JPS5877964A - Gears for small precision meters - Google Patents
Gears for small precision metersInfo
- Publication number
- JPS5877964A JPS5877964A JP17409381A JP17409381A JPS5877964A JP S5877964 A JPS5877964 A JP S5877964A JP 17409381 A JP17409381 A JP 17409381A JP 17409381 A JP17409381 A JP 17409381A JP S5877964 A JPS5877964 A JP S5877964A
- Authority
- JP
- Japan
- Prior art keywords
- gears
- gear
- fiber
- small precision
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/06—Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Gears, Cams (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、複合高分子材料を用いて射出成形加工からな
る歯車に係わり、特に極微細繊維により強化された高強
度複合高分子材料を用いた小型精密計測器用歯車に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gear made by injection molding using a composite polymer material, and more particularly to a gear for a small precision measuring instrument using a high strength composite polymer material reinforced with ultrafine fibers. .
本発明の目的は、高寸法精度が要求される小型精密歯車
、とりわけ携帯用等の時計用歯車を、高強度複合高分子
材料の射出成形加工により低コスシに提供することにあ
る。An object of the present invention is to provide a small precision gear that requires high dimensional accuracy, especially a gear for a watch such as a portable watch, at a low cost by injection molding of a high-strength composite polymer material.
最近、高分子材料は工業材料として負荷のかかる機能部
品、構造部品等に多く用いられてきている。このような
方面に用いられる高分子材料は一般にエンジニアリング
プラスチックと称され、比較的負荷のかからない用達に
使用されている高分子材料いわゆる汎用プラスチックと
は区別される、しかしエンジニアリングプラスチックと
いえども単体では機械的強度、熱的特性、寸法精度など
輪おいて金属材料に比べてはるかに劣り、そのため比較
的大きな寸法を有する部品でしかも負荷の小さい部品に
適用されているにすぎなかった。そこで、エンジニアリ
ングプラスチックの特性を向上させる目的で、補強材に
よる複合化技術が検討された。この精な材料サイドでの
進歩により、高分子材料が有する製品設計の自由度が大
きい、容易に成形加工が出来る。後仕上げ加工がほとん
ど不要である、組立部品の一体化が出来るなどの特黴を
生かしながら、従来使用が困難であった高負荷精密機構
部品分野に複合高分子材料が応用拡大されつつある。Recently, polymer materials have been widely used as industrial materials for functional parts, structural parts, etc. that are subject to loads. The polymeric materials used in these areas are generally called engineering plastics, and are distinguished from the polymeric materials used in relatively light-loading applications, so-called general-purpose plastics.However, even engineering plastics cannot be used alone. It is far inferior to metal materials in terms of mechanical strength, thermal properties, and dimensional accuracy, and as a result, it has only been applied to parts with relatively large dimensions and small loads. Therefore, in order to improve the properties of engineering plastics, composite technology using reinforcing materials was investigated. Thanks to advances in this sophisticated material side, polymeric materials have a greater degree of freedom in product design and can be easily molded. Composite polymer materials are increasingly being applied to high-load precision mechanical parts, which were difficult to use in the past, by taking advantage of their special properties, such as almost no post-finishing required and the ability to integrate assembled parts.
この様な中で、本発明者は複合高分子材料を小厘精密計
測器用讃車、とりわけ携帯用等の時計用歯車への応用検
討を行なってきた。以下腕時計用歯車を例に上げ本発明
を説明する。腕時計用歯車は寸法精度面、機械的強度面
、長期耐久性において最も要求の厳しい分野の1つであ
る。寸法精度については、公差は1/100■台が少な
くとも要求され、しかも歯車寸法は歯厚[11m〜1,
0閤、歯巾(L05■〜α4■、ピッチ円径[L4m1
11〜5鱈、モジ為−ル(LO5〜(L5.歯車軸径a
1■〜a5■で非常に小さい、この様な極微少歯車を高
分子材料を用いて射出成形により加工することは、高度
な射出成形技術と超精密金型加工技術の開発によって可
能なものとなっている。一方、機械的強度面についてみ
た場合、腕時計用歯車は低トルクで駆動するが、その絶
対寸法が小さいことから単位面積に受ける応力は非常に
大きいものとなる。とりわけ、新修正時における負荷は
大きく、曲げ強度15kII/−以上が必要となる。Under these circumstances, the present inventor has been studying the application of composite polymer materials to wheels for small precision measuring instruments, especially gears for watches such as portable ones. The present invention will be explained below using a wristwatch gear as an example. Watch gears are one of the most demanding fields in terms of dimensional accuracy, mechanical strength, and long-term durability. Regarding dimensional accuracy, a tolerance of at least 1/100 ■ is required, and the gear dimensions have a tooth thickness [11 m to 1,
0 pitch, tooth width (L05■~α4■, pitch circle diameter [L4m1
11~5 cod, module (LO5~(L5. Gear shaft diameter a)
Processing microscopic gears such as these, which are extremely small in size from 1■ to a5■, by injection molding using polymer materials is possible through the development of advanced injection molding technology and ultra-precision mold processing technology. It has become. On the other hand, in terms of mechanical strength, wristwatch gears are driven with low torque, but because their absolute dimensions are small, the stress per unit area is extremely large. In particular, the load at the time of new modification is large, and a bending strength of 15 kII/- or more is required.
本発明者は上記した腕時計用歯車として第1図に示す形
状の五番車を用い、各種複合高分子材料の成形性と強度
測定を行なった。その結果、強化用繊維のサイズが腕時
計用歯車のような小型精密歯車の成形性及び強度の強化
効率を大きく左右することが判明した。このことから、
本発明者は複合高分子材料を小型精密歯車に適用する際
に、最適な強化用繊維のサイズを見い出すにいたった。The present inventor used the fifth wheel having the shape shown in FIG. 1 as the above-mentioned wristwatch gear to measure the moldability and strength of various composite polymer materials. As a result, it was found that the size of the reinforcing fibers greatly influences the formability and strength reinforcement efficiency of small precision gears such as gears for wristwatches. From this,
The present inventor has discovered the optimal size of reinforcing fibers when applying a composite polymer material to small precision gears.
本発明を詳述すれば、材料評価に用いた第1図の五番車
の大きさは、歯車2の厚みa12■、ピッチ円径五5■
、モジエールα058.カナ5の厚みa 4 wm 、
ピッチ円径α50■、モジエールα063、歯車軸t4
の軸径[L2■、軸長z5■である。この五番車を射出
成形で成形する際のゲート5はビンポイントゲートで0
.2mφである。この様なサイズの五番車を各種複合高
分子材料で成形した後の強度測定は、第2図に示す方法
で行なった。すなわち、五番車のカナ3の歯6の破壊曲
げ強度を、歯車3を固定しておき、金属製歯車7を回転
していきカナ3の歯6が破壊したときの回転トルクから
換算して求めた0強化用繊維径と歯6の相対破壊曲げ強
度の関係を第3図に示す。ここで使用した材料は高分子
材料としてポリアセタール(コポリマータイプ)、強化
繊維としてグラス7アイパーで繊維径平均1μ、平均2
μ、平均5μ、平均10μ、平均15μ、アスペクト比
は各々約50であり、シランカップリング魁理したもの
である。第3図に示される様に、繊維径10μ以上では
成形は不可能である。又、繊維径5μでは繊維の成形品
内部での分散性が不均一であり、歯6には充分←分散さ
れてなく、結果として余り強度は強くない。一方、繊維
径2μ以下では、均一分散がなされ、歯6の歯先にまで
充分な繊維の充填がされており、強度も向上している。To explain the present invention in detail, the size of the fifth wheel shown in FIG.
, Mosier α058. Thickness of kana 5 a 4 wm,
Pitch circle diameter α50■, mosier α063, gear shaft t4
The shaft diameter is [L2■], and the shaft length is z5■. Gate 5 when molding this fifth wheel by injection molding is a bin point gate 0
.. It is 2mφ. The strength of a fifth wheel of such size molded from various composite polymer materials was measured using the method shown in FIG. 2. That is, the destructive bending strength of the teeth 6 of the pinion 3 of the fifth wheel is calculated from the rotational torque when the tooth 6 of the pinion 3 breaks when the metal gear 7 is rotated with the gear 3 fixed. The relationship between the determined zero-reinforcing fiber diameter and the relative fracture bending strength of the tooth 6 is shown in FIG. The materials used here were polyacetal (copolymer type) as the polymer material, and glass 7-iper as the reinforcing fiber, with an average fiber diameter of 1 μm and an average fiber diameter of 2 μm.
The average μ is 5 μ, the average is 10 μ, and the average is 15 μ. The aspect ratio is approximately 50, and is obtained by silane coupling. As shown in FIG. 3, molding is impossible if the fiber diameter is 10 μm or more. Further, when the fiber diameter is 5 μm, the dispersibility of the fibers inside the molded product is non-uniform, and the fibers are not sufficiently dispersed in the teeth 6, and as a result, the strength is not very strong. On the other hand, when the fiber diameter is 2 μm or less, the fibers are uniformly dispersed, the tips of the teeth 6 are sufficiently filled with fibers, and the strength is also improved.
繊維径10μ以上で成形不可の原因はビンポイントゲー
ジ郁での繊維の詰まりによるもので、小型精密歯車を成
形する場合にゲー)サイズを大きくとれないことと考え
合わせれば、繊維長は200μ以下が良い。The reason why it is impossible to form fibers with a diameter of 10μ or more is due to fiber clogging in the bottle point gauge.If you consider that it is impossible to make a large size when molding small precision gears, the fiber length should be 200μ or less. good.
以上の結果から、本発明者は小型精密歯車用の複合高分
子材料として強化繊維のサイズが繊維径2μ以下、繊維
長200μ以下であることが適切であるとの結論を得る
に至った。適用される材料としては高分子材料としてポ
リアセタール以外に、lリアミド、ポリカーボネート、
ポリエチレンテレフタレート、ポリブチレンテレフタレ
ート。From the above results, the present inventor has come to the conclusion that it is appropriate for the reinforcing fibers to have a fiber diameter of 2 μm or less and a fiber length of 200 μm or less as a composite polymer material for small precision gears. In addition to polyacetal, the applicable materials include laryamide, polycarbonate,
Polyethylene terephthalate, polybutylene terephthalate.
変性キリフェニレンオキサイド、ボリアリレート、ポリ
サル7オン、ポリエーテルサルフオン、ポリフェニレン
サルファイド、ダリオキシベンジレンなどのエンジニア
リングプラスチック、ポリエチレン、ポリプロピレン、
lり塩化ビニル、ポリスチレン、五BS、アクリル樹脂
などの汎用プラスチックなどの単体もしくは混合体があ
り、強化用繊維としては、グラスファイバーの他、カー
ボン7アイA−、BM繊維、S10繊維、アルミナ繊維
、チタン酸カリウム繊維、ポリアミド繊維。Engineering plastics such as modified xyphenylene oxide, polyarylate, polysal 7one, polyether sulfone, polyphenylene sulfide, dalioxybenzylene, polyethylene, polypropylene,
General-purpose plastics such as polyvinyl chloride, polystyrene, 5BS, and acrylic resin can be used singly or as a mixture.Reinforcing fibers include glass fiber, carbon 7eye A-, BM fiber, S10 fiber, and alumina fiber. , potassium titanate fiber, polyamide fiber.
ポリアセタール繊維などが使用可能である。Polyacetal fiber etc. can be used.
以下に実施例を述べさらに本発明を詳述する。EXAMPLES The present invention will be explained in detail with reference to Examples below.
実施例1〜4
第1図に示す腕時計用歯車である五番車を各種複合高分
子材料で成形し、成形性と強度を測定した。11た同時
にムS’l’M I)790−66に規定されている
曲げ強度試験用の試験片を成形し強度測定をした。Examples 1 to 4 A fifth wheel, which is a wristwatch gear shown in FIG. 1, was molded from various composite polymer materials, and its moldability and strength were measured. 11 At the same time, a test piece for a bending strength test specified in Mu S'l'M I) 790-66 was molded and the strength was measured.
以上の様に本発明は強化用繊維サイズを適正化すること
によって従来複合高分子材料の適用が困難であった小型
精密歯車の成形を可能にしたものである。実施例では腕
時計用歯車に限定して述べたが、他の小型精密計測器用
歯車のプラスチック化に対しても本発明の寄与するとこ
ろは大きいと考える。As described above, the present invention makes it possible to mold small precision gears, to which conventional composite polymer materials have been difficult to apply, by optimizing the size of the reinforcing fibers. Although the embodiments have been limited to gears for wristwatches, it is believed that the present invention will greatly contribute to the use of plastic gears for other small precision measuring instruments.
第1図は腕時計用歯車である五番車の平面図で1.4は
歯車軸、2は歯車1.3は歯車2.5はピンポイントゲ
ートである。
第2図は、五番車のカナ3の一部の拡大図と、それにか
み合う金属製歯車7の一部の拡大図である。6はカナ3
の歯を示す。
第3図は、強化用繊維径と成形後の五番車のカナ5の歯
6の相対破壊曲げ強度の関係を示す。
以上
?l!]
’t’31!]Figure 1 is a plan view of a fifth wheel, which is a gear for a wristwatch, where 1.4 is a gear shaft, 2 is a gear 1.3, and gear 2.5 is a pinpoint gate. FIG. 2 is an enlarged view of a portion of the pinion 3 of the fifth wheel and a portion of the metal gear 7 that meshes with it. 6 is kana 3
showing teeth. FIG. 3 shows the relationship between the reinforcing fiber diameter and the relative fracture bending strength of the tooth 6 of the fifth wheel pinion 5 after molding. that's all? l! ] 't'31! ]
Claims (1)
化繊維が10〜50重量憾充填された複合高分子材料で
成形され、歯厚CL1■〜tO■、歯巾(LO5m 〜
(Llm、ピッチ円径a 4 gg 〜5 wm 。 モジ&−ルa05〜(L5.歯車軸11i(Llm 〜
(L5■であることを特徴とする小型精密計測器用歯車[Claims] t Molded from a composite polymer material filled with 10 to 50 weight reinforcing fibers with a fiber diameter of 2μ or less and a fiber length of 200μ or less, tooth thickness CL1■ to tO■, tooth width ( LO5m ~
(Llm, pitch circle diameter a 4 gg ~ 5 wm.Moji&-ru a05 ~ (L5. Gear shaft 11i (Llm ~
(Gear for small precision measuring instruments characterized by L5■
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17409381A JPS5877964A (en) | 1981-10-30 | 1981-10-30 | Gears for small precision meters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17409381A JPS5877964A (en) | 1981-10-30 | 1981-10-30 | Gears for small precision meters |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5877964A true JPS5877964A (en) | 1983-05-11 |
JPH0357347B2 JPH0357347B2 (en) | 1991-08-30 |
Family
ID=15972525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17409381A Granted JPS5877964A (en) | 1981-10-30 | 1981-10-30 | Gears for small precision meters |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5877964A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4651575A (en) * | 1984-05-18 | 1987-03-24 | Mitsubishi Denki Kabushiki Kaisha | Vehicle starter and gear structure therefor |
JPH0868454A (en) * | 1995-06-05 | 1996-03-12 | Casio Comput Co Ltd | Synthetic resin watch gear |
EP1609694A1 (en) * | 2003-03-19 | 2005-12-28 | NSK Ltd. | Electric power steering device and resin gear used for the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5332255A (en) * | 1976-09-08 | 1978-03-27 | Hitachi Ltd | Gears made of fiber strengthening complex material |
JPS5333271A (en) * | 1976-09-08 | 1978-03-29 | Hitachi Ltd | Method of manufacture of gear consisted of resin compound reinforced with fibfr |
-
1981
- 1981-10-30 JP JP17409381A patent/JPS5877964A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5332255A (en) * | 1976-09-08 | 1978-03-27 | Hitachi Ltd | Gears made of fiber strengthening complex material |
JPS5333271A (en) * | 1976-09-08 | 1978-03-29 | Hitachi Ltd | Method of manufacture of gear consisted of resin compound reinforced with fibfr |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4651575A (en) * | 1984-05-18 | 1987-03-24 | Mitsubishi Denki Kabushiki Kaisha | Vehicle starter and gear structure therefor |
JPH0868454A (en) * | 1995-06-05 | 1996-03-12 | Casio Comput Co Ltd | Synthetic resin watch gear |
EP1609694A1 (en) * | 2003-03-19 | 2005-12-28 | NSK Ltd. | Electric power steering device and resin gear used for the same |
EP1609694A4 (en) * | 2003-03-19 | 2007-05-23 | Nsk Ltd | Electric power steering device and resin gear used for the same |
US7360468B2 (en) | 2003-03-19 | 2008-04-22 | Nsk Ltd. | Electric power steering device and resin gear used for the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0357347B2 (en) | 1991-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shen et al. | Weight functions for a surface semi-elliptical crack in a finite thickness plate | |
JPH0343503B2 (en) | ||
JPS5877964A (en) | Gears for small precision meters | |
Richter et al. | A mixed numerical-experimental method to characterize metal-polymer interfaces for crash applications | |
JPS6298067A (en) | Molded gear group with torsional gear | |
Lagdani et al. | Influence of moisture diffusion on the dynamic compressive behavior of glass/polyester composite joints for marine engineering applications | |
Konstantaki et al. | Monitoring of torque induced strain in composite shafts with embedded and surface-mounted optical fiber bragg gratings | |
Hassan et al. | Investigation of erosion/corrosion behavior of GRP under harsh operating conditions | |
Yas et al. | Development of an engineered slurry-infiltrated fibrous concrete: experimental and modelling approaches | |
Amalraj et al. | Experimental behavior of high-strength concrete reinforced with aramid fiber and polyurethane resin | |
Takayama | Vickers Hardness Mechanical Models and Thermoplastic Polymer Injection-Molded Products’ Static Friction Coefficients | |
Fajkus et al. | Pressure membrane FBG sensor realized by 3D technology | |
El Messiry et al. | Influence of pre-tensioning high-performance yarns on the bending stiffness of textile composites | |
Lee et al. | Braided fabrication of a fiber bragg grating sensor | |
US1028540A (en) | Index device. | |
Aleong et al. | Evaluation of the radial-cut method for determining residual strains in fiber composite rings | |
Cheong et al. | Analysis and development of the angular twist type torque-meter | |
Papán et al. | Hybrid Composite Materials Made of Recycled PET and Standard Polymer Blends Used in Civil Engineering | |
Matsuura et al. | Determination of tooth profile curve of helical pinion and rack gears to achieve non-constant transmission ratio | |
ITTO930971A1 (en) | DIMENSIONAL MEASUREMENT METHOD AND REFERENCE SAMPLE FOR THE IMPLEMENTATION OF THIS METHOD. | |
Paimushin et al. | Experimental Studies of the Mechanisms of Formation of Residual Strain in Fibrous Composites Under Cyclic Loading | |
Li et al. | Anisotropic Mechanical Response and Strain Localization of a Metallic Glassy-Fiber-Reinforced Polyethylene Terephthalate Fabric | |
McMahon | The relationship between high modulus fiber and unidirectional composite tensile strength | |
Peiter et al. | The Tensile sigma-- epsilon Curve of Heat-Treated Steel Ck 45 and Its Mathematical Description | |
Zhu et al. | Mechanical performance of high-strength steel tube confined self-stressing concrete short columns |