JPS5882249A - Electrophotographic receptor for laser printer - Google Patents
Electrophotographic receptor for laser printerInfo
- Publication number
- JPS5882249A JPS5882249A JP18156481A JP18156481A JPS5882249A JP S5882249 A JPS5882249 A JP S5882249A JP 18156481 A JP18156481 A JP 18156481A JP 18156481 A JP18156481 A JP 18156481A JP S5882249 A JPS5882249 A JP S5882249A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- laser
- transmittance
- charge transfer
- charge generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/043—Photoconductive layers characterised by having two or more layers or characterised by their composite structure
- G03G5/047—Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、レーザープリンタ用の電子写真感光体に関す
る。さらに詳しくは、干渉縞状の濃度ムラが現われず、
ベタ画像の再現が良好なレーザープリンタ用電子写真感
光体に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic photoreceptor for a laser printer. More specifically, no interference fringe-like density unevenness appears,
The present invention relates to an electrophotographic photoreceptor for laser printers that can reproduce solid images well.
従来、レーザーを光源とする電子写真方式プリンタの感
光体としては、セレン、セレン系合金、硫化カドミウム
樹脂分散系、ポリビニルカルバ4ルトトリニ)0フルオ
レノンとの電荷移動錯体などが用いられてきた。またレ
ーザーと1ユ
して久ヘリウムーカドミ、アルゴン、ヘリウム−ネオン
などのガスレーザーが用いられ、さらには小型、低コス
トで、直接変調が可能な半導体レーザーが用いられるよ
うkなった。Conventionally, as a photoreceptor for an electrophotographic printer using a laser as a light source, selenium, a selenium-based alloy, a cadmium sulfide resin dispersion system, a charge transfer complex with polyvinyl carboxyfluorenone, and the like have been used. In addition, gas lasers such as helium-cadmium, argon, and helium-neon lasers have been used as a substitute for lasers, and semiconductor lasers, which are small, low cost, and can be directly modulated, have also come into use.
また感光体に関しては、使用するレーザー光の波長に応
じて、十分な感度と帯電特性が得られるように、電荷移
動層と電荷発生層との積層型感光体が注目されている。As for photoreceptors, a laminated photoreceptor including a charge transfer layer and a charge generation layer is attracting attention in order to obtain sufficient sensitivity and charging characteristics depending on the wavelength of the laser beam used.
単一の光導電層を用いる感光体に較べて積層型感光体で
は感光は電荷発生層のみに依存させることができ名ので
、使用するレーザー光の波長に対して感光を持つ光導電
材料を比較的自由に選べることができる。Compared to a photoconductor that uses a single photoconductive layer, in a laminated photoconductor the photosensitivity can depend only on the charge generation layer, so it is important to compare photoconductive materials that are sensitive to the wavelength of the laser light used. You can choose freely.
積層型感光体の電荷発生層は、光を吸収して自由電荷を
発生させる役割をもち、その厚さはQ、1〜5μmと薄
いのが通例である。電荷移動層は、静電荷の受容を自由
電荷の輸送の役割をもち、儂形成光をほとんど吸収しな
いものを用い、その厚さは通例5〜30μmである。The charge generation layer of the laminated photoreceptor has the role of absorbing light and generating free charges, and its thickness is usually as thin as Q, 1 to 5 μm. The charge transfer layer has the role of accepting static charges and transporting free charges, and absorbs almost no self-forming light, and its thickness is usually 5 to 30 .mu.m.
ところで、このような積層型感光体を用い、レーザープ
リンターでレーザー光をライン走査して画像を出してみ
ると、文字などのライン画像では問題にならないが、ベ
タ画像の場合、干渉縞状の濃度ムラが現われる。By the way, when using such a laminated photoreceptor and outputting an image by scanning a line of laser light with a laser printer, there is no problem with line images such as characters, but in the case of solid images, interference fringe-like density may occur. Unevenness appears.
この原因は、電荷移動層表面での反射光と金属などの基
体面での反射光との干渉と考えられる。即ち、積層型電
子写真感光体は、第1図のように1基体1の上に電荷発
生層2と電荷移動層3とが積層された構成になっている
。この積層型感光体にレーザー光4(発光波長は例えば
半導体レーザーで約0.8μm、ヘリウム−ネオンレー
ザ−で0.63μm)が入射した場合、第2図のように
、反射の大きい電荷移動層30表面での反射光5と、基
体10表面で反射され電荷移動層3の表面から出てくる
光6との干渉が生ずる。電荷発生層2と電荷移動層3と
の積層の屈折率をn、厚さをdi、レーザー光の波長を
λとすると、ndlがλ/2の整数倍のときは反射光の
強度が極大、すなわち電荷移動層3の内部へ入っていく
光の強度が極小(エネルギー保存則による)、nd、が
λ/4の奇数倍のときは反射光が極小、すなわち内部へ
入っていく光が極大となる。ところでs ’lには製造
上1μm程度の場所ムラが避けられない。レーザー光は
単色性がよく、コヒーレントなため、への場所ムラに対
応して前記の干渉条件が変化し、電荷発生層2でのレー
ザー光の吸収量の場所ムラが生じ、それがベタ画像の濃
度の干渉縞状のムラとなって現われると考えられる。な
お通常の複写機では、光源が単色光でな込ため、波長に
よって干渉縞状の濃度ムラの幅が変わり、平均化されて
見えない。The cause of this is thought to be interference between the light reflected on the surface of the charge transfer layer and the light reflected on the surface of the substrate such as metal. That is, the laminated electrophotographic photoreceptor has a structure in which a charge generation layer 2 and a charge transfer layer 3 are laminated on one substrate 1, as shown in FIG. When laser light 4 (emission wavelength is approximately 0.8 μm for semiconductor lasers and 0.63 μm for helium-neon lasers) is incident on this laminated photoreceptor, as shown in FIG. Interference occurs between the reflected light 5 on the surface of the charge transfer layer 30 and the light 6 reflected on the surface of the substrate 10 and emerging from the surface of the charge transfer layer 3. If the refractive index of the laminated layer of the charge generation layer 2 and the charge transfer layer 3 is n, the thickness is di, and the wavelength of the laser beam is λ, then when ndl is an integral multiple of λ/2, the intensity of the reflected light is maximum; In other words, when the intensity of the light entering the charge transfer layer 3 is minimum (according to the law of conservation of energy), and nd is an odd multiple of λ/4, the reflected light is minimum, that is, the light entering the inside is maximum. Become. Incidentally, due to manufacturing reasons, s'l has an unavoidable local unevenness of about 1 μm. Since laser light has good monochromaticity and is coherent, the above-mentioned interference conditions change in response to unevenness in the area of the laser beam, causing unevenness in the amount of laser light absorbed by the charge generation layer 2, which causes the solid image to become uneven. It is thought that this appears as interference fringe-like unevenness in density. Note that in a normal copying machine, the light source emits monochromatic light, so the width of the density unevenness in the form of interference fringes changes depending on the wavelength, and is averaged out so that it cannot be seen.
而して本発明は、積層型感光体をレーザープリンターに
用いたときに、干渉による濃度ムラが生じない感光体を
提供することを主たる目的とする。The main object of the present invention is to provide a laminated photoreceptor that does not cause density unevenness due to interference when used in a laser printer.
本発明によるレーザープリンタ用電子写真感光体は電荷
移動層および使用するレーザー光に対する透過率が10
%以下である電荷発生層を有することを特徴とするもの
である。即ち、レーザー光に対する電荷発生層の透過率
を10に以下にすることによ抄、レーザー光の干渉を防
止し、均一な濃度のベタ画像が得られる感光体を提供す
るものである。The electrophotographic photoreceptor for laser printers according to the present invention has a charge transfer layer and a transmittance of 10 to the laser beam used.
% or less. That is, by setting the transmittance of the charge generation layer to laser light to be 10 or less, interference of the laser light can be prevented and a photoreceptor can be provided which can provide a solid image with uniform density.
本発明のレーザープリンタ用電子写真感光体は、第1図
のように基体1の上に電荷発生層2と電荷移動層3とが
積層された構成のもので、レーザー光に対する電荷発生
層2の透過率が10%以下のものである。透過率が10
に以下のとき、入射されたレーザー光は、電荷移動層3
へ侵入し、電荷発生層2で吸収され、基体10表面で反
射され、再び′−電荷発生層で吸収されて、電荷移動層
3の表面にもどってくるまでに、往復で吸収されるため
、1!X以下に減衰する。透過率のION以下という値
は、いろいろな実験検討をおこなった結果、実用上問題
のない程度均一な濃度のベタ画像が得られた値というこ
とであって、lOX以下でもレーザー光の干渉は程度は
小さいが生じていると考えられる。The electrophotographic photoreceptor for laser printers of the present invention has a structure in which a charge generation layer 2 and a charge transfer layer 3 are laminated on a base 1 as shown in FIG. The transmittance is 10% or less. Transmittance is 10
In the following cases, the incident laser light passes through the charge transfer layer 3
, is absorbed by the charge generation layer 2, reflected by the surface of the substrate 10, absorbed again by the '-charge generation layer, and is absorbed back and forth before returning to the surface of the charge transfer layer 3. 1! Attenuates below X. The value of the transmittance of ION or less means that, as a result of various experimental studies, a solid image with a uniform density to the extent that there is no problem in practical use can be obtained. It is thought that this is occurring, although it is small.
なお、特には5X以下が一層好適である。Note that 5X or less is particularly preferable.
第2図に示されるようにル−ザー光を吸収する電荷発生
層2の厚さをdoesとし、レーザー光に対する電荷発
生層2の吸収係数をα個−1とすると、入射光Ioと透
過率■との関係は次式で与えられる。As shown in FIG. 2, if the thickness of the charge generation layer 2 that absorbs the loser light is does, and the absorption coefficient of the charge generation layer 2 with respect to the laser light is α-1, then the incident light Io and the transmittance The relationship with ■ is given by the following equation.
I = Io exp (−αd鵞 )透過率
を10%以下、すなわちI /Ioを0.1より小さく
するには、αd!を2.3より大きくすればよい。αd
、を大きくするには、電荷発生層2の厚さd!を大きく
するか、あるいは吸収係数αを大きくすればよい、αを
大きくするKは、使用するレーザーの発光波長く電荷発
生層20分光吸収のピークを近づけること、また電荷発
生層2にレーザー光を吸収する色素を混合することなど
の方法がある。I = Io exp (-αd) To make the transmittance less than 10%, that is, I /Io less than 0.1, αd! may be made larger than 2.3. αd
, the thickness d! of the charge generation layer 2 must be increased. or increase the absorption coefficient α.Increasing α increases the emission wavelength of the laser used, approaches the charge generation layer 20 wavelength light absorption peak, and also increases the wavelength of the laser beam applied to the charge generation layer 2. There are methods such as mixing absorbing dyes.
本発明による感光体の基体として好適なものハ、アルミ
ニウム、ステンレス、真チゅう、二ツケルなどの金属ま
たは、これらの金属の薄層がプラスチックシートあるい
はガラスの上に、接着剤で接着されていたり、蒸着によ
って形成されたりしたものであってもよい。本発明に用
いる積層型感光体の電荷発生層は電荷発生物質を単独で
、あるいはポリマーと混合した系で形成する。電荷発生
物質としては、−eyy7勇@□−ジスアゾ顔料、キノ
シーアニン顔料、−ペリレン顔料、フタロシアニン顔料
、スクアリン酸誘導体染料、ビリリウム系色素、ポリビ
ニルカルパンスルとトリニトロフルオレノンとの電荷移
動錯体などの有機物が用いられる。また非晶質セレン。Suitable substrates for the photoreceptor according to the present invention include metals such as aluminum, stainless steel, brass, and metals, or a thin layer of these metals adhered to a plastic sheet or glass with an adhesive. Alternatively, it may be formed by vapor deposition. The charge generation layer of the laminated photoreceptor used in the present invention is formed by using a charge generation substance alone or by mixing it with a polymer. Examples of charge-generating substances include organic substances such as -eyy7Yu@□-disazo pigments, quinocyanine pigments, -perylene pigments, phthalocyanine pigments, squaric acid derivative dyes, biryllium dyes, and charge transfer complexes of polyvinylcarpansulfate and trinitrofluorenone. used. Also amorphous selenium.
セレン系合金、硫化カドミウム、非晶質シリコンなどの
無機物も用いられる。電荷移動層のレーザー光に対する
透過率は一般には80に以上で、電荷移動物質を単独で
、あるいはポリマーと混合した系で形成する。電荷移動
物質としては、ポリビニルカルバベル、ピラゾリン誘導
体。Inorganic materials such as selenium alloys, cadmium sulfide, and amorphous silicon are also used. The charge transfer layer generally has a transmittance of 80 or more for laser light, and is formed using a charge transfer substance alone or in a mixture with a polymer. Charge transfer substances include polyvinylcarbabel and pyrazoline derivatives.
ヒドラゾン誘導体、オキサジアゾール誘導体。Hydrazone derivatives, oxadiazole derivatives.
トリフェニルメタン誘導体、トリフェニルアはン、トリ
ニトロフルオレノンなどが用いられる。Triphenylmethane derivatives, triphenylamine, trinitrofluorenone, etc. are used.
レーザー光を吸収する色素としては、カーボンや各レー
ザーの発光波長に対応したいろいろな色素、とくに波長
が750mμ以上の半導体レーザー用にはシアニン系色
素が有効である。As the dye that absorbs laser light, carbon and various dyes corresponding to the emission wavelength of each laser are effective, and cyanine dyes are particularly effective for semiconductor lasers with wavelengths of 750 mμ or more.
シアニン系色素は、長いメチン基(−0H=OH−)の
連鎖をもつためポリメチン色素ともよばれ、メチン基が
1個長くなるごとに共鳴波長が約1007Lmだけ長波
長ヘシフトする。Cyanine dyes are also called polymethine dyes because they have a long chain of methine groups (-0H=OH-), and each time one methine group becomes longer, the resonance wavelength shifts to a longer wavelength by about 1007 Lm.
以下本発明を実施例により説明する◎
実施例1
−(イプシロン)形鋼フタロシアニン(東洋インク社製
、商品名:リオノールプルーBS)1重量部とブチラー
ル樹脂(種水化学社製、商品名:エスレツクBM−2)
1重量部とイソプルピルアルコール15重量部とをボー
ルミルに入れ4時間分散して、電荷発生物質塗液とした
。The present invention will be explained below with reference to Examples. ◎ Example 1 - (Epsilon) 1 part by weight of shaped steel phthalocyanine (manufactured by Toyo Ink Co., Ltd., trade name: Lionol Blue BS) and butyral resin (manufactured by Tanezu Kagaku Co., Ltd., trade name: ESLETSUKU BM-2)
1 part by weight and 15 parts by weight of isopropyl alcohol were placed in a ball mill and dispersed for 4 hours to prepare a charge generating substance coating liquid.
この塗液を膜厚が757Imのポリエステルフィルムに
ラミネートした膜厚が10μmのアルミはく上に、ワイ
ヤーバーで塗布し、乾燥して、電荷発生層とした。電荷
発生層の膜厚は約0.7μmである。次に下記構造式の
ピラゾリン誘導体1重量部とポリスルフォン樹脂(ユニ
オンカーバイド社製、商品名: P1700 )1重量
部とモノクロルベンゼン6重量部とを混合し、マグネテ
イツクスターラーで攪拌溶解し、電荷移動物質塗液とし
た。この塗液を前記電荷発生層上にワイヤーバーで塗布
し、乾燥して電荷移動層とした。膜厚は約10μmであ
る。この積層型感光体を、がリウムーアルミーヒ素半導
体レーザー(発光波長780 n m、出力5m隻)を
有するレーザープリンタ実験機(帯電は負極性。This coating liquid was applied with a wire bar onto an aluminum foil having a thickness of 10 μm which was laminated to a polyester film having a thickness of 757 Im, and was dried to form a charge generation layer. The thickness of the charge generation layer is approximately 0.7 μm. Next, 1 part by weight of a pyrazoline derivative having the following structural formula, 1 part by weight of polysulfone resin (manufactured by Union Carbide, trade name: P1700), and 6 parts by weight of monochlorobenzene were mixed, stirred and dissolved using a magnetic stirrer, and charged. It was used as a moving substance coating liquid. This coating liquid was applied onto the charge generation layer using a wire bar and dried to form a charge transfer layer. The film thickness is approximately 10 μm. This laminated photoreceptor was used in an experimental laser printer (charged with negative polarity) equipped with a galium-aluminum arsenide semiconductor laser (emission wavelength 780 nm, output 5 m).
ネガトナーで現像)につけて画像出しをおこなった。そ
の結果ペタ画倫部の濃度が均一で、ライン画像もシャー
プな画像が得られた。Developed with negative toner) to create an image. As a result, an image with uniform density in the peta image area and sharp line images was obtained.
感光休作lIK用い九のと同じ電荷発生物質塗液を用い
て、ガラス上に、同じ膜厚の電荷発生層を形成し、分光
透過率を測定したところ、780nmにおいて透過率は
4Xであった。なお感光体作製に使用したのと同じ電荷
移動物質塗液を用いて、ガラス上に、同じ膜厚の電荷移
動層を形成し、分光透過率を測定し九ところ、530n
m〜850nmの範囲で透過率は90%以上あった。A charge generation layer of the same thickness was formed on glass using the same charge generation material coating solution as in step 9 using photosensitive isolation lIK, and the spectral transmittance was measured, and the transmittance was 4X at 780 nm. . A charge transfer layer with the same thickness was formed on glass using the same charge transfer substance coating liquid used to prepare the photoreceptor, and the spectral transmittance was measured.
The transmittance was 90% or more in the range of m to 850 nm.
比較例I
C形鋼フタロシアニン1重量部とブチラール樹脂1重量
部とイソプロピルアルコール30重量部との組成の電荷
発生物質塗液を用いて、実施例1と同様にして、電荷発
生層を形成した。Comparative Example I A charge generation layer was formed in the same manner as in Example 1 using a charge generation material coating liquid having a composition of 1 part by weight of C-shaped steel phthalocyanine, 1 part by weight of butyral resin, and 30 parts by weight of isopropyl alcohol.
膜厚は約0.3μmである。この電荷発生層の上に実施
例1と同様の電荷移動層を形成した。この積層型感光体
を、実施例1と同じレーザープリンタ実験機につけて画
像出しをしたところ、ライン画像は問題ないが、ベタ画
儂部に干渉縞状の濃度ムラが現われた。The film thickness is approximately 0.3 μm. A charge transfer layer similar to that in Example 1 was formed on this charge generation layer. When this laminated photoreceptor was attached to the same experimental laser printer as in Example 1 and an image was produced, there was no problem with the line image, but density unevenness in the form of interference fringes appeared in the solid image area.
感光体作製に用いたのと同じ電荷発生物質塗液を用いて
、ガラス上に、同じ膜厚の電荷発生層を形成し、分光透
過率を測定したところ、780nmにおいて透過率は2
5%であった。A charge generation layer of the same thickness was formed on glass using the same charge generation substance coating liquid used to prepare the photoreceptor, and the spectral transmittance was measured.The transmittance at 780 nm was 2.
It was 5%.
比較例2
β形銅フタロシアニン(東洋インク社製、リオノールブ
ルーGLA ’)1重量部とブチラール樹脂1重量部と
イソプロピルアルコール15重量部との組成の電荷発生
物質塗液を用いて、実施例1と同様にして電荷発生層を
形成した。膜厚は約0.7μmである。この電荷発生層
の上に、実施例1と同様の電荷移動層を形成した。この
積層型感光体を、実施例1と同じレーザープリンタ実験
機につけて画像出しをしたところ、ライン画像は問題な
いが、ベタ画像部に干渉縞状の濃度ムラが現われた。Comparative Example 2 Example 1 was prepared using a charge-generating substance coating liquid having a composition of 1 part by weight of β-type copper phthalocyanine (manufactured by Toyo Ink Co., Ltd., Lionol Blue GLA'), 1 part by weight of butyral resin, and 15 parts by weight of isopropyl alcohol. A charge generation layer was formed in the same manner as described above. The film thickness is approximately 0.7 μm. A charge transfer layer similar to that in Example 1 was formed on this charge generation layer. When this laminated photoreceptor was attached to the same experimental laser printer as in Example 1 and an image was produced, there was no problem with the line image, but density unevenness in the form of interference fringes appeared in the solid image area.
感光体作製に用いたのと同じ電荷発生物質塗液を用いて
、ガラス上に、同じ膜厚の電荷発生層を形成し、分光透
過率を測定したところ、780nmにおいて透過率が1
8Nであった。A charge generation layer of the same thickness was formed on glass using the same charge generation substance coating liquid used to produce the photoreceptor, and the spectral transmittance was measured.The transmittance was 1 at 780 nm.
It was 8N.
実施例1のe形鋼フタロシアニンの方が、比較例2のβ
形銅フタロシアニンよりも、吸収ピークがより長波長に
あった。The e-shaped steel phthalocyanine of Example 1 has a higher β value than that of Comparative Example 2.
The absorption peak was at a longer wavelength than that of copper phthalocyanine.
実施例2
e形鋼フタロシアニン(東洋インク社製、商品名:リオ
ノールブルーES)1重量部と下記構造式のシアニン色
素(日本感光色素研究新展。Example 2 1 part by weight of e-shaped steel phthalocyanine (manufactured by Toyo Ink Co., Ltd., trade name: Lionol Blue ES) and a cyanine dye having the following structural formula (Japan Photosensitive Pigment Research New Exhibition).
商品名:NK−123)0.1重量部とブチラール樹脂
(種水化学社製、商品名:エスレツクBM−2)1重量
部とイソプロピルアルコール20重量部とをボールミル
に入れ4時間分散して電荷発生層塗液とした。この塗液
をアルミはくラミネートポリエステルフィルムのアルξ
面にワイヤーバーで塗布し、乾燥して・電荷発生層とし
念。膜厚は約0.6μmである。次に実施例1と同様の
電荷移動層を形成した。0.1 part by weight of (trade name: NK-123), 1 part by weight of butyral resin (manufactured by Tanesui Kagaku Co., Ltd., trade name: Eslec BM-2), and 20 parts by weight of isopropyl alcohol were placed in a ball mill and dispersed for 4 hours to charge. It was used as a generation layer coating liquid. Apply this coating solution to aluminum and laminated polyester film.
Apply it to the surface with a wire bar, dry it, and use it as a charge generation layer. The film thickness is approximately 0.6 μm. Next, a charge transfer layer similar to that in Example 1 was formed.
次に実施例1と同じピラゾリン誘導体1重量部とポリス
ルフォン樹脂(ユニオンカーバイド社製、商品名: P
1700 )1重量部とモノクロルベンゼン6重量部と
を混合し、マグネテイツクスターラーで攪拌溶解し、電
荷移動物質塗液とした。この塗液を前記電荷発生層上に
ワイヤーバーで塗布し乾燥して電荷移動層とした。膜厚
は約11μmである。この積層型感光体を、がリウムー
アルミーヒ素半導体レーザー(発光波長820nm、出
力10mW)を有するレーザープリンタ実験機(帯電は
負極性、ネガトナーで現像)につけて画像出しをおとな
っ九。その結果ベタ画像の濃度が均一で、ライン画像も
シャープな画像が得られた。Next, 1 part by weight of the same pyrazoline derivative as in Example 1 and polysulfone resin (manufactured by Union Carbide, trade name: P
1700) and 6 parts by weight of monochlorobenzene were mixed and stirred and dissolved using a magnetic stirrer to obtain a charge transfer substance coating liquid. This coating liquid was applied onto the charge generation layer using a wire bar and dried to form a charge transfer layer. The film thickness is approximately 11 μm. This laminated photoreceptor was attached to an experimental laser printer (charged with negative polarity, developed with negative toner) equipped with a galium-aluminum arsenide semiconductor laser (emission wavelength: 820 nm, output: 10 mW) to produce an image. As a result, a solid image with uniform density and sharp line images was obtained.
感光体作製に用いたのと同じ・電荷発生物質塗液を用い
て、ガラス上に、同じ膜厚の電荷発生層を形成し、分光
透過率を測定したところ、820nmにおいて透過率は
7%であった。A charge generation layer of the same thickness was formed on glass using the same charge generation substance coating liquid used to produce the photoreceptor, and the spectral transmittance was measured; the transmittance was 7% at 820 nm. there were.
実施例3
鏡面アルミシリンダ上に、容量結合方式高周波グロー放
電法によ炒非晶質シリコンを2μm堆積させ電荷発生層
とした。堆積条件はシランガス流量10 rx”7分、
ガス圧6.5 Pa、周波数13、56 MHz 、高
周波・電力100W1基板温度250℃、堆積速度1μ
m/時間である0次にトリニトロフルオレノ71重量部
と、飽和ポリエステル樹脂(東洋紡績社製、バイロン2
00)1重量IMと、モノクロルベンゼン6重量部とを
混合し、攪拌機で攪拌溶解し、電荷移動物質塗液とした
。この塗液を用いて、前記電荷発生層上に浸漬法で塗布
し、乾燥して電荷移動層とした。膜厚は約12μmであ
る。この積層製感光ドラムをHe−Neレーザー(発光
波長633nm、出力I Q mW )を有するレーザ
ープリンタ実験機(帯電は正極性)につけて、画像出し
をおこなった。その結果ベタ画像の濃度が均一で、ライ
ン画像もシャープな画像が得られた。また、同一の積層
型感光ドラムを半導体レーザー(発光波長780nm、
出力5 m W )を有するレーザープリンタ実験機(
帯電は正極性、ポジトナーで現像)につけて画像出しを
おこなったところ、ペタ画像部に干渉縞状の濃度ムラが
現われた。Example 3 Fried amorphous silicon was deposited to a thickness of 2 μm on a mirror-finished aluminum cylinder by a capacitively coupled high-frequency glow discharge method to form a charge generation layer. The deposition conditions were silane gas flow rate of 10 rx” for 7 minutes;
Gas pressure 6.5 Pa, frequency 13.56 MHz, high frequency/power 100W, substrate temperature 250°C, deposition rate 1μ
m/hour, 71 parts by weight of zero-order trinitrofluoreno, and saturated polyester resin (manufactured by Toyobo Co., Ltd., Byron 2).
00) 1 weight part of IM and 6 parts by weight of monochlorobenzene were mixed and dissolved by stirring with a stirrer to prepare a charge transfer substance coating liquid. This coating liquid was applied onto the charge generation layer by a dipping method and dried to form a charge transfer layer. The film thickness is approximately 12 μm. This laminated photosensitive drum was attached to an experimental laser printer (charged with positive polarity) equipped with a He-Ne laser (emission wavelength: 633 nm, output IQ mW) to produce an image. As a result, a solid image with uniform density and sharp line images was obtained. In addition, the same laminated photosensitive drum was used with a semiconductor laser (emission wavelength 780 nm,
Laser printer experimental machine (output 5 mW)
When the image was produced by charging it to a positive polarity (developing with positive toner), interference fringe-like density unevenness appeared in the peta image area.
感光ドラム作製時と同一の堆積条件で、ガラに
ス上に、非晶質シリコンを同じ厚へ堆積し、分光透過率
を測定したところ、633nmで透過率が2%、180
nmでは透過率が45Xであった。Amorphous silicon was deposited to the same thickness on glass under the same deposition conditions as when producing the photosensitive drum, and the spectral transmittance was measured.The transmittance was 2% at 633 nm and 180 nm.
The transmittance was 45X at nm.
vX1図は積層型感光体の構成図、ifg2図はレーザ
ー光の干渉を説明する図である。
1・・・基体、2・・・電荷発生ノー、3・−・電荷移
動層、4・・・入射レーザー光、5・・・電荷移動層表
面での反射光、6・・・基体の表面で反射されて、電荷
移動層表面にもどってきた光。
第1図
第2置FIG. DESCRIPTION OF SYMBOLS 1...Substrate, 2...No charge generation, 3...Charge transfer layer, 4...Incoming laser light, 5...Reflected light on the surface of charge transfer layer, 6...Surface of substrate The light that is reflected by the surface of the charge transfer layer and returns to the surface of the charge transfer layer. Figure 1 2nd position
Claims (3)
過率がIOX以下である電荷発生層を有することを特徴
とするレーザープリンタ用電子写真感光体。(1) An electrophotographic photoreceptor for a laser printer, comprising a charge transfer layer and a charge generation layer having a transmittance of IOX or less to the laser beam used.
範囲第1項記載のレーザープリンタ用電子写真感光体。(2) The electrophotographic photoreceptor for a laser printer according to claim 1, wherein the laser is a semiconductor laser.
請求の範囲第1項記載のレーザープリンタ用電子写真感
光体。(3) The electrophotographic photoreceptor for a laser printer according to claim 1, wherein the charge generation layer contains a phthalocyanine pigment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18156481A JPS5882249A (en) | 1981-11-11 | 1981-11-11 | Electrophotographic receptor for laser printer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18156481A JPS5882249A (en) | 1981-11-11 | 1981-11-11 | Electrophotographic receptor for laser printer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5882249A true JPS5882249A (en) | 1983-05-17 |
JPH0336220B2 JPH0336220B2 (en) | 1991-05-30 |
Family
ID=16102996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18156481A Granted JPS5882249A (en) | 1981-11-11 | 1981-11-11 | Electrophotographic receptor for laser printer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5882249A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6079360A (en) * | 1983-09-29 | 1985-05-07 | Kyocera Corp | Electrophotographic sensitive body and its manufacture |
JPS6195657A (en) * | 1984-10-16 | 1986-05-14 | Matsushita Electric Ind Co Ltd | Pb signal receiver |
US4826748A (en) * | 1984-10-11 | 1989-05-02 | Kyocera Corporation | Electrophotographic sensitive member |
US5166023A (en) * | 1989-05-30 | 1992-11-24 | Fuji Xerox Corporation, Ltd. | Electrophotographic photoreceptor and related method |
US5219698A (en) * | 1982-09-27 | 1993-06-15 | Canon Kabushiki Kaisha | Laser imaging method and apparatus for electrophotography |
US5362594A (en) * | 1982-09-27 | 1994-11-08 | Canon Kabushiki Kaisha | Imaging process for electrophotography |
EP0716348A2 (en) | 1994-12-07 | 1996-06-12 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge including same and image forming apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52150638A (en) * | 1976-06-09 | 1977-12-14 | Fujitsu Ltd | Recording element |
JPS533828A (en) * | 1976-07-01 | 1978-01-13 | Fujitsu Ltd | Recording element |
JPS535632A (en) * | 1976-07-05 | 1978-01-19 | Fujitsu Ltd | Electrophotographic imaging element |
JPS5329728A (en) * | 1976-08-30 | 1978-03-20 | Hoechst Ag | Electrophotographic recording material and method of recording figures having shade by electrophotographic process |
-
1981
- 1981-11-11 JP JP18156481A patent/JPS5882249A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52150638A (en) * | 1976-06-09 | 1977-12-14 | Fujitsu Ltd | Recording element |
JPS533828A (en) * | 1976-07-01 | 1978-01-13 | Fujitsu Ltd | Recording element |
JPS535632A (en) * | 1976-07-05 | 1978-01-19 | Fujitsu Ltd | Electrophotographic imaging element |
JPS5329728A (en) * | 1976-08-30 | 1978-03-20 | Hoechst Ag | Electrophotographic recording material and method of recording figures having shade by electrophotographic process |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5219698A (en) * | 1982-09-27 | 1993-06-15 | Canon Kabushiki Kaisha | Laser imaging method and apparatus for electrophotography |
US5362594A (en) * | 1982-09-27 | 1994-11-08 | Canon Kabushiki Kaisha | Imaging process for electrophotography |
JPS6079360A (en) * | 1983-09-29 | 1985-05-07 | Kyocera Corp | Electrophotographic sensitive body and its manufacture |
JPH0514902B2 (en) * | 1983-09-29 | 1993-02-26 | Kyosera Kk | |
US4826748A (en) * | 1984-10-11 | 1989-05-02 | Kyocera Corporation | Electrophotographic sensitive member |
JPS6195657A (en) * | 1984-10-16 | 1986-05-14 | Matsushita Electric Ind Co Ltd | Pb signal receiver |
US5166023A (en) * | 1989-05-30 | 1992-11-24 | Fuji Xerox Corporation, Ltd. | Electrophotographic photoreceptor and related method |
EP0716348A2 (en) | 1994-12-07 | 1996-06-12 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge including same and image forming apparatus |
US5834145A (en) * | 1994-12-07 | 1998-11-10 | Canon Kabushiki Kaisha | Electrophotographic photosensitve member and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0336220B2 (en) | 1991-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4675262A (en) | Multilayer electrophotographic photosensitive element having charge transport layer containing powdered material having specified refractive index | |
GB2156089A (en) | Electrophotographic member | |
JPS60166956A (en) | Photoreceptor and its image forming method | |
JPS5882249A (en) | Electrophotographic receptor for laser printer | |
JPS6032055A (en) | Image bearing member | |
JPS58100138A (en) | Electrophotographic receptor | |
JP2000105475A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP3733242B2 (en) | Electrophotographic equipment | |
JP2768620B2 (en) | Photoconductor for laser printer and method of manufacturing the same | |
JP3937601B2 (en) | Electrophotographic equipment | |
JPS59133551A (en) | Electrophotographic sensitive body | |
US5162182A (en) | Photosensitive member for electrophotography with interference control layer | |
JP2768634B2 (en) | Method for manufacturing photosensitive drum excellent in printability | |
JPS60184258A (en) | Electrophotographic sensitive body | |
JPS6198359A (en) | Photoreceptor | |
JP2000105471A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP2000105476A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JPS60186850A (en) | Electrophotographic photoreceptor and its manufacturing method | |
JPH1063022A (en) | Electrophotographic photoreceptor | |
JPS60172047A (en) | Photoreceptor and process for forming its picture image | |
JP2000258938A (en) | Image forming device | |
JPS60256153A (en) | Electrophotographic sensitive body | |
JPS63204280A (en) | Image forming method | |
JPS62299857A (en) | Electrophotographic sensitive body | |
JP2867563B2 (en) | Manufacturing method of electrophotographic photoreceptor |