[go: up one dir, main page]

JPS5871401A - Device for measuring minute displacement - Google Patents

Device for measuring minute displacement

Info

Publication number
JPS5871401A
JPS5871401A JP17165881A JP17165881A JPS5871401A JP S5871401 A JPS5871401 A JP S5871401A JP 17165881 A JP17165881 A JP 17165881A JP 17165881 A JP17165881 A JP 17165881A JP S5871401 A JPS5871401 A JP S5871401A
Authority
JP
Japan
Prior art keywords
measured
lasers
laser
beam splitter
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17165881A
Other languages
Japanese (ja)
Inventor
Teruhito Matsui
松井 輝仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17165881A priority Critical patent/JPS5871401A/en
Publication of JPS5871401A publication Critical patent/JPS5871401A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Instruments Using Mechanical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the minute displacement of an object to be measured highly accurately by combining two semiconductor lasers and a polarizing beam splitter, and measuring the frequency when the light outputs from the reverse surfaces of the lasers are varied by displacement. CONSTITUTION:Lenses 16 and 17 are provided between semiconductor lasers 11 and 12 and the polarizing beam splitter 13. The light beams from the reverse surfaces of the lasers 11 and 12 are received by light receiving elements 14 and 15. Laser light beams L1 and L2 from the lasers 11 and 12 are synthesized by the beam splitter 13 and irradiated on the object. The reflected light beam is recombined to the lasers 11 and 12 through the splitter 13 and the lenses 16 and 17. The laser outputs from the reverse sides are detected by the light receiving elements 14 and 15. When the object is displaced, wavering of the light output occurs. Since the frequency of the laser output is inversely proportional to the distance to the object, the frequency when the wavering occurs is measured, and the distance to the object is measured by a specified expression. Therefore the displacement of the body can be detected highly accurately.

Description

【発明の詳細な説明】 この発明は半導体レーザな用いた微小変位測定装置に関
するもので一被測定物の微小変位を高精度に測定できる
微小変位測定装置を提供することを目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a minute displacement measuring device using a semiconductor laser, and an object of the present invention is to provide a minute displacement measuring device that can measure minute displacements of an object to be measured with high precision.

第1図は半導体レーザを用いて微小変位を測定する手段
の原理的説明図である。同図において、(1)は半導体
レーザ、(2)は受光素子、(8)はレンズ、鼠は被測
定物でありS半導体レーザ(1)の主面からのレーザ光
りが被測定物Mに投射し・その反射光を上記半導体レー
ザ(1)に再結合させると、上記被測定物Mと半導体レ
ーザ間の往復伝搬時間に逆比例した周波数を基本周波数
とする光出力のゆらぎが生じる。
FIG. 1 is a diagram illustrating the principle of a means for measuring minute displacements using a semiconductor laser. In the figure, (1) is a semiconductor laser, (2) is a light receiving element, (8) is a lens, and the mouse is an object to be measured. When the projected and reflected light is recombined to the semiconductor laser (1), fluctuations occur in the optical output whose fundamental frequency is inversely proportional to the round-trip propagation time between the object to be measured M and the semiconductor laser.

つまり、光速を0、媒質の屈折率を司、半導体レーずと
被測定物証との距離をDとすると、上記レーず出力Pの
周波数fは となる。(ただし、M=1.2.・・・)、このため、
上記レーザ出力Pの周波#kfを計測すれば、上記路s
lD、したがって被測定物Mの変位が測定できることに
なる。
That is, assuming that the speed of light is 0, the refractive index of the medium is 0, and the distance between the semiconductor laser and the object to be measured is D, the frequency f of the laser laser output P is as follows. (However, M=1.2...), therefore,
If the frequency #kf of the laser output P is measured, the path s
1D, and therefore the displacement of the object to be measured M can be measured.

この発明は上述の原理に基づき、2つの半導体レーザと
偏光分離素子とを組み合せ使用することにより、被測定
物の微小変位を高精度に測定でき・るようにしたもので
ある。
The present invention is based on the above-mentioned principle and uses a combination of two semiconductor lasers and a polarization separation element to enable highly accurate measurement of minute displacements of an object to be measured.

以下、この発明の一実施例を図面にしたがって説明する
An embodiment of the present invention will be described below with reference to the drawings.

第6図において、0力、四は半導体レーザ、(至)は上
記両生導体レーザUυ、(ロ)からの互に垂直な直線偏
光をもつレーザ光:[Jl sIImを合成して被測定
物Mに照射させる偏光分離素子、たとえば偏光ビームス
プリッタである。に)、(至)は再結合時の各半導体レ
ーザ(9)、Hの反対面から出力された光な受光する受
光素子で、これら両者(9)、(2)で、出力検知手段
−を構成している。(ロ)、v)は各半導体レーザαυ
In Fig. 6, 0 power, 4 is the semiconductor laser, (to) is the above-mentioned amphibodiconductor laser Uυ, and (b) laser beams with mutually perpendicular linear polarization: [Jl sIIm are synthesized to produce the measured object M. A polarization beam splitter, such as a polarization beam splitter, is used to irradiate the beam. ) and (to) are light receiving elements that receive the light output from the opposite surface of each semiconductor laser (9) and H during recombination. It consists of (b) and v) are each semiconductor laser αυ
.

(ロ)と偏光ビームスプリッタ(至)との間に介在され
たレンズである。
This is a lens interposed between (b) and the polarizing beam splitter (to).

つぎに、上記構成の動作について説明する。Next, the operation of the above configuration will be explained.

半導体レーザαυ、四の各主面から出力された各レーザ
光In e Lmが偏光ビームスプリッタ(至)に入力
されると、これらのレーザ光”1 sI’lは上記偏光
ビームスプリッタ(ロ)で合成されて被測定物Mfl;
4A射される。被測定物Mで反射した光が再び上記偏光
ビームスプリッタ(至)ならびに各レンズ06)、(ロ
)を経て各半導体レーザ■)、0@に再結合されると、
各半導体レーザ(6)、(至)の反対面からのレーザ出
力は、受光素子−、lX51で取り出される。このとき
・各半4体レーザ(6)、鈎からのレーザ出力の周波数
(1次だけを考える)はそれぞれ f、c=□         ・・・(2)2n(j+
 + DM ) f雪=□                     
        ・・・ (8)2nCAm 十DM) で表わされる(第4回)。ここで、4*J!は各半導体
レーザU、aSから偏光ビームスプリッタの中心までの
距離、DMは偏光ビームスプリッタの中心からIII&
#定物Mに至るまでの距離である。(2) 、 (II
)式より、偏光ビームスプリッタの中心から被測定物M
までの距lIADMは次式のように与えられる。
When the laser beams In e Lm output from each main surface of the semiconductor lasers αυ and 4 are input to the polarizing beam splitter (to), these laser beams ``1 sI'l are input to the polarizing beam splitter (to). The synthesized object to be measured Mfl;
4A shot. When the light reflected by the object to be measured M passes through the polarizing beam splitter (to) and each lens 06), (b), and is recombined to each semiconductor laser (■), 0@,
Laser output from the opposite surface of each semiconductor laser (6), (to) is taken out by a light receiving element -, 1X51. At this time, the frequency of the laser output from each half-four body laser (6) and the hook (considering only the first order) is f, c = □ ... (2) 2n (j +
+ DM) f snow = □
... (8) 2nCAm 1DM) (4th session) Here, 4*J! is the distance from each semiconductor laser U, aS to the center of the polarizing beam splitter, and DM is the distance from the center of the polarizing beam splitter to III &
#This is the distance to the constant M. (2), (II
), from the center of the polarizing beam splitter to the object M
The distance lIADM is given by the following equation.

f鵞 AM   ft4 D1=□□        ・・・(4)f鵞 −f雪 従って、t、、t、&i既知であるので、’ls’lを
測定することによって、被測定物までの距l!!(変位
Ltll確に測定することができる。
f goose AM ft4 D1=□□ ... (4) f goose - f snow Therefore, since t, , t, &i are known, by measuring 'ls'l, the distance l to the object to be measured is obtained! ! (The displacement Ltll can be measured accurately.

なお、上記*m例では一各半導体レーザ(ロ)、(転)
における反対面からの光出力を受光する受光素°子α嚇
、(至)で出力検知手段−を構成したものを例に説明し
たが、各半導体レーザ(11) l (lli9におけ
る各端子電圧を検出する手段(図示せず)で上記出力検
知手段−をm戊してもよい。
In addition, in the *m example above, each semiconductor laser (b), (b)
The explanation has been given using an example in which the output detection means is composed of the light receiving element α which receives the optical output from the opposite surface of the semiconductor laser (11). The output detection means may be replaced by a detection means (not shown).

上記実施例による2つの半導体レーザの波長は同じでも
よいが、互いの彰響を避けるため、異なった波長のもの
な使用する方′が望しい。
Although the two semiconductor lasers according to the above embodiment may have the same wavelength, it is preferable to use lasers with different wavelengths in order to avoid mutual interference.

また−偏光分離素子(至)は偏光ビームスプリッタ以外
に、たとえば偏光プリズムであってもよい。
Furthermore, the polarization separation element (to) may be, for example, a polarization prism other than a polarization beam splitter.

以上のように、この発明は2つの半導体レーザと偏光ビ
ームスプリッタとを組み合せることにより、測定!11
度の高い微小変位測定装置を容易に得ることができる。
As described above, this invention enables measurement by combining two semiconductor lasers and a polarizing beam splitter! 11
A highly accurate micro displacement measuring device can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は半導体レーザな用いて被測定物の微小変位f:
測測定る手段の原理的説明図、第2図は第1図の半導体
レーザの光出力と周波数との関係図、第6図はこの発明
に係る微小変位測定装置の一例Sを示す平!j図、第4
図は第3図の装−における半導体レーザの光出力と周波
数との関係図である。 (11) 、四・・・半導体レーザ、−・・・偏光分離
素子、(ロ)、Qカ・・・レンズ、−・・・出力検知手
段、M・・・被測定物。 なお、図中同一符号は同一もしくは相当部分を示す。 代理人葛野信−(外1名) 第1図 第2図 11)d4jソ
Figure 1 shows the minute displacement f of the measured object using a semiconductor laser:
2 is a diagram showing the relationship between the optical output and frequency of the semiconductor laser shown in FIG. 1, and FIG. 6 is a diagram showing an example of the minute displacement measuring device S according to the present invention. Figure j, 4th
The figure is a diagram showing the relationship between the optical output of the semiconductor laser and the frequency in the apparatus of FIG. 3. (11) 4. Semiconductor laser, . . . Polarization separation element, (B) Q. Lens, . . . Output detection means, M. Object to be measured. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno (1 other person) Figure 1 Figure 2 11) d4j So

Claims (1)

【特許請求の範囲】[Claims] (1)2つの半導体レーザと、これら半導体レーザの主
面から出力された直線偏光の各レーザ光を合成して被測
定物に照射する偏光分離素子と、上記各半導体レーザと
上記偏光分離素子との間に介在されたレンズと一上記被
測定物からの反射光を受けた1起半導体レーザにおける
反対面からの光出力の変化もしくは該レーザの端子電圧
の変化を検出する出力検知手段とを具備した微小変位測
定装置。
(1) Two semiconductor lasers, a polarization separation element that combines linearly polarized laser beams output from the main surfaces of these semiconductor lasers and irradiates the object to be measured, and each of the semiconductor lasers and the polarization separation element. and an output detection means for detecting a change in the optical output from the opposite side of the single-chip semiconductor laser that receives the reflected light from the object to be measured or a change in the terminal voltage of the laser. Micro displacement measuring device.
JP17165881A 1981-10-24 1981-10-24 Device for measuring minute displacement Pending JPS5871401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17165881A JPS5871401A (en) 1981-10-24 1981-10-24 Device for measuring minute displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17165881A JPS5871401A (en) 1981-10-24 1981-10-24 Device for measuring minute displacement

Publications (1)

Publication Number Publication Date
JPS5871401A true JPS5871401A (en) 1983-04-28

Family

ID=15927292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17165881A Pending JPS5871401A (en) 1981-10-24 1981-10-24 Device for measuring minute displacement

Country Status (1)

Country Link
JP (1) JPS5871401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040344A1 (en) * 1996-04-23 1997-10-30 R.D.P. Electronics Ltd. Optical transducer, method and laser diode arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040344A1 (en) * 1996-04-23 1997-10-30 R.D.P. Electronics Ltd. Optical transducer, method and laser diode arrangement

Similar Documents

Publication Publication Date Title
US3768910A (en) Detecting the position of a surface by focus modulating the illuminating beam
US3847485A (en) Optical noncontacting surface sensor for measuring distance and angle of a test surface
JPH0379642B2 (en)
JP2746446B2 (en) Optical measuring device
JPS62233704A (en) Differential plane-mirror interferometer system
JPS5871401A (en) Device for measuring minute displacement
Minoshima et al. In-situ measurements of shapes and thicknesses of optical parts by femtosecond two-colour interferometry
JPS5948668A (en) fiber optic speedometer
US3419331A (en) Single and double beam interferometer means
JPS5887447A (en) High-precise measuring method for group refractive index
JPH03118477A (en) Laser doppler vibrometer using beam branching optical system
JP2573673B2 (en) Optical displacement measuring device of triangulation method
JPS60173429A (en) Method and device for measuring dispersion of polarized wave
JPH05107346A (en) Laser doppler speed meter
RU1796901C (en) Device for contact-free measuring items profile
JPS61221606A (en) Measuring instrument for fine displacement
JPS60261183A (en) Laser device
JPS63204182A (en) Laser Doppler velocity measurement method and device
JPH08261728A (en) Size-between-optical interfaces measuring apparatus
JPS6283604A (en) Displacement transducer
JP2024056589A (en) Optical rangefinder
JPH0593611A (en) Thickness measuring apparatus
JPH0536727B2 (en)
JP3350113B2 (en) Incident light amount monitor circuit for laser length measuring machine
JPH0291530A (en) Raman temperature sensor