を示す模式図であり、タンクlには石炭を粉砕し
てなる微粉炭が搬送供給されて貯留されている。該タン
ク1の荷重支承部分にtゴロードセル2が設けられてい
て、微粉炭の重量が秤酸される。タンク1の下方の出口
には切出(装置3が設けられており、該切出し装置3に
より所要緻微粉炭が供給管52に供給されるようになっ
ている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to drawings showing an embodiment in which fine powder is distributed and supplied to each wall of a blast furnace. The drawing is a schematic diagram showing the implementation state of the method of the present invention, and pulverized coal obtained by pulverizing coal is transported and stored in a tank 1. A load bearing cell 2 is provided in the load bearing portion of the tank 1, and the weight of the pulverized coal is weighed. A cutting device 3 is provided at the lower outlet of the tank 1, and the necessary fine pulverized coal is supplied to the supply pipe 52 by the cutting device 3.
一方供給管52には図示しないガスタンクから窒素ガス
、空気等のキャリアガスがキャリアガス供給管51にて
送給されていて、タンク1から供給管52へ切り出され
た微粉炭はこのキャリアガスとにより固気2相流体とな
り、分配器7により複数の分配支管6.6・・・へ分配
されるようになっている。キャリアガス供給管51には
ベンチュリー差圧式等公知の流量計4が介装されており
、キャリアガス供給管51内のキャリアガス流量を測定
している。分配器7は例えば円錐状のコーンを有する分
配器であり、各分配支管6.6・・・への均一な分配を
ciT能とするものである。On the other hand, a carrier gas such as nitrogen gas or air is supplied to the supply pipe 52 from a gas tank (not shown) through a carrier gas supply pipe 51, and the pulverized coal cut from the tank 1 to the supply pipe 52 is transported by this carrier gas. It becomes a solid-gas two-phase fluid and is distributed by the distributor 7 to a plurality of distribution branch pipes 6, 6, . . . . A known flow meter 4 such as a Venturi differential pressure type is installed in the carrier gas supply pipe 51 and measures the flow rate of the carrier gas inside the carrier gas supply pipe 51 . The distributor 7 is, for example, a distributor having a conical cone, and is capable of uniformly distributing the fluid to each distribution branch pipe 6, 6, . . . .
分配器7の直後の各分配支管6.6・・・Kは流量1i
jJ 両弁8.8・・・が犬々介装されていて、後述す
る/j!算制御装置10にてその流量を制御されるよう
Kなっている。各分配支管6.6・・・の流量制御弁8
.8・・・の後段の直管一部+5−8,6ト・・には流
体の各分配支管ごとの圧損を測定するための測定器9゜
9・・・が介装されている。この測定器9.9・・・#
′i2本の測定管部を、直管部6a、6m・・・の一定
長を隔てた2ケ所に連通連結してなる差圧発振器である
。Each distribution branch pipe 6.6 immediately after the distributor 7...K is the flow rate 1i
jJ Both valves 8.8... are treated with dogs, and will be described later /j! The flow rate is controlled by a computer control device 10. Flow control valve 8 for each distribution branch pipe 6.6...
.. A measuring device 9.9 for measuring the pressure loss of each distribution branch pipe of the fluid is interposed in a portion of the straight pipe +5-8, 6t. This measuring device 9.9...#
This is a differential pressure oscillator in which two measurement tube sections are connected in communication at two locations separated by a fixed length of straight tube sections 6a, 6m, . . .
さらに直管部6a、6a・・・の後段には圧力計11.
11・・・が介装され、各分配支管6,6・・・内の流
体の圧力を測定する。そして各圧力計11.11・・・
にて圧力を測定された固気2相流体は図示しない高炉の
各羽口に送給されるようになっている。Furthermore, pressure gauges 11.
11... are interposed to measure the pressure of the fluid within each distribution branch pipe 6, 6.... And each pressure gauge 11.11...
The solid-gas two-phase fluid whose pressure has been measured is fed to each tuyere of the blast furnace (not shown).
一方、ロードセル2.流量計4.測定器9.9・・・、
さらには圧力計11.11・・・の各測定信号は、演算
制御装置lOに入力され、ここで後述する演算処理が行
われ、この演算結果により流量制御弁8.8・・・の開
度を調節するようになっている。而して、この発明にお
いては固体つまり粉粒体の流量を、これが通流している
状況下にて測定せず、ロードセル2によるタンク1の重
量変化を捉えることによって求めることとしており、タ
ンクlの重量減夕景の微分値が時闇昌り流量に相当する
。On the other hand, load cell 2. Flowmeter 4. Measuring device 9.9...,
Furthermore, each measurement signal of the pressure gauges 11, 11... is input to the arithmetic and control unit IO, where the arithmetic processing described later is performed, and the opening of the flow rate control valves 8,8... is determined based on the arithmetic results. It is designed to adjust. Therefore, in this invention, the flow rate of solid, ie, powder, granular material is not measured while it is flowing, but is determined by capturing the weight change of tank 1 by load cell 2. The differential value of the weight-reduced sunset view corresponds to the hourly flow rate.
その他流量計4によりキャリアガス流量、さらに1−E
カ計11.11・・・により各分配支管6.6・・・内
のIE力を得る点は通常の方法と同様である。これら固
体流量、キャリアガス流量及び分配支管内圧力により固
気2相流体を各分配支管6.6・・・に均等分配した場
合の各分配支管6.6・・・内の直管部6aでの圧損を
演算し、該演算結果と、各測定器9゜9・・・による各
測定結果が一致するよ・うに流量制御弁8を制御するの
である。Other flowmeter 4 measures carrier gas flow rate, and 1-E
The point that the IE force in each distribution branch pipe 6,6, . . . is obtained by the force 11, 11, . When the solid-gas two-phase fluid is evenly distributed to each distribution branch pipe 6.6 by using these solid flow rate, carrier gas flow rate, and distribution branch pipe internal pressure, the straight pipe portion 6a in each distribution branch pipe 6.6... The pressure drop is calculated, and the flow rate control valve 8 is controlled so that the calculated result matches the measurement results obtained by each measuring device 9.9.
この流量制御方法を更に具体的に説明する。This flow rate control method will be explained in more detail.
分配支管6,6・・・の直管部6a、6a・・・におけ
る圧損ΔP+ (但し添字it/i分配支管を表わす番
号)は、気体のみの流送時の圧損IPfと、微粉炭の付
加圧損jP、との和である。直管部6aにおいて微粉炭
の加速損失を伴わないように直管部6aに対する送給距
離(助走8闇)を十分にとると、付加圧損ΔPsは主と
して摩擦圧損となる。いま各分配支管毎の流体の流速を
Vt(m/8)、各分配支管6,6・・・における固気
比をmI、各分配支管6,6・・・の圧力をP、とする
と、各分配支管内における圧損ΔP。The pressure loss ΔP+ in the straight pipe portions 6a, 6a... of the distribution branch pipes 6, 6... (however, the subscript it/i is the number representing the distribution branch pipe) is the pressure drop IPf when only gas is flowing, and the addition of pulverized coal. It is the sum of the pressure loss jP. If a sufficient feeding distance (run-up distance 8) to the straight pipe portion 6a is taken so as not to cause acceleration loss of the pulverized coal in the straight pipe portion 6a, the additional pressure loss ΔPs will mainly be a friction pressure loss. Now, let us assume that the fluid flow rate in each distribution branch pipe is Vt (m/8), the solid-air ratio in each distribution branch pipe 6, 6... is mI, and the pressure in each distribution branch pipe 6, 6... is P. Pressure drop ΔP in each distribution branch pipe.
は次式で表わされる。is expressed by the following formula.
Δpi =ΔPs十1Pf
=に4(Pt )mt vl”+ K2(Pt
)vt”−(K+(Pt )mt + Kt(Pt
))vt” −(1)(但しに+ (
Pl ) 、 K2(P> )は各分配器管内の圧力P
1にて定まる定数)
微粉炭をその沈降速度よりも十分に速い速度にて流送し
、また送給距離が十分に長い分配支管において一様な流
速を有している場合は、分配後の各分配支管6.6・・
・内には夫々の固気比が等しくなるように流送される。Δpi = ΔPs + 1Pf = 4(Pt) mt vl”+ K2(Pt
)vt”−(K+(Pt)mt+Kt(Pt
)) vt” −(1) (However, + (
Pl), K2(P>) is the pressure P in each distributor pipe
(constant determined by 1) If pulverized coal is flowed at a speed sufficiently faster than its settling speed, and if the flow velocity is uniform in the distribution branch pipe over a sufficiently long feeding distance, the Each distribution branch pipe 6.6...
・Flow is carried out so that the solid-air ratio of each is equal.
従って、ロードセル2の変化値と、流量計4の測定値か
ら固気2相流体の固気比mを演算して、これを各分配支
管6,6・・・の固気比町とし、この固気比IIJ、圧
力計11.11・・・による各分配支管6,6・・・の
圧力Pi 、流量計4による気体流量及びロードセル2
による微粉炭電値から演算した各分配支管6,6・・・
に流体を均等に分配し尼場合の夫々の流速v1とKより
上記(1)式の圧損jPiが求められることKなる。な
お定数に+(Pt)及びKt(Pt)は実線により求め
られたものである。Therefore, the solid-air ratio m of the solid-gas two-phase fluid is calculated from the change value of the load cell 2 and the measured value of the flow meter 4, and this is set as the solid-air ratio m of each distribution branch pipe 6, 6... Solid-gas ratio IIJ, pressure Pi of each distribution branch pipe 6, 6... measured by pressure gauge 11, 11..., gas flow rate measured by flow meter 4, and load cell 2
Each distribution branch pipe 6, 6... calculated from the pulverized coal electricity value by
The pressure drop jPi of the above equation (1) can be obtained from the respective flow velocities v1 and K when the fluid is evenly distributed to the two. Note that the constants +(Pt) and Kt(Pt) are determined using solid lines.
演算制御装置10は、上述した演算処理を行って圧損Δ
Piを求め、この演算値Δpiと測定器9による各分配
支管6,6・・・の直管部6a、6a・・・での測定値
との差を解消するように各流量制御弁8゜8・・・の流
量調節を行えば、各分配支管6,6・・−には微粉炭が
均等に分配されることになる。The arithmetic and control device 10 performs the above-mentioned arithmetic processing to determine the pressure loss Δ.
Pi is calculated, and each flow rate control valve 8 degree is By adjusting the flow rate of 8, pulverized coal will be evenly distributed to each distribution branch pipe 6, 6, .
なお、上記方法において温度変化が大きい場合には、演
算された圧損ΔPIの温度補正を行うことにより均等分
配の精度は向上する。Note that in the above method, when the temperature change is large, the accuracy of equal distribution is improved by temperature-correcting the calculated pressure loss ΔPI.
上述の如く構成された装置を用いて微粉炭を高炉の谷羽
口へ吹込む場合、タンク1から切出された微粉炭はキャ
リアガス供給管51から窒素ガス。When pulverized coal is blown into the valley tuyere of a blast furnace using the apparatus configured as described above, the pulverized coal cut out from the tank 1 is supplied with nitrogen gas from the carrier gas supply pipe 51.
空気等のキャリアガスが供給されることにより固気2相
流体となり、昼配器7にて分配されるが、この分配器7
の直後に設けられた流量制御弁8゜8・・・は前述の如
く粉粒体流量、気体流量、′及び各分配支管内の圧力か
ら求められた微粉炭を均等分配した場合の圧損と、測定
器9によご崖損とを一炊させるべく演算制御装置lOに
より制御されているので、各分配支管6,6・・・内を
通流する微粉灰の流量は均一となり、従って高炉の各別
口には欽8訳を均一に吹込むことができる。By supplying a carrier gas such as air, it becomes a solid-gas two-phase fluid, which is distributed by the day distributor 7.
The flow rate control valve 8゜8... installed immediately after is used to calculate the pressure drop when pulverized coal is evenly distributed, which is determined from the powder flow rate, gas flow rate, ', and the pressure in each distribution branch pipe, as described above. Since the measuring device 9 is controlled by the arithmetic and control unit 1O to eliminate the cliff loss, the flow rate of the pulverized ash flowing through each distribution branch pipe 6, 6, etc. becomes uniform, and therefore the blast furnace The Kin 8 translation can be evenly injected into each separate mouth.
なお、上述の実施例−おいては、微粉炭流量をロードセ
ル2により秤量することとしたがこれに限るものではな
く、例えば切出し装置3の流量を測定することによって
も求められる。In the above embodiment, the flow rate of pulverized coal is measured by the load cell 2, but the flow rate is not limited to this, and it can also be determined by measuring the flow rate of the cutting device 3, for example.
以上詳述したように零発#iAは、粉粒体とキャリアガ
スとの固気2相流体を複数の支管へ分配する方法におい
て、粉粒体流量、キャリアガス流蓋及び各支管内の1気
2相流体の圧力を測定し、この測定結果に基き、固気2
相流体か各分配支管に均等分配された場合に卦ける支管
の特定部分での圧力損失を算出する一方、前記特定部分
に関連する部分の圧力損失を測定し、算出圧力損失と測
定圧力損失との対比により支管内の固気2相流体の流量
を制御するようにしたものであるので、各分配支管には
粉粒体が均一に、しかも安定的に供給され、上述の実施
例の如く高炉の各羽口へ微粉炭を送給する場合には、高
炉安定操業の確保及び燃料費の削減がcJT能さなる。As described in detail above, zero-start #iA is a method for distributing a solid-gas two-phase fluid of powder and carrier gas to multiple branch pipes, and the The pressure of the gas two-phase fluid is measured, and based on this measurement result, the solid gas two-phase fluid is
While calculating the pressure loss at a specific part of the branch pipe when the phase fluid is distributed equally to each distribution branch pipe, the pressure drop in the part related to the specific part is measured, and the calculated pressure loss and the measured pressure loss are calculated. Since the flow rate of the solid-gas two-phase fluid in the branch pipes is controlled by comparing the ratio of When feeding pulverized coal to each tuyere of the cJT, stable operation of the blast furnace can be ensured and fuel costs can be reduced.
なお、圧力損失を演算する部分と圧力損失を測定する部
分とを図面の実施例と同一部分に限るものではなく、ま
た同一形状に限るものでもない。Note that the part for calculating pressure loss and the part for measuring pressure loss are not limited to the same parts as in the embodiment of the drawings, nor are they limited to the same shape.
図面は本発明方法の実施例を示す模式図である。
1・・・タンク 2・・・ロードセル 3・・・切出し
1114・・・流量計 6・・・分配器1!F 7・・
・分配器 8・・・流量11i1J御弁 9・・・測定
器 10・・・演算制御装置11・・・圧力計
特 許 出 願 人 住友金属工業株式会社代理人
弁理士 河 野 登 夫The drawings are schematic diagrams showing an embodiment of the method of the present invention. 1... Tank 2... Load cell 3... Cutout 1114... Flowmeter 6... Distributor 1! F7...
・Distributor 8...Flow rate 11i1J control valve 9...Measuring device 10...Arithmetic and control unit 11...Pressure gauge Patent Applicant Agent: Sumitomo Metal Industries, Ltd.
Patent Attorney Noboru Kono
Claims (1)
支管へ分配する方法において、粉粒体流曖、キャリアガ
ス流量及び各支管内の固気2相流体の圧力を測定し、こ
の測定結果に基き、固気2柑流体が各分配支管に均等分
配された場合における各分配支管の特定部分での圧力損
失を算出する一方、前記特定部分に関連する部分の圧力
損失を測定し、算出圧力損失と測定圧力損失との対比に
より支管内の固気2相流体の流量を制御することを特徴
とする粉粒体の流電分配制御方法。1. In the method of distributing a solid-gas two-phase fluid of powder and carrier gas to branch pipes for 4I, the powder and granular flow rate, the carrier gas flow rate, and the pressure of the solid-gas two-phase fluid in each branch pipe are measured. , Based on this measurement result, calculate the pressure loss at a specific part of each distribution branch pipe when the solid air, two chloride fluid is equally distributed to each distribution branch pipe, and measure the pressure loss at a part related to the specific part. A current distribution control method for powder and granular material, characterized in that the flow rate of the solid-gas two-phase fluid in the branch pipe is controlled by comparing the calculated pressure loss and the measured pressure loss.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17877481A JPS5882925A (en) | 1981-11-06 | 1981-11-06 | Method of controlling distribution of flow of particulate material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17877481A JPS5882925A (en) | 1981-11-06 | 1981-11-06 | Method of controlling distribution of flow of particulate material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5882925A true JPS5882925A (en) | 1983-05-18 |
Family
ID=16054384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17877481A Pending JPS5882925A (en) | 1981-11-06 | 1981-11-06 | Method of controlling distribution of flow of particulate material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5882925A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5652321A (en) * | 1979-10-05 | 1981-05-11 | Denka Consult & Eng Co Ltd | Fixed-flow-rate pressurization distributor for high- pressure gas conveyor |
JPS5661227A (en) * | 1979-10-17 | 1981-05-26 | Denka Consult & Eng Co Ltd | Constant flow rate transporting system |
-
1981
- 1981-11-06 JP JP17877481A patent/JPS5882925A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5652321A (en) * | 1979-10-05 | 1981-05-11 | Denka Consult & Eng Co Ltd | Fixed-flow-rate pressurization distributor for high- pressure gas conveyor |
JPS5661227A (en) * | 1979-10-17 | 1981-05-26 | Denka Consult & Eng Co Ltd | Constant flow rate transporting system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4521139A (en) | Method of regulating mass streams | |
US5048761A (en) | Pulverized coal flow monitor and control system and method | |
US4231262A (en) | System for measuring entrained solid flow | |
JPS6317650Y2 (en) | ||
RU2010123979A (en) | SOLID PARTICULAR INJECTION SYSTEM | |
US4662798A (en) | Method and a device for measuring and/or regulating the mass flow of solid particles | |
JPS5882925A (en) | Method of controlling distribution of flow of particulate material | |
JPS5881907A (en) | Control process for blowing powder coal | |
Klinzing et al. | Pneumatic transport of solids in an inclined geometry | |
JPS59213434A (en) | Controlling method of fixed quantity feed of powder and particulate body | |
JPS5855507A (en) | Differential coal injection control method | |
JPH048337B2 (en) | ||
JPH0659936B2 (en) | Fine powder distribution control device | |
JPH067322Y2 (en) | Powder flow rate measuring device | |
JP3396281B2 (en) | Particle flow meter | |
NL8702349A (en) | Adjusting amount of gas fluidised powder in pipe - using pressure drop across venturi upstream of dosing device and controlled by processor for constant and non-constant flow rates | |
JPS582525A (en) | Injecting method of powdery and granular material into plural injection ports | |
JPH0158085B2 (en) | ||
JP2019056152A (en) | Powder and granular material blowing device, calibration curve preparation device, and preparation method for calibration curve | |
SU538207A1 (en) | Device for feeding dust in the sintering furnace | |
JPS6350352A (en) | Automatic blowing manufacture of molten slag | |
JPH01224626A (en) | Flow rate measurement method and flow rate measurement device for solid-gas two-phase flow | |
JPS58122430A (en) | How to measure the flow rate of powder and granular materials | |
JPH0660329B2 (en) | Fine powder injection control method | |
JPS6344126A (en) | Method for measuring the flow rate of solid particles in air flow conveyance |