JPS5879402A - electric car control device - Google Patents
electric car control deviceInfo
- Publication number
- JPS5879402A JPS5879402A JP56177086A JP17708681A JPS5879402A JP S5879402 A JPS5879402 A JP S5879402A JP 56177086 A JP56177086 A JP 56177086A JP 17708681 A JP17708681 A JP 17708681A JP S5879402 A JPS5879402 A JP S5879402A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- section
- power supply
- relay
- breaker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/02—Electric propulsion with power supply external to the vehicle using DC motors
- B60L9/14—Electric propulsion with power supply external to the vehicle using DC motors fed from different kinds of power-supply lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は電気車制御装置に係り、特に、交直側給電区間
で運転される電気車の電車線電源開閉用の遮断器を、交
流−無電圧−直流切換時及び直流−無電圧−交流切換時
には閉−開−閉となるように自動制御し、かつ交流−無
電圧−交流切換時には閉のままとなるよ51VC自動制
御する電気車制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric vehicle control device, and more particularly, to a circuit breaker for switching on and off the contact line power supply of an electric vehicle operated in an AC/DC side power supply section. - It relates to an electric vehicle control device that automatically controls 51 VC to close-open-close when switching between no-voltage and AC, and remains closed when switching between AC-no-voltage and AC.
従来技術とその問題点を第1図、第2図により説明する
。第1図は交直両用電気車の配置系統図、第2図はその
交直切換及び交流遮断器開閉の制御回路のそれぞれ一例
を示す図である。、第1図において、1−は電車線、2
はパンタグラフ、3は計器用変圧器、4は交流給電区間
にお、いて励磁状態となる交流電圧継電器、5は直流給
電区間において励磁状態となる直流電圧継電器、6及び
7は分圧用の抵抗器、8は交流R断器、9は交直切換器
、10は主変圧器、11は主整流器、12は主平滑リア
クトル、13は交直転換器、114は主電動機
□回路、24は断流器である。また、第2図において
、15は交流遮断器用補助継電器、16は交流遮断器の
投入コイル、17は交流遮断器の引き外しコイル、18
は交直切換スイッチである。なお、添字のaは常開接点
、bは常閉接点、Cはコイル、ACは交流、DCは直流
を示す。The prior art and its problems will be explained with reference to FIGS. 1 and 2. FIG. 1 is a layout system diagram of an AC/DC electric vehicle, and FIG. 2 is a diagram showing an example of a control circuit for AC/DC switching and AC circuit breaker opening/closing. , In Figure 1, 1- is the overhead contact line, 2
is a pantograph, 3 is an instrument transformer, 4 is an AC voltage relay that is energized in the AC power supply section, 5 is a DC voltage relay that is energized in the DC power supply section, and 6 and 7 are voltage dividing resistors. , 8 is an AC R disconnector, 9 is an AC/DC switch, 10 is a main transformer, 11 is a main rectifier, 12 is a main smoothing reactor, 13 is an AC/DC converter, 114 is a main motor
□Circuit, 24 is a current breaker. Further, in FIG. 2, 15 is an auxiliary relay for the AC breaker, 16 is the closing coil of the AC breaker, 17 is the tripping coil of the AC breaker, and 18
is an AC/DC changeover switch. Note that the subscript a indicates a normally open contact, b indicates a normally closed contact, C indicates a coil, AC indicates alternating current, and DC indicates direct current.
電気車が交流−無電圧−直流切換区間(いわゆる交−直
セクション]、−直流一無電圧一交流切換区間(いわゆ
る直−交セクション)及び交流−無電圧−交流切換区間
(いわゆる交−交セクション)を通過する時の従来の切
換動作について以下に説明する。An electric vehicle can be divided into an AC-non-voltage-DC switching section (so-called AC-DC section), a -DC-no-voltage-AC switching section (so-called orthogonal section), and an AC-no-voltage-AC switching section (so-called alternating current section). ) will be described below.
まず、交流給電区間から無電圧区間を通過して直流給電
区間に進入する場合について述べる。一般的に、無電圧
区間の手前に設置されている切換標識のところで運転手
が主幹制御器の主ハンドルをオフ位置にする。主幹制御
器がオフ位置になると第1図の断流器24が開路し、主
電動機回路14が切りはなされる。次に、交直切換スイ
ッチ18を手動操作で「直流側」にする。交直切換スイ
ッチ18が「直流側」になると第2図の交流遮断器用補
助継電器15が消磁し、その連動接点15bが閉路し交
流遮断器の引き外しコイル17が開路する一交流遮断器
8が開略すると、第2図の交流遮断器の連動接点8bが
閉路して交直切換器9のコイル9e(DC)及び交直転
換器13のコイル13C(DC)が励磁される。、従っ
て、電気車は交流遮断器8の低位側が全て「直流側」K
転換された状態で無電圧区間に進入することになる。First, a case will be described in which the vehicle passes through a no-voltage section from an AC power supply section and enters a DC power supply section. Generally, the driver turns the main handle of the main controller to the OFF position at a switching sign installed before the no-voltage section. When the main controller is in the OFF position, the current interrupter 24 shown in FIG. 1 is opened and the main motor circuit 14 is disconnected. Next, the AC/DC selector switch 18 is manually set to the "DC side". When the AC/DC changeover switch 18 is set to the "DC side," the AC breaker auxiliary relay 15 shown in FIG. 2 is demagnetized, its interlocking contact 15b is closed, and the AC breaker tripping coil 17 is opened. In short, the interlocking contact 8b of the AC breaker shown in FIG. 2 is closed, and the coil 9e (DC) of the AC/DC switch 9 and the coil 13C (DC) of the AC/DC converter 13 are excited. , Therefore, in an electric car, the lower side of the AC circuit breaker 8 is all "DC side" K
It will enter the no-voltage zone in a converted state.
続いて、電気車が無電圧区間から直流給電区間に進入す
ると、第1図の交流電圧継電器4が消磁し、パンタグラ
フ2に直流電圧を受けると、分圧用の抵抗器6及び7を
介して直流電圧継電器5が励磁される。直流電圧継電器
5が励磁するとその連動接点5a(第2図)が閉路し、
交流遮断器用補助継電器15が励磁され、その連動接点
15aが閉路して交流遮断器の投入コイル16が励磁さ
れ、第48図の交流遮断器8が閉路する。この結果、電
気車は交直切換操作を終了し以後直流給電区間を走行す
る。Subsequently, when the electric car enters the DC power supply area from the no-voltage area, the AC voltage relay 4 shown in FIG. Voltage relay 5 is energized. When the DC voltage relay 5 is energized, its interlocking contact 5a (Fig. 2) closes,
The AC breaker auxiliary relay 15 is energized, its interlocking contact 15a is closed, the AC breaker closing coil 16 is energized, and the AC breaker 8 shown in FIG. 48 is closed. As a result, the electric vehicle completes the AC/DC switching operation and thereafter travels in the DC power supply section.
次に、直流給電区間から無電圧区間を通過して交流給電
区間に進入する場合について述べる。上述と同様、無電
圧区間の手前に設置されている切換標識のところで運転
手が主幹制御器の主ハンド゛ルをオフ位置にすることに
よシ、断流器24が開路し主電動機回路14が切りはな
される。次に、交直切換スイッチ18を手動操作で「交
流側」にすると、第2図の交流遮断器用補助継電器15
が消磁し、その連動接点15bが閉路し、交流遮断器の
引き外しフィル17が励磁され、第1図の交流遮断器8
が開路する。交流遮断器8が開略するとその連動接点s
b(第2図)が閉路し交直切換器9のコイル9C(AC
)と交直転換器13のコイル13C(ACJが励磁され
る。この結果、交直切換器9と交直転換器13はそれぞ
れ「交流側」に転換する。従って、電気車は交流遮断器
8の低位側が全て「交流側」に転換された状態で無電圧
区間に進入することになる。Next, a case will be described in which the vehicle passes through a no-voltage section from a DC power supply section and enters an AC power supply section. Similarly to the above, when the driver turns the main handwheel of the main controller to the OFF position at the switching sign installed before the no-voltage section, the disconnector 24 opens and the main motor circuit 14 is cut off. Next, when the AC/DC selector switch 18 is manually set to the "AC side", the AC breaker auxiliary relay 15 shown in FIG.
is demagnetized, its interlocking contact 15b is closed, and the tripping filter 17 of the AC breaker is energized, causing the AC breaker 8 in FIG.
opens. When the AC breaker 8 opens, its interlocking contact s
b (Fig. 2) is closed and the coil 9C (AC
) and the coil 13C (ACJ) of the AC/DC converter 13 are excited. As a result, the AC/DC converter 9 and the AC/DC converter 13 are respectively switched to the "AC side". All lines will enter the no-voltage zone with the switch switched to the AC side.
続いて電気車が無電圧区間から交流電圧区間に進入する
と第1図の直流電圧継電器5が消磁し、パンタグラフ2
に交流電圧を受けると、計器用変圧器3がほぼ全電圧を
負担し交流電圧継電器4が励磁される。一方、直流電圧
継電器5が消磁する。Subsequently, when the electric vehicle enters the AC voltage area from the no-voltage area, the DC voltage relay 5 shown in FIG. 1 is demagnetized, and the pantograph 2
When receiving an alternating current voltage, the potential transformer 3 bears almost the entire voltage, and the alternating current voltage relay 4 is energized. Meanwhile, the DC voltage relay 5 is demagnetized.
直流電圧継電器5が消磁することによりその連動接点5
bが閉路し、交流遮断器用補助継電器15が励磁され、
その連動接点15aが閉路し、交流遮断器の投入コイル
16が励磁され、第1図の交流遮断器8が閉路する。こ
の結果、電気車は直交切換操作を終了し、以後、交流給
電区間を走行することになる。When the DC voltage relay 5 is demagnetized, its interlocking contact 5
b is closed, the AC breaker auxiliary relay 15 is energized,
The interlocking contact 15a is closed, the AC breaker closing coil 16 is energized, and the AC breaker 8 of FIG. 1 is closed. As a result, the electric vehicle completes the orthogonal switching operation and thereafter travels in the AC power supply section.
さらに、電気車が交流給電区間から無電圧区間を通過し
て交流給電区間に進入する場合について述べる。無電圧
区間の手前に設置されている標識のところで運転手が主
幹制御器の主ハンドルをオフ位置にすることは交−直セ
クション灘過時及び直−交セクション通過時と同様であ
る。従って、第1図の断路器24が開略し、主電動機回
路14が切りはなされる。しかし、交−文セクションで
おるために、前述の交−直セクション通過時や直−交セ
クション通過時とは異なり、交直切換スイッチ18の切
換操作は必要ない訳である。従って、交流遮断器8は閉
路したままの状態で無電圧区間に進入する。次に、無電
圧区間から交流給電区間に進入した時に運転手が主ハン
ドルを所定ノツチに置くことにより再加速する。Furthermore, a case will be described in which an electric vehicle passes through a no-voltage section from an AC power supply section and enters an AC power supply section. The driver turns the main handle of the main controller to the OFF position at the sign installed in front of the no-voltage section in the same way as when passing through the cross section and the cross section. Therefore, the disconnector 24 of FIG. 1 is opened and the main motor circuit 14 is disconnected. However, in order to pass through the AC/DC section, unlike when passing through the AC/DC section or the orthogonal section, there is no need to operate the AC/DC changeover switch 18. Therefore, the AC circuit breaker 8 enters the no-voltage section while remaining closed. Next, when the vehicle enters the AC power supply section from the no-voltage section, the driver places the main steering wheel on a predetermined notch to accelerate again.
以上のように、従来の電気車制御では、無電圧区間の手
前で運転手の操作によって主幹制御器を制御し、次に交
直切換スイッチを交−直セクション、直−交セクション
、交−交セクションの種別に応じて手動操作による切換
を行なっていたので、例えば客車用電源車のように電気
車にけん引されて無人運転する電気車は、交−直セクシ
ョン、直−交セクションまたは交−文セクションを検知
することができず、その結果、電気車が交流冒進または
直流冒進して機器を破壊してしまうという問題点があっ
た。As described above, in conventional electric vehicle control, the main controller is controlled by the driver's operation before the no-voltage section, and then the AC/DC changeover switch is switched between the AC-DC section, the orthogonal section, and the AC-DC section. For example, an electric car that is towed by an electric car and operated unmanned, such as a power supply car for a passenger car, can be switched by manual operation depending on the type of car. There was a problem in that the electric vehicle could not be detected, and as a result, the electric vehicle would travel with AC or DC and destroy the equipment.
本発明の目的は、前述した従来技術の問題点を解決し、
切換セクションの種別を自動的に検知できると共に検知
結果に応じて交流遮断器を自動的に開閉制御することの
できる電気車制御装置を提供することにある。The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide an electric vehicle control device capable of automatically detecting the type of a switching section and automatically controlling opening/closing of an AC circuit breaker according to the detection result.
電気車の速度を検出する速度発電機と、その出力パルス
を交流−無電圧−交流切換時の無電圧区間よりは長いが
交流−無電圧−直流切換時の無電圧区間よりは短かい走
行距離を単位としてカウントするカウンタ装置と、交流
給電区間で励磁状態となる交流電圧継電器と、直流給電
区間で励磁状態となる直流電圧継電器と、上記カウンタ
装置出力と上記両電圧継電器出力とから切換セクション
の種別を判定して交流遮断器を開閉制御する継電制御回
路とを備えた構成とするにある。A speed generator detects the speed of an electric vehicle, and its output pulse is set to a running distance that is longer than the no-voltage section when switching between AC, no-voltage, and AC, but shorter than the no-voltage section when switching between AC, no-voltage, and DC. a counter device that counts in units of , an AC voltage relay that is energized in the AC power supply section, a DC voltage relay that is energized in the DC power supply section, and a switching section based on the output of the counter device and the output of the both voltage relays. The structure includes a relay control circuit that determines the type and controls opening and closing of the AC circuit breaker.
以下、本発明の一実施例を第3図、第4図により説明す
る。第3図及び第4図において、19は電気車の車軸に
増付けられた速度発電機、2oは速度発電機19の出力
パルスをカウントするカウンタ、カウンタ20のSはセ
ット信号端子、Rはりキット信号端子、21はカウンタ
20の出力と予め設定された距離基準値(パルス数)N
sgtとを比較する比較器、22は増幅回路、23は増
幅回路22の出力により励磁される継電器である。An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. In Figures 3 and 4, 19 is a speed generator added to the axle of the electric car, 2o is a counter that counts the output pulses of the speed generator 19, S of the counter 20 is a set signal terminal, and R beam kit. The signal terminal 21 is the output of the counter 20 and the preset distance reference value (number of pulses) N
22 is an amplifier circuit, and 23 is a relay excited by the output of the amplifier circuit 22.
距離基準値Nsgtとしては、交流−無電圧−交流切換
時の無電圧区間よシは長いが交流−無電圧−直流切換時
の無電圧区間よシは短かい走行距離に相当するパルス数
が設定される。一般に交直両用電気車の切換セクション
の無電圧区間は、交−交セクションの無電圧区間が交−
直セクションの無電圧区間より短かいので、上記のよう
に距離基準値N8FiTを設定することが可能である。The distance reference value Nsgt is set to a number of pulses that corresponds to a travel distance that is longer than the no-voltage section when switching between AC-no-voltage-AC, but shorter than the no-voltage section when switching between AC-no-voltage-DC. be done. Generally, the no-voltage section of the switching section of an AC/DC electric vehicle is the same as the no-voltage section of the AC/DC section.
Since it is shorter than the no-voltage section of the direct section, it is possible to set the distance reference value N8FiT as described above.
以下実施例の動作について説明する。The operation of the embodiment will be explained below.
まず、交流給電区間から無電圧区間を通過して直流給電
区間に進入する場合について述べる。交流給電区間から
無電圧区間に進入すると第1図の交流電圧継電器4が消
磁し、その連動接点4bが閉路し、カウンタ20は速度
発電機19の出力パルスをカウントしはじめる。カウン
タ20の出力パルス数が設定パルス数N5ET以上にな
ると、即ち電気車の走行距離が設定された距離基準値に
達した時点で比較器21より出力が発生して増幅回路2
2に入力される。この結果、増幅回路221出力を発生
して継電器23が励磁される。継電器23の励磁により
第3図の連動接点23bが開路して交流遮断器用補助継
電器15が消磁し、その連動接点15bが閉路し、交流
遮断器の引き外しコイル17が励磁され、この結果、第
1図の交流遮断器8が開路する。交流遮断器8が開路す
るとその連動接点gb(第3図)が閉路し、交直切換器
9のコイル9C(DC)と交直転換器13のコイル13
C(DC)が励磁さ゛れ、第1図の交直切換器9と交直
転換器13Fiそれぞれ「直流側」に転換される。First, a case will be described in which the vehicle passes through a no-voltage section from an AC power supply section and enters a DC power supply section. When the AC power supply section enters the no-voltage section, the AC voltage relay 4 shown in FIG. When the output pulse number of the counter 20 exceeds the set pulse number N5ET, that is, when the traveling distance of the electric car reaches the set distance reference value, an output is generated from the comparator 21 and the amplifier circuit 2
2 is input. As a result, the amplifier circuit 221 output is generated and the relay 23 is excited. Due to the excitation of the relay 23, the interlocking contact 23b shown in FIG. The AC circuit breaker 8 shown in FIG. 1 is opened. When the AC circuit breaker 8 is opened, its interlocking contact gb (FIG. 3) is closed, and the coil 9C (DC) of the AC/DC switch 9 and the coil 13 of the AC/DC converter 13 are closed.
C (DC) is excited, and the AC/DC switch 9 and AC/DC converter 13Fi shown in FIG. 1 are respectively switched to the "DC side".
続いて電気車が無電圧区間から直流給電区間に進入する
とパンタグラフ2(第1図)に直流電圧を受け、直流電
圧継電器5が励磁される。この結果、その連動接点5a
(第3図)が閉路し、交流遮断器用補助継電器15が励
磁され、その連動接点15aが閉路し、交流遮断器の投
入コイル16が励磁され、第1図の交流遮断器8が閉路
する。Subsequently, when the electric vehicle enters the DC power supply area from the no-voltage area, the pantograph 2 (FIG. 1) receives DC voltage, and the DC voltage relay 5 is energized. As a result, the interlocking contact 5a
(FIG. 3) is closed, the AC breaker auxiliary relay 15 is energized, its interlocking contact 15a is closed, the closing coil 16 of the AC breaker is energized, and the AC breaker 8 of FIG. 1 is closed.
これで電気車は自動的に交−直切換動作を終了したこと
になる。This means that the electric vehicle has automatically finished the AC-DC switching operation.
次に、直流給電区間から無電圧区間を通過して交流給電
区間に進入する場合について述べる。電気車が直流給電
区間を走行中は、直流電圧継電器5は励磁しており、従
って連動接点5aは閉路、5bは開路しており、また交
流電圧継電器4は消磁しており、従って連動接点4aは
開路、4bは閉路しておシ、接点4bが閉路しているこ
とから継電器23は励磁しており、従って連動接点23
aは閉路、23bは開路している。電気車が直流給電区
間から無電圧区間に進入するとまず直流電圧継電器5が
消磁する。この結果、連動接点5aが開路し、交流遮断
器用補助継電器15が消磁してその連動接点15bが閉
路し、交流遮断器引き外しコイル17が励磁され、交流
遮断器8が開路する。Next, a case will be described in which the vehicle passes through a no-voltage section from a DC power supply section and enters an AC power supply section. While the electric vehicle is running on a DC power supply section, the DC voltage relay 5 is energized, so the interlocking contact 5a is closed and the interlocking contact 5b is open, and the AC voltage relay 4 is demagnetized, so the interlocking contact 4a is closed. is open, 4b is closed, and since contact 4b is closed, relay 23 is energized, so interlocking contact 23
A is a closed circuit, and 23b is an open circuit. When the electric vehicle enters the no-voltage section from the DC power supply section, the DC voltage relay 5 is first demagnetized. As a result, the interlocking contact 5a is opened, the AC breaker auxiliary relay 15 is demagnetized, the interlocking contact 15b is closed, the AC breaker tripping coil 17 is energized, and the AC breaker 8 is opened.
交流遮断器8が開路するとその連動接点8bが閉路し、
交直切換器9のコイル9C(AC)と交直転換器13の
コイル13C(AC)が励磁され、交直切換器9と交直
転換器13はそれぞれ「交流側」に切換えられる。続い
て電気車が無電圧区間から交流給電区間に進入すると、
パンタグラフ2(第1図)に交流電圧を受け、交流電圧
継電器4が励磁する。この結果、その連動接点4aが閉
路し交流遮断器用補助継電器15が励磁し、その連動接
点15aが閉路して交流遮断器投入コイル16が励磁し
、交流遮断器8が投入する。これで、電気車は自動的に
直−交切換操作を終了したことになる。When the AC breaker 8 opens, its interlocking contact 8b closes,
The coil 9C (AC) of the AC/DC switch 9 and the coil 13C (AC) of the AC/DC converter 13 are excited, and the AC/DC switch 9 and the AC/DC converter 13 are respectively switched to the "AC side". Next, when the electric car enters the AC power supply section from the no-voltage section,
An alternating current voltage is applied to the pantograph 2 (FIG. 1), and an alternating current voltage relay 4 is excited. As a result, the interlocking contact 4a is closed, the AC breaker auxiliary relay 15 is energized, the interlocking contact 15a is closed, the AC breaker closing coil 16 is energized, and the AC breaker 8 is closed. This means that the electric vehicle has automatically completed the orthogonal switching operation.
さらに、交流給電区間から無電圧区間を通過して交流給
電区間に進入する場合について述べる。Furthermore, a case will be described in which the vehicle passes through a no-voltage section from an AC power supply section and enters an AC power supply section.
交流給電区間から無電圧区間に進入すると、交流電圧継
電4が消磁する。この結果、その連動接点4bが閉路し
、第4図のカラ/り20は速度発電機19の出力パルス
をカウントしはじめる。カウンタ20のカウント値と設
定パルス数N8ETとが比較器21で比較されるが、こ
こで、設定パルス数Nsg丁が、交流−無電圧−交流セ
クションの無電圧区間走行距離に相当するパルス数よシ
大きな設定値に設定されていることから、比較器21か
ら出力が発生しないうちに電気車は次の交流給電区間に
進入することになる。即ち、比較器21からの出力発生
がなく、増幅回路22の出力も零で、継電器23は消磁
状態の′1まで、電気車は次の交流給電区間に進入する
ことになる。従って、継電器23の連動接点23bは閉
路のままであり、このため交流遮断器用補助継電器15
は励磁を持続する。この結果、電気車は交流−無電圧−
交流切換区間を、交流遮断器8が閉路状態を保持したま
ま、通過することが可能である。When the vehicle enters the no-voltage section from the AC power supply section, the AC voltage relay 4 is demagnetized. As a result, the interlocking contact 4b is closed, and the collar 20 in FIG. 4 starts counting the output pulses of the speed generator 19. The count value of the counter 20 and the set number of pulses N8ET are compared by the comparator 21, and here, the set number of pulses Nsg is equal to the number of pulses corresponding to the travel distance of the no-voltage section of the AC-no-voltage-AC section. Since the set value is set to a large value, the electric vehicle enters the next AC power supply section before the comparator 21 generates an output. That is, no output is generated from the comparator 21, the output from the amplifier circuit 22 is also zero, and the relay 23 is in the demagnetized state until '1', and the electric vehicle enters the next AC power supply section. Therefore, the interlocking contact 23b of the relay 23 remains closed, and therefore the AC breaker auxiliary relay 15
maintains excitation. As a result, electric cars are AC - no voltage -
It is possible to pass through the AC switching section while the AC circuit breaker 8 remains closed.
以上のように、本発明実施例によれば、電気車が無人運
転の場合、交流電圧継電器4や直流電圧継電器5のよう
な電車線電圧を検知する検出器と、電気車の走行距離を
検知する検出器と、一般的に交−直セクションの長さは
交−文セクションの長さより数倍長くなっている事実に
着目して交−交セクションの長さよりは長いが交−直セ
クションの長さよシは短かい走行距離を単位として上記
検出した走行距離をカウントするカウンタ装置とを設け
る構成とし、これにより交−直セクション、直−交セク
ショノ、交−交セクションを自動的に識別することを可
能とし、この識別結果に応じて交流遮断器の開閉を自動
制御することができ、従来技術で前述した手動操作時の
問題点を完全に解決することができるようになる。なお
、交−交ごクションで交流遮断器を開路させないのは、
主として交流遮断器の機械的動作寿命からくる保守点検
周期及び使用期間を延ばすことにあり、交−交セクショ
ンで交流遮断器を開路させない方式として、交流電圧継
電器に適当な釈放遅れ要素を持たせる方式が考えられる
が、しかしその方式では、設定速度以下の低速走行の時
に交流遮断器が開路してしまうという問題が生じる。As described above, according to the embodiment of the present invention, when an electric car is operated unmanned, a detector that detects the contact line voltage, such as the AC voltage relay 4 or the DC voltage relay 5, and a detector that detects the traveling distance of the electric car are used. The length of the orthogonal section is longer than the length of the orthogonal section, but the length of the orthogonal section is longer than the length of the orthogonal section. The Sayoshi is equipped with a counter device that counts the detected travel distance in units of short travel distances, thereby automatically identifying cross-perpendicular sections, orthogonal sections, and cross-cross sections. This makes it possible to automatically control the opening and closing of the AC circuit breaker according to the identification result, completely solving the problems associated with manual operation described above in the prior art. In addition, the reason why the AC circuit breaker is not opened at the intersection is as follows.
The main purpose of this method is to extend the maintenance inspection cycle and usage period due to the mechanical operating life of the AC circuit breaker, and as a method to prevent the AC circuit breaker from opening in the AC section, the AC voltage relay is provided with an appropriate release delay element. However, with this method, a problem arises in that the AC circuit breaker opens when the vehicle is running at a low speed below the set speed.
本発明によれば、従来手動操作で行なっていた電車線の
交−直セクション、直−交セクション、交−交セクショ
ン通過時の交流遮断器の開閉制御が、切換セクションの
種別を自動的に識別することにより、自動的に行なえる
ようになり、けん引電気車の無人運転が可能となる効果
がある。According to the present invention, the opening/closing control of the AC circuit breaker when passing an alternating-direction section, an orthogonal section, or an alternating-crossing section of an overhead contact line, which was conventionally performed manually, automatically identifies the type of switching section. By doing so, it becomes possible to perform the process automatically, which has the effect of enabling unmanned operation of the electric traction vehicle.
第1図は従来の交直両用電気車における電車線電圧検出
及び主回路接続図、第2図は従来の交直切換制御及び交
流遮断器開閉制御の回路図、第3図及び第4図は本発明
の一実施例を示す制御回路図である。
1・・・電車線、4・・・交流電圧継電器、5・・・直
流電圧継電器、8・・・交流遮断器、14・・・主電動
機回路、15・・・交流遮断器用補助継電器、16・・
・投入コイル、17・・・引き外しコイル、19・・・
速度発電機、20・・・カウンタ、21・・・比較器、
22・・・増幅回路、第 l 図
第 2 図
8
(
第 3 図Figure 1 is a contact line voltage detection and main circuit connection diagram in a conventional AC/DC electric vehicle, Figure 2 is a circuit diagram of conventional AC/DC switching control and AC breaker opening/closing control, and Figures 3 and 4 are the invention of the present invention. FIG. 2 is a control circuit diagram showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Contact line, 4... AC voltage relay, 5... DC voltage relay, 8... AC breaker, 14... Main motor circuit, 15... Auxiliary relay for AC breaker, 16・・・
・Insertion coil, 17...Removal coil, 19...
speed generator, 20... counter, 21... comparator,
22... Amplifier circuit, Figure 1 Figure 2 Figure 8 (Figure 3
Claims (1)
遮断器を、交流−無電圧−直流及び直流−V−π圧−交
流の切換セクション通過時にhm−m閉となり交流−無
電圧−交流の切換セクション通過”Kは閉のままとなる
ように自動制御するものニオハで、電気車の速度を検出
する速度発電機と、−の出力パルスを交流−無電圧−交
流切換の無電圧区間よシは長いが交流=無電圧−直流切
換の無電圧区間よりは短かい走行距離を単位としてカウ
ントするカウンタ装置と、交流給電区間で励磁される交
流電圧継電器と、直流給電区間で励磁される直流電圧継
電器と、上記カウンタ装置出力と上記両電圧継電器出力
とから切換セクションの種別を識別して遮断器を開閉制
御する継電制御回路とを備えたことを特徴とする電気車
制御装置。1. The circuit breaker for switching on and off the power supply of electric cars operated in the AC/DC side power supply section becomes hm-m closed when passing through the AC-non-voltage-DC and DC-V-π pressure-AC switching sections, and the AC-non-voltage - Passing through the alternating current switching section "K" is automatically controlled so that it remains closed. Although the section is long, it is shorter than the no-voltage section of AC = no-voltage-DC switching, and there is a counter device that counts the mileage as a unit, an AC voltage relay that is energized in the AC power supply section, and an AC voltage relay that is energized in the DC power supply section. An electric vehicle control device comprising: a DC voltage relay; and a relay control circuit that identifies the type of switching section from the output of the counter device and the output of both voltage relays and controls opening and closing of the circuit breaker.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56177086A JPS5879402A (en) | 1981-11-06 | 1981-11-06 | electric car control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56177086A JPS5879402A (en) | 1981-11-06 | 1981-11-06 | electric car control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5879402A true JPS5879402A (en) | 1983-05-13 |
Family
ID=16024875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56177086A Pending JPS5879402A (en) | 1981-11-06 | 1981-11-06 | electric car control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5879402A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08104918A (en) * | 1994-10-06 | 1996-04-23 | Chugai Ro Co Ltd | Device for removing skid mark in walking beam type continuous heating furnace |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5110509A (en) * | 1974-07-15 | 1976-01-28 | Hitachi Ltd | Denkishano boshinhogokairo |
-
1981
- 1981-11-06 JP JP56177086A patent/JPS5879402A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5110509A (en) * | 1974-07-15 | 1976-01-28 | Hitachi Ltd | Denkishano boshinhogokairo |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08104918A (en) * | 1994-10-06 | 1996-04-23 | Chugai Ro Co Ltd | Device for removing skid mark in walking beam type continuous heating furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3056898B2 (en) | Electric car control device | |
CA1118517A (en) | Train vehicle control apparatus | |
CN112238792B (en) | Running a rail vehicle through a split in a vehicle external current supply device | |
JP2006136128A (en) | Electric motor car control equipment | |
JPS5879402A (en) | electric car control device | |
US2281734A (en) | Transfer system for electrically operated vehicles | |
CN208306400U (en) | A kind of system of vehicle-mounted automatic passing over of neutral section under cophase supply mode | |
US4736146A (en) | Run and brake control circuit | |
JPH08216741A (en) | Arc suppressing device in railway feeding system | |
JP3628090B2 (en) | Switching switchgear | |
EP0122462B1 (en) | Railway vehicle control apparatus and railway system having regenerative control | |
JP2678763B2 (en) | Self-propelled vehicle detection device | |
US2931462A (en) | Control for an elevator closure | |
JPS592501A (en) | Dead section detection method for AC electric cars | |
CN108859868A (en) | A kind of method and system of vehicle-mounted automatic passing over of neutral section under cophase supply mode | |
JPH03143884A (en) | Control circuit of elevator | |
JPH06261403A (en) | Method and system for protecting univarsal electric vehicle against ac risky run | |
US2307481A (en) | Motor control system | |
US2345149A (en) | Control system | |
JPH07123511A (en) | Electric vehicle controller | |
US2100728A (en) | Motor control system | |
US3364406A (en) | Protective system for motors of electric cars | |
JP3529002B2 (en) | Travel control device for transport train | |
US1205463A (en) | Railway-train-control system. | |
US2230724A (en) | Control system |