JPS5876810A - Light beam scanner - Google Patents
Light beam scannerInfo
- Publication number
- JPS5876810A JPS5876810A JP56175541A JP17554181A JPS5876810A JP S5876810 A JPS5876810 A JP S5876810A JP 56175541 A JP56175541 A JP 56175541A JP 17554181 A JP17554181 A JP 17554181A JP S5876810 A JPS5876810 A JP S5876810A
- Authority
- JP
- Japan
- Prior art keywords
- light beam
- lens
- light
- scanned
- scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 21
- 238000007493 shaping process Methods 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims description 5
- 230000004907 flux Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000003754 machining Methods 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、光源からの光ビームを、回転多面鏡で反射し
、集光レンズを介して被走査面に与え、走査を行う光レ
ーム走査装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical beam scanning device that scans a surface to be scanned by reflecting a light beam from a light source on a rotating polygon mirror and applying it to a surface to be scanned through a condensing lens.
この種の光ビーム走査装置は、その概略を第1図に示し
たように、本来は回転多面*/に入射したレーザコ等か
らの光ビームが、矢印方向に回転する回転多面鏡lの鏡
面で反射して、集光レンズ(f・θ レンズ)3t−通
って被走査面spの上に、走査方向(X方向)に一様な
速度で移動する光スポットを結ぶように構成されている
。ところが1回転多面鏡lの回転軸に対して各鏡面が平
行でなく、その角度に不揃い(倒れ角誤差)があると、
走査方向に直角な方向(y方向)に光スポットが不均一
にシフトし、例えば、第2図に示す如く、倒れ角誤差が
Δθあると、被走査面spでΔd=コf・Δθ(ただし
、fは集光レンズ3の焦点距離)のシフト量が生じてし
iう。この倒れ角誤差や回転軸のプレは走査線のピッチ
むらt生じさせるため、何らかの対策をとる必要がある
。その一つとして、工作精度を上げて倒れ角誤差を微小
化することが考えられるが、実際には工作精度上の限界
に近く、たとえ工作できるにしても、工数がかかり、量
産は雌しく、極めて高価になるという問題がある。又、
従来から、第3図及び第参図に示す如く、円柱レンズ弘
等を用いて、光ビームを回転多面鏡lに走査方向に平行
な線状のビームとして入射させ、回転多面鏡/と被走査
l1iSPとの間に配置した、円柱レンズ(あるいはト
ロイダルレンズ)!及び集光レンズ3により、前記線状
のビームと走査位置を走査方向と直角な方向に関し、光
学的共役として補正するもの(%開昭at−≠り31!
号)がある。しかし、円柱レンズjt−用いると、全走
査幅にわたって一様なスポットサイズを得ることができ
ないし、円柱レンズ!の代わりにトロイダルレンズを用
いると・一様なスポットサイズは得られるが、トロイダ
ルレンズが高価な丸め、光ビーム走査装置が高コストに
なるという新たな問題が生ずる。As shown schematically in Figure 1, this type of light beam scanning device originally uses a light beam from a laser beam, etc., which is incident on a rotating polygon */, to pass through the mirror surface of a rotating polygon mirror l that rotates in the direction of the arrow. The light is reflected, passes through a condensing lens (f/θ lens) 3t, and connects a light spot moving at a uniform speed in the scanning direction (X direction) onto the scanned surface sp. However, if each mirror surface is not parallel to the rotation axis of the single-rotation polygon mirror l, and there are irregularities in their angles (inclination angle error),
If the light spot shifts non-uniformly in the direction perpendicular to the scanning direction (y direction) and, for example, the tilt angle error is Δθ as shown in Fig. 2, then Δd=kof・Δθ (where , f is the focal length of the condenser lens 3). Since this inclination angle error and rotational axis deviation cause pitch unevenness t of the scanning line, it is necessary to take some countermeasures. One way to do this is to improve machining accuracy and minimize the angle of inclination error, but in reality this is close to the limit in terms of machining accuracy, and even if machining could be done, it would take a lot of man-hours, making mass production difficult. The problem is that it is extremely expensive. or,
Conventionally, as shown in FIGS. 3 and 3, a light beam is incident on a rotating polygon mirror l as a linear beam parallel to the scanning direction using a cylindrical lens, etc. A cylindrical lens (or toroidal lens) placed between l1iSP! and a condenser lens 3 that corrects the linear beam and scanning position as optical conjugates in a direction perpendicular to the scanning direction (%Kaishoat-≠31!
No.). However, when using a cylindrical lens, it is not possible to obtain a uniform spot size over the entire scanning width, and a cylindrical lens! If a toroidal lens is used instead, a uniform spot size can be obtained, but new problems arise, such as the expensive rounding of the toroidal lens and the high cost of the light beam scanning device.
更に、他の従来例として、第3図及び第6図に示す如く
、円柱レンズ6及び7によって偏平(第7図)で、且つ
平行に近い光ビームを回転多面鏡lに入射させると共に
、集光レンズ3と被走査gspとの閾に単に円柱レンズ
If設けたものもある。この装置についても、全走査幅
にわたって一様なスポットサイズが得られないという問
題がある。Furthermore, as another conventional example, as shown in FIGS. 3 and 6, a flat (FIG. 7) and nearly parallel light beam is made incident on a rotating polygon mirror l using cylindrical lenses 6 and 7, and is focused. There is also one in which a cylindrical lens If is simply provided at the threshold between the optical lens 3 and the scanned gsp. This device also has the problem of not being able to obtain a uniform spot size over the entire scanning width.
本発明は上述の問題に鑑みてなされたもので、光源から
の光ビームを回転多面鏡で反射し、集光レンズを介して
被走査面に与え走査を行う光ビーム走査装置において、
前記光源と前記回転多面鏡との間に、走査方向に幅が広
く偏平なしかも略平行な光ビームを形成するビーム整形
手段を設けると共に、前記被走査面付近に、走査方向に
対し直角な方向にのみ光の収束効果t−有する光学素子
を設け、更に、前記回転多“面鏡の反射面と被走査面と
が幾何光学的共役関係にあるよう罠構成し、しかも、走
査方向に対し直角な方向に関し、前記集光レンズと前記
光学素子の間でi@lのビームウェストが生じ、前記被
走査面付近で第2のビームウェストが生じるように構成
することにより、全走査幅にわたって一様なスポットサ
イズが得られ、走f4mピッチむらを生じない光ビーム
走査装置t”簡単な構成で且つ安価に実現したものであ
る。The present invention has been made in view of the above-mentioned problems, and is a light beam scanning device that reflects a light beam from a light source on a rotating polygon mirror and applies it to a surface to be scanned via a condenser lens for scanning.
A beam shaping means is provided between the light source and the rotating polygon mirror to form a light beam that is wide in the scanning direction and is not oblate and is substantially parallel, and a beam shaping means is provided near the scanned surface in a direction perpendicular to the scanning direction. An optical element having a light convergence effect is provided only in the direction of the scanning direction, and the reflective surface of the rotating polygonal mirror and the surface to be scanned are configured to have a geometrically conjugate relationship, With respect to the direction, a beam waist of i@l is generated between the condenser lens and the optical element, and a second beam waist is generated near the scanned surface, so that the beam waist is uniformly generated over the entire scanning width. This optical beam scanning device has a simple configuration and is inexpensive, which can obtain a spot size of 4 m and which does not cause pitch irregularities.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
第を図は、本発明に係る光ビーム走査装置における、回
転多面鏡と被走査面の間の光ビーム及び光学系の概略構
成図で、(b)は上面図、(−)は走査中央でのIII
I面図、(−)は走査端での@面図を示している。図中
、l/は回転多面鏡で、その反射rfJ<鏡面)には1
図示しないビーム整形手段から、走査方向に幅が広く偏
平なしかも平行に近い光ビームが入射している。12は
回転多面鏡//の反射ビームを受ける集光レンズ(ここ
ではf・θ レンズが使用されている)、13は被走査
面一(通常、平面である)sp付近に配置された凸円柱
レンズである。この凸円柱レンズ13は一方向にのみ収
束効果を有する光学素子の一つで、走査方向(X方向)
に対し直角な方向(y方向)にのみ屈折力を有するレン
ズである。Figure 1 is a schematic diagram of the optical system and the light beam between the rotating polygon mirror and the surface to be scanned in the light beam scanning device according to the present invention, where (b) is a top view and (-) is the center of scanning. III
I-plane view, (-) indicates @-plane view at the scanning end. In the figure, l/ is a rotating polygon mirror, and its reflection rfJ<mirror surface is 1
A light beam that is wide in the scanning direction, is not oblate, and is nearly parallel is incident from a beam shaping means (not shown). 12 is a condensing lens (an f/θ lens is used here) that receives the reflected beam from the rotating polygon mirror //, and 13 is a convex cylinder placed near the scanned surface (usually a flat surface) sp. It's a lens. This convex cylindrical lens 13 is one of the optical elements that has a convergence effect only in one direction, and is in the scanning direction (X direction).
This lens has refractive power only in the direction perpendicular to the direction (y direction).
本発明装置では、回転多面鏡//の反射面と被走査面s
pは、幾何光学的に共役罠なっており、集光レンズlコ
を通過し、走査幅の中央に向う光ビームは、円柱レンズ
13の手前で1方向に関し第1のビームウェストWIを
もち(X方向の集光レンズ/Jから被走査面BPに向い
一様に収束する)、その後、再び拡散する光ビームが、
円柱レンズ13により、被走査面SPで所望の大きさを
もった第一のビームウェストを生ずるように構成されて
いる。ここで、回転多面鏡/IによpfII向を受けた
光ビームが、走査中央から走査端へ移動するにつれて、
y方向の第1のビームウェストは弧を描き円柱レンズ1
3への入射点での1方向光東径は走査中央に比べ大とな
る。円柱レンズ13の実効的焦点距離は、光と一′ムが
斜めに入射することによシ輝くなるため、光ビームが走
査中央から離れるにつれて、円柱レンズ13通過後の光
ビームの第2のy方向ビームウェストは、被走査面sp
の前方に移動し、又、その位置におけるビームウェスト
径は、走査中央に比べて小さくなる。第2のy方向ビー
ムウェストを通過し九九ビームは、y方向に発散し、被
走査面spにおいて、光束径をやや増して被走査面に入
射する。In the device of the present invention, the reflecting surface of the rotating polygon mirror // and the scanned surface s
p is a conjugate trap in terms of geometric optics, and the light beam that passes through the condenser lens l and heads toward the center of the scanning width has a first beam waist WI in one direction before the cylindrical lens 13 ( The light beam uniformly converges toward the scanned surface BP from the condensing lens /J in the X direction), and then diffuses again.
The cylindrical lens 13 is configured to produce a first beam waist having a desired size on the scanned surface SP. Here, as the light beam received in the pfII direction by the rotating polygon mirror /I moves from the scanning center to the scanning end,
The first beam waist in the y direction draws an arc and the cylindrical lens 1
The east diameter of the one-directional light at the point of incidence on the light beam 3 is larger than that at the center of the scan. The effective focal length of the cylindrical lens 13 is determined by the fact that the light beam is incident obliquely, so as the light beam moves away from the scanning center, the second y of the light beam after passing through the cylindrical lens 13 increases. The direction beam waist is the scanned surface sp
, and the beam waist diameter at that position becomes smaller than that at the center of the scan. After passing through the second y-direction beam waist, the multiplication beam diverges in the y-direction and enters the scanned surface sp with a slightly increased luminous flux diameter.
ここで回転多面鏡l/、集光レンズフコ1円柱レンズ1
3、被走査面spの相対位置、焦点距離、この系へ入射
する光ビームの径、波面曲率半径等を適当に定めること
により、被走査面BP上で、スポットの1方向直径が全
走査幅にわ九ってほぼ一様になるようにすることができ
る。Here, rotating polygon mirror l/, condensing lens Fuco 1, cylindrical lens 1
3. By appropriately determining the relative position of the scanned surface sp, the focal length, the diameter of the light beam incident on this system, the radius of wavefront curvature, etc., the diameter of the spot in one direction can be adjusted to the entire scanning width on the scanned surface BP. The number of chickens can be made to be almost uniform.
光ビームの集束1発散の状況を知ったり・光ビーム全追
跡して所望のスポットを得たりするときに#考になる関
係式として、次のものがある。ただし、光源としてレー
ザを用い、光ビーム内の光強度分布がガウス型であると
する。The following is a relational expression that comes into consideration when understanding the convergence and divergence of a light beam and when tracking the entire light beam to obtain a desired spot. However, it is assumed that a laser is used as the light source and that the light intensity distribution within the light beam is Gaussian.
(1) 、 (2)式H,ビームウェストにおいて、波
兼λで半径(中心の強度のl/−になる位置で定義され
る)がω。である光ビームが、ビームウェストから2だ
け離れた位置にて光束半径ωと波面曲率半径R1与える
。逆に、ある位置で光ビームの半径ωと波面曲率半径R
が与えられれば、その位置から、次式に基づき、ビーム
ウェストまでノ距離2・、ビームウェストにおける光束
半径ωoヲ求めることができる。(1), (2) Equation H, in the beam waist, the radius (defined as the position where the central intensity is l/-) is ω in the wave and λ. A light beam has a radius of light flux ω and a radius of wavefront curvature R1 at a position 2 apart from the beam waist. Conversely, at a certain position, the radius ω of the light beam and the radius of wavefront curvature R
If is given, from that position, the distance to the beam waist 2· and the beam radius ωo at the beam waist can be determined based on the following equation.
”=/+(、、)” ・・・・・・(3)(3)式
より、Rが大きく、ωが小さいとき、ビームウェストは
、幾何光学的に定められる焦点ze =Rよりも手前に
生ずることがわかる。又、レンズのような屈折力をもつ
光学素子に入射し九九ビームは、屈折面で、波面曲率半
径のみ次式で示されるような変換を受ける。"=/+(,,)" ...(3) From equation (3), when R is large and ω is small, the beam waist is closer to the focal point ze = R determined by geometric optics. It can be seen that this occurs in Further, when a multiplication beam enters an optical element having refractive power such as a lens, only the wavefront radius of curvature undergoes transformation as shown by the following equation at the refractive surface.
l
n < −−−)=n’(L−’−z)・・・・−・(
5)r8 r8
ここで、”wtl′は屈折面前後の媒質の屈折率・rは
屈折面の曲率半径、S%S′ は屈折面前後における波
面曲率半径でおる。尚、(5)式の代りにレンズの焦点
距離fを用い次式で概略の計算を行うことも可能である
。l n < −−−)=n′(L−′−z)・・・・−・(
5) r8 r8 Here, "wtl' is the refractive index of the medium before and after the refracting surface, r is the radius of curvature of the refracting surface, and S%S' is the radius of curvature of the wavefront before and after the refracting surface. Furthermore, in equation (5), Alternatively, it is also possible to roughly calculate using the following equation using the focal length f of the lens.
このように、レーザから発した光ビームの収束1発散等
の状況は、(1)〜(6)式から知り得る。In this way, conditions such as convergence and divergence of the light beam emitted from the laser can be known from equations (1) to (6).
スポットの一様性(スポットE)形状が真円である必g
7!はなく、楕円でも良いが、その形状は走査方向にわ
たって一様であること)を得るための条件としては、所
望のスポット径により、円柱レンズ13と伎走f面sp
の距離が制限され、スポット径が小さくなるにつれて、
円柱レンズ13が被走査面spに近いことが要求される
。Spot uniformity (spot E) must be perfectly circular
7! The conditions for obtaining a cylindrical lens 13 and the scanning f-plane sp according to the desired spot diameter are as follows:
As the distance of the spot becomes smaller and the spot diameter becomes smaller,
The cylindrical lens 13 is required to be close to the scanned surface sp.
次に具体的な実施例を示す。Next, specific examples will be shown.
実施例 /
光源・・・H・−N・レーザ
集光レンズ・・・t−3to、(t・0レンズ)円柱レ
ンズ・・・t=10゜
円柱レンズ・・・被走査面間圧ill 10.−21
w回転回転鏡への入射光束
y方向 光束半径=0.参λO関
y方向 波面曲率半径=j73りU
光源・・・H・−caレーザ
集光レンズ・・・f=3jOwa(f・θレンズ)円柱
レンズ・・・f=≠4’、4’/Iu円柱レンズ・・・
被走査面間距離 参1.!fru回転多面鏡への入射光
束
y方向 光束半径=0.260m5
y方向 波面曲率半径=10り0111上記実施例に対
して、集光レンズと円柱レンズとの間に第1のビームウ
ェストをもたない従来装置での特性は、次のとおりであ
る。Example / Light source: H・-N・Laser condenser lens: t-3to, (t・0 lens) Cylindrical lens: t=10° Cylindrical lens: Pressure between surfaces to be scanned ill 10 .. -21
w Light flux incident on rotating rotating mirror y direction Light flux radius = 0. Reference λO relation y direction Wavefront curvature radius = j73ri U Light source...H・-ca Laser condensing lens...f=3jOwa (f・θ lens) Cylindrical lens...f=≠4', 4'/ Iu cylindrical lens...
Distance between scanned surfaces Reference 1. ! Incident light flux to the fru rotating polygon mirror y direction Luminous flux radius = 0.260 m5 y direction Wavefront curvature radius = 10 The characteristics that the conventional device does not have are as follows.
光源・・・H・−N・レーザ
回転多面鏡への入射光束
1方向 光束半径=0.JO/wa
y方向 波面曲率半径=−311,,7ψ關(回転多面
鏡の前方にビームウェストラもつ)
集光レンズ・・・f=3j(hss(f・θレンズ)円
柱レンズ・・・f=jO□
円柱レンズ・・・被走査面間圧@ 16.1−間上記
データから明らかなように、本発明装置は、被走査面上
の入射点における光束半径が、従来装置に比べて格段に
優れている。、現実に、従来装置の光学系を主走査手段
とし、等速で移動する台に写真用印画紙t−J129付
け、文字記録全行ったところ、走査中央付近では、良好
な記録が得られたが、走査端では、線の太り、画像の切
れ等の劣化が生じた。これに対し、実施例/の光学系で
は、走査の全幅にわたって良好な記録が行われた。実施
例−2の光学系を露光システムとして、電子写真システ
ムに記録した所、全幅にわたって良好な記録が行われた
。Light source...H/-N/laser Incident light flux to rotating polygon mirror in one direction Light flux radius = 0. JO/way y direction Wavefront curvature radius = -311,, 7ψ angle (beam westra in front of rotating polygon mirror) Condensing lens... f = 3j (hss (f/θ lens) Cylindrical lens... f = jO In reality, when the optical system of a conventional device was used as the main scanning means, photographic paper T-J129 was attached to a table moving at a constant speed, and all characters were recorded, good results were obtained near the center of the scan. A record was obtained, but deterioration such as thick lines and image breakage occurred at the scanning edge.On the other hand, with the optical system of Example/1, good recording was made over the entire scanning width. When recording was performed on an electrophotographic system using the optical system of Example 2 as an exposure system, good recording was performed over the entire width.
尚、第を図にはビーム整形手段を示さなかったが、この
ビーム整形手段は、例えば、第2図及び第10図に示す
如く、レーザl≠からのレーザビームを受ける球面レン
ズによるビーム拡大手Rigと、ビーム拡大手段/j通
過後のレーザビームが入射する兼焦点円柱レンズ16及
び短焦点円柱レンズとから構成できる。又、第1/図に
示す如く、レーザ/Fから出射されたレーザビームを変
調器/Iを介して受ける単一の円柱レンズlりと、円柱
レンズlり通過後のレーザビームが入射する球面レンズ
でなるビーム拡大手段−20とからも構成できる。この
ような光束でもって回転多面鏡IIに光ビーム全入射す
る理由は、回転多面鏡//へ入射する光ビームの1方向
波面曲率半径が非常に大であシ、光r−五幅が小さいこ
とから、光路長が極端に長くなることを避ける丸めであ
る。更に、第1図等には、一方向にのみ収束効果をもつ
光学素子として円柱レンズを用いたが、第7λ図に示す
ように、凹面円筒反射鏡!Of用いてもよい。Note that although the beam shaping means is not shown in Figure 1, this beam shaping means is, for example, a beam expanding method using a spherical lens that receives the laser beam from the laser l≠, as shown in Figures 2 and 10. Rig, a double focus cylindrical lens 16 and a short focus cylindrical lens into which the laser beam after passing through the beam expanding means/j is incident. In addition, as shown in Figure 1, there is a single cylindrical lens that receives the laser beam emitted from the laser F via the modulator I, and a spherical surface that the laser beam enters after passing through the cylindrical lens. It can also be constructed from a beam expanding means 20 consisting of a lens. The reason why all the light beams are incident on the rotating polygon mirror II with such a luminous flux is that the radius of curvature of the wavefront in one direction of the light beam incident on the rotating polygon mirror // is very large, and the light r-5 width is small. Therefore, rounding is used to prevent the optical path length from becoming extremely long. Furthermore, although a cylindrical lens was used as an optical element having a convergence effect only in one direction in Fig. 1, etc., as shown in Fig. 7, a concave cylindrical reflecting mirror! Of may also be used.
以上詳細に説明し九ように、本発明では、回転多面鏡の
反射面と被走査面とが、集光レンズと円柱レンズから成
る光学系で、y方向に関して幾何光学的にほぼ共役とな
るようになし、これによって、回転多面鏡の九おれた角
誤差による走査ピッチむらの発生を防止すると同時に集
光レンズと円柱レンズ等との中間に波動光学的に定めら
れるy方向ビームラ再ストを形成し、これによって、被
走査面上でのスポットの大きさを一様とするものである
。これは、前述のように光′束の主光線の進行方向が幾
何光学的に定まるのに対し、光束の収束、発散が波動光
学的に定まることも利用した結果、可能となったもので
ある。又、本発明によれば、低nKで低コストの回転多
面鏡を用いることができ、かつ高価なトロイダルレンズ
を用いる必要が゛ない。したがって、走査による読取り
を行う装置あるいは記碌を行う装置として、優れた性能
のものを、低コストで構成することができる。As explained in detail above, in the present invention, the reflecting surface of the rotating polygon mirror and the scanning surface are an optical system consisting of a condensing lens and a cylindrical lens, and are almost geometrically conjugate in the y direction. This prevents the occurrence of scanning pitch unevenness due to angle errors of the rotating polygon mirror, and at the same time forms a y-direction beam ray rest determined by wave optics between the condenser lens and the cylindrical lens. , thereby making the spot size uniform on the scanned surface. This was made possible by taking advantage of the fact that, while the traveling direction of the chief ray of a light beam is determined by geometric optics as mentioned above, the convergence and divergence of the light beam is determined by wave optics. . Further, according to the present invention, a low-nK, low-cost rotating polygon mirror can be used, and there is no need to use an expensive toroidal lens. Therefore, a scanning reading device or a recording device with excellent performance can be constructed at low cost.
第1図は光ビーム走査装置の主要部の基本・的な構成図
、第2図は倒れ角誤差の説明図、第3図乃至第7図は従
来装置の説明図、第を図は本発明装置の構成図、第り図
乃至第11図はビーム整形手段の説明図、第1コ図は本
発明の他の実施例の説明図である。
≠〜r、i3.tt、i7.iり・・・円柱し、/ズλ
、l参・・・レーザ lj、λ0・・・ビーム拡大手
段it・・・変v4器 8P・・・被走査面特許
出願人 小西六写真工業株式会社
代理人升理士井14藤治Fig. 1 is a basic configuration diagram of the main parts of the light beam scanning device, Fig. 2 is an explanatory diagram of the tilt angle error, Figs. 3 to 7 are explanatory diagrams of the conventional device, and Fig. The configuration diagrams of the apparatus, Figures 1 to 11 are explanatory diagrams of the beam shaping means, and Figure 1 is an explanatory diagram of another embodiment of the present invention. ≠~r, i3. tt, i7. iri...cylindrical, /zu λ
, 1... Laser lj, λ0... Beam expansion means IT... Variable V4 8P... Scanned surface Patent applicant Roku Konishi Photo Industry Co., Ltd. Agent Masujii 14 Fujiji
Claims (5)
レンズを介して被走査面に与え、走査を行う光ビーム走
査装置において、前記光源と前記回転多面鏡との間に、
走査方向に幅が広く偏平な、しかも略平行な光ビームを
形成するビーム整形子IRを設けると共に、前記被走査
面付近に、走査方向に対し直角な方向にのみ光の収束効
果を有する光学素子を設け、更に、前記回転多面鏡の反
射面と被走査面とが幾何光学的共役関係にあるように構
成し、しかも、走査方向に対し直角力方向に関し、前記
集光レンズと前記光学素子の間に第1のビームウェスト
が生じ、前記被走査面付近で第2の′ビームウェストが
生じるように構成したことt%黴とする光ビーム走査装
置。(1) In a light beam scanning device that performs scanning by reflecting a light beam from a light source on a rotating polygon mirror and applying it to a scanned surface via a condensing lens, between the light source and the rotating polygon mirror,
A beam shaper IR that forms a wide, flat, and substantially parallel light beam in the scanning direction is provided, and an optical element that has a light convergence effect only in a direction perpendicular to the scanning direction is provided near the scanned surface. Further, the reflecting surface of the rotating polygon mirror and the surface to be scanned are configured to have a geometrically optical conjugate relationship, and furthermore, with respect to the direction of force perpendicular to the scanning direction, the condenser lens and the optical element An optical beam scanning device configured such that a first beam waist is generated between the two and a second beam waist is generated near the surface to be scanned.
とする%lFF請求の範囲第1項記載の光ビーム走査装
置。(2) The light beam scanning device according to claim 1, wherein the light beam is a laser beam.
向に亘って一様な円柱レンズ又は凹面反射鏡を用いたこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
光ビーム走査装置0(3) The light according to claim 1 or 2, characterized in that the optical element is a cylindrical lens or a concave reflecting mirror whose light convergence effect is uniform over the scanning direction. Beam scanning device 0
ーム拡大手段と、該ビーム拡大手段通過後の光ビームが
入射する長焦点円柱レンズ及び短焦点円柱レンズとから
成るものを用いたことt−特徴とする特許請求の範囲第
1項、′s2項又は5g3項記載の光ビームた査装置。(4) The beam shaping means includes a beam expanding means using a spherical lens, and a long focal length cylindrical lens and a short focal length cylindrical lens into which the light beam after passing through the beam expanding means is incident. A light beam scanning device according to claim 1, 's2 or 5g3.
、該円柱レンズ通過後の光ビームが入射する球面レンズ
でなる拡大手段とから成るものを用いたことt−特徴と
する特許請求の範囲第1項、第2項、又は第3項記載の
光ビーム走査装置。(5) The beam shaping means includes a single cylindrical lens and an enlarging means made of a spherical lens into which the light beam after passing through the cylindrical lens enters. The light beam scanning device according to item 1, item 2, or item 3.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56175541A JPS5876810A (en) | 1981-10-31 | 1981-10-31 | Light beam scanner |
US07/027,109 US4775205A (en) | 1981-10-31 | 1987-03-13 | Light-beam scanning apparatus having two beam waists |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56175541A JPS5876810A (en) | 1981-10-31 | 1981-10-31 | Light beam scanner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5876810A true JPS5876810A (en) | 1983-05-10 |
JPH049286B2 JPH049286B2 (en) | 1992-02-19 |
Family
ID=15997874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56175541A Granted JPS5876810A (en) | 1981-10-31 | 1981-10-31 | Light beam scanner |
Country Status (2)
Country | Link |
---|---|
US (1) | US4775205A (en) |
JP (1) | JPS5876810A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0573620U (en) * | 1983-10-10 | 1993-10-08 | オセ−ネーデルランド・ベー・ヴエー | Exposure device |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4916318A (en) * | 1986-12-16 | 1990-04-10 | Asahi Kogaku Kogyo K.K. | Scan type optical reader with changing beam waist position |
JPH02115814A (en) * | 1988-10-25 | 1990-04-27 | Dainippon Screen Mfg Co Ltd | Light beam scanning device |
US5015069A (en) * | 1989-02-17 | 1991-05-14 | Linear Instruments | Off axis rotation of diffraction grating |
JP2559898B2 (en) * | 1990-09-21 | 1996-12-04 | 大日本スクリーン製造株式会社 | Light beam scanning device |
KR0156490B1 (en) * | 1994-11-30 | 1998-12-15 | 이형도 | Optical scanning device |
US6341029B1 (en) * | 1999-04-27 | 2002-01-22 | Gsi Lumonics, Inc. | Method and apparatus for shaping a laser-beam intensity profile by dithering |
US8004664B2 (en) | 2002-04-18 | 2011-08-23 | Chang Type Industrial Company | Power tool control system |
US7073268B1 (en) | 2002-04-18 | 2006-07-11 | Black & Decker Inc. | Level apparatus |
US7369916B2 (en) | 2002-04-18 | 2008-05-06 | Black & Decker Inc. | Drill press |
US20060076385A1 (en) | 2002-04-18 | 2006-04-13 | Etter Mark A | Power tool control system |
US7359762B2 (en) | 2002-04-18 | 2008-04-15 | Black & Decker Inc. | Measurement and alignment device including a display system |
US20030233921A1 (en) | 2002-06-19 | 2003-12-25 | Garcia Jaime E. | Cutter with optical alignment system |
US7137327B2 (en) | 2002-10-31 | 2006-11-21 | Black & Decker Inc. | Riving knife assembly for a dual bevel table saw |
US7290474B2 (en) | 2003-04-29 | 2007-11-06 | Black & Decker Inc. | System for rapidly stopping a spinning table saw blade |
US7243440B2 (en) | 2004-10-06 | 2007-07-17 | Black & Decker Inc. | Gauge for use with power tools |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52153456A (en) * | 1976-06-16 | 1977-12-20 | Hitachi Ltd | Laser recording apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50334A (en) * | 1973-05-08 | 1975-01-06 | ||
JPS5488139A (en) * | 1977-12-26 | 1979-07-13 | Olympus Optical Co Ltd | Optical scanner using rotary polyhedral mirror |
-
1981
- 1981-10-31 JP JP56175541A patent/JPS5876810A/en active Granted
-
1987
- 1987-03-13 US US07/027,109 patent/US4775205A/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52153456A (en) * | 1976-06-16 | 1977-12-20 | Hitachi Ltd | Laser recording apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0573620U (en) * | 1983-10-10 | 1993-10-08 | オセ−ネーデルランド・ベー・ヴエー | Exposure device |
Also Published As
Publication number | Publication date |
---|---|
US4775205A (en) | 1988-10-04 |
JPH049286B2 (en) | 1992-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5876810A (en) | Light beam scanner | |
JP3164232B2 (en) | Flat field, telecentric optical system for scanning a light beam | |
US5392149A (en) | Polygonal mirror optical scanning system | |
US4123135A (en) | Optical system for rotating mirror line scanning apparatus | |
US4030806A (en) | Scanning optical system | |
JPH0456962B2 (en) | ||
EP0311656A1 (en) | Optical scanner. | |
US4796965A (en) | Optical scanning device | |
JPH0664251B2 (en) | Rotating mirror scanner | |
JPH07333540A (en) | Laser scanner device | |
CA1284046C (en) | Wobble correction by two reflections on a facet without bow | |
JPH05308483A (en) | Optical scanner and printer | |
JPH037082B2 (en) | ||
JPS5815767B2 (en) | Hikari Bee Musou Saho Seiko Gakukei | |
US4898437A (en) | Wobble correction by two reflections on a facet without bow | |
US4632499A (en) | Light beam scanning apparatus | |
JPH05307151A (en) | Method and device for deflection scanning | |
JPS628015Y2 (en) | ||
JPS5837617A (en) | Optical scanner | |
JPS6226733Y2 (en) | ||
EP0111333A1 (en) | Light beam scanning apparatus | |
JPS6265011A (en) | Light-beam scanning optical system | |
JPS597922A (en) | Light beam printer | |
JPS5820405B2 (en) | Hikari Bee Mususasouchi | |
JPS5872120A (en) | Scanning optical system |