JPS5870576A - semiconductor equipment - Google Patents
semiconductor equipmentInfo
- Publication number
- JPS5870576A JPS5870576A JP56169531A JP16953181A JPS5870576A JP S5870576 A JPS5870576 A JP S5870576A JP 56169531 A JP56169531 A JP 56169531A JP 16953181 A JP16953181 A JP 16953181A JP S5870576 A JPS5870576 A JP S5870576A
- Authority
- JP
- Japan
- Prior art keywords
- film
- aperture
- active layer
- substrate
- regions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
Landscapes
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
本発明は半導体装置に係9、特に化合物半導体よシなる
FETの改良に関する。
GaAsよシなるFETは従前においては第1図に示す
構造が用いられていえ、即ちクローム(Or)がドープ
されたGaA3よシなる半絶縁性基板1上に、シリコン
(Sl)がドープされたn型GaA3よシなる能動層2
をメサ状に形成し、その上にアルミニウム(AI)、
或いはチタン(T1)−白金(Pt)−命(Au)を
順次積層し九ゲート電極5と、金・ゲルマニウム合金(
AuGe)−金(Au)を積層したソース及びドレイン
電極4,4′を形成する。これらゲート電極3及びソー
ス、ドレイン電極4,4′はいずれも能動層2上よシ半
絶縁性基板1上に導出され、配線或いは引き出し電極を
形成する。
上記ゲート電Wi3におけるAI或いはT1はGaAs
基板とV3ットキ接触を形成し、またソース、ドレイン
電1i4におけるAuGe ij n ill GaA
s基板に対するオーミック接触材料である。従って両者
とも上述のように半絶縁性基板1表面に導出して配設し
ても何ら問題はないと目されていた。
しかし実際には上記構造では半絶縁基板への電子或いは
正孔の注入による!−的時特性不安定化現象(基板バイ
アス効果)・′を生じ、半導体装置の電気的特性に悪影
響を及ぼす。
そこでこの問題を解消する丸め第2図に示す構造が既に
提唱されている。この構造はソース及びドレイン電極を
、コンタクト電11K 5 、5’と引き出し配線6.
6′とに分割形成したものである。即ちコンタクト電極
5,5′は能動層2上にのみ形成され、引き出し配線6
.6′は上記コンタクト電極5゜5′上に開口を有する
絶縁膜7上に選択的に形成されて、上記開口内において
それぞれコンタクト電極5,5′と接続する。
かかる構造とすることによシ前述の基板バイアス効果の
発生は防止されたが、反面コンタクト電極5.5’及び
絶縁膜7に開口を形成する際の双方に対して位置合わせ
余裕を設けなければならず、そのため素子の微細化、高
密度化が困難である。
なおかかる問題はソース、ドレイン電極に限らず、例え
ば半絶縁性基板表面に形成された抵抗体の電極等、オー
ミック接触を形成するすべての電順諏下これらをオーミ
ック電極と総称する】において生じる。
本発明の目的は上記雌点を解消して素子を微細化し得る
化合物半導体よりなるFETの改良された構造を提供す
ることにあり、この目的は本発明において、オーミック
電極を能動層上に設けられた絶縁膜の開口内より前記絶
縁膜上に導出し、絶縁性若しくは牛絶縁性基板には非接
触となるように構成することにより達成される。
以下本発明の一実施例を第5図の要部断面図により説明
する。
第3図に)に示すように、GaA3よシなる半絶縁性基
板1上に化学気相成長法(CYD)法により二酸化シリ
コン(S10□)膜11を凡そ4000 [久]の厚さ
に形成し、次にこれを選択的に除去して開口12を設け
、該開口12部にイオン注入法によシシリコン(Sl)
を注入し、約850[’C]の温度で凡そ15The present invention relates to semiconductor devices, and particularly to improvements in FETs made of compound semiconductors. Conventionally, FETs made of GaAs have the structure shown in FIG. 1, in which a semi-insulating substrate 1 made of GaA3 doped with chromium (Or) is doped with silicon (Sl). Active layer 2 made of n-type GaA3
is formed into a mesa shape, and on top of that, aluminum (AI),
Alternatively, titanium (T1) - platinum (Pt) - aluminum (Au) are sequentially laminated to form a nine-gate electrode 5, and a gold-germanium alloy (
Source and drain electrodes 4 and 4' made of laminated layers of AuGe) and gold (Au) are formed. These gate electrode 3 and source and drain electrodes 4, 4' are all led out onto the active layer 2 and onto the semi-insulating substrate 1, forming wiring or lead-out electrodes. AI or T1 in the gate electrode Wi3 is GaAs
AuGe ij n ill GaA to form the V3 contact with the substrate and also the source and drain electrodes 1i4
It is an ohmic contact material to the s-substrate. Therefore, it was considered that there would be no problem even if both of them were led out and disposed on the surface of the semi-insulating substrate 1 as described above. However, in reality, in the above structure, electrons or holes are injected into the semi-insulating substrate! - Occasional characteristic instability phenomenon (substrate bias effect) occurs, which adversely affects the electrical characteristics of the semiconductor device. Therefore, a rounding structure shown in FIG. 2 has already been proposed to solve this problem. This structure connects the source and drain electrodes to the contact electrodes 11K 5 , 5' and the lead wiring 6.
6'. That is, the contact electrodes 5, 5' are formed only on the active layer 2, and the lead wiring 6
.. 6' is selectively formed on the insulating film 7 having an opening above the contact electrode 5.5', and is connected to the contact electrodes 5 and 5', respectively, within the opening. By adopting such a structure, the occurrence of the substrate bias effect described above was prevented, but on the other hand, alignment margin must be provided for both the contact electrode 5.5' and the insulating film 7 when forming the opening. Therefore, it is difficult to miniaturize and increase the density of elements. This problem occurs not only in source and drain electrodes, but also in all electrodes that form ohmic contact, such as resistor electrodes formed on the surface of a semi-insulating substrate, which are collectively referred to as ohmic electrodes. An object of the present invention is to provide an improved structure of an FET made of a compound semiconductor that can solve the above female point and miniaturize the device. This is achieved by leading out onto the insulating film from within the opening of the insulating film and making no contact with the insulating or insulating substrate. An embodiment of the present invention will be described below with reference to a cross-sectional view of the main parts in FIG. As shown in Fig. 3), a silicon dioxide (S10□) film 11 is formed to a thickness of approximately 4000 μm on a semi-insulating substrate 1 made of GaA3 by chemical vapor deposition (CYD). Next, this is selectively removed to form an opening 12, and silicon (Sl) is injected into the opening 12 by ion implantation.
was injected and heated at a temperature of about 850 ['C] for about 15 minutes.
【分】ア
ニーμを施こして、ドーズ量的1X lo’[ag−”
]、平均斜影飛程が約500[X]のn型の能動層2を
形成する。なお10は上述の如く形成され九素子基板を
示す。
次いで上記Sin、 $ 11を一旦除去し、同図(至
)に示すように再び厚さ約6000[minutes] Apply Annie μ to obtain a dose of 1X lo' [ag-”
], an n-type active layer 2 having an average oblique range of about 500 [X] is formed. Note that 10 indicates a nine-element substrate formed as described above. Next, the above Sin, $ 11 is removed once, and the thickness is about 6000 mm again as shown in the same figure (towards).
【′A】08102
膜13を形成し、これを選択的に除去して開口12とほ
ぼ同じ位置に開口14を設ける。次いでスパッタ法及び
リアクティブイオンエッチ法等を用いて上記開口14内
にTiWと81の混合金属よりなるゲート電極15を形
成する。なお’r1w−sxよりなるゲート電極15は
GaAsとはショットキ接触を形成するので、図示はし
ていないが能動層2の外即ち半絶縁性基板1表面に延長
導出しても差支えない。
次いで上′E3sio2膜16及びゲート電極15をマ
スクとして能動層2の表面を露呈せる部分にイオン注入
法によりSlを注入し、n領域16.16’を形成する
。n+型領領域1616’のドーズ量は約1.7 X
10”[aM−”]、平均斜影飛程は約1500[X]
とする。
上記fI+型領域16.16’はソース及びドレイン領
域であって、上述の製造工程によれば、ゲート電極15
と自己整合して形成される。なおここまでの工程は従来
と変る所はない。
次いで上記Sin、@15を除去し、同図(0)に示す
ように素子基板10上にSin、 * 17を約400
0['A]08102
A film 13 is formed and selectively removed to provide an opening 14 at approximately the same position as the opening 12. Next, a gate electrode 15 made of a mixed metal of TiW and 81 is formed in the opening 14 using a sputtering method, a reactive ion etching method, or the like. Note that since the gate electrode 15 made of 'r1w-sx forms a Schottky contact with GaAs, it may be extended to the outside of the active layer 2, that is, to the surface of the semi-insulating substrate 1, although not shown. Next, using the upper E3sio2 film 16 and the gate electrode 15 as masks, Sl is implanted into the exposed surface of the active layer 2 by ion implantation to form n regions 16 and 16'. The dose of the n+ type region 1616' is approximately 1.7X
10"[aM-"], average oblique range approximately 1500 [X]
shall be. The fI+ type regions 16 and 16' are source and drain regions, and according to the manufacturing process described above, the gate electrode 15
It is formed by self-alignment with. Note that the process up to this point is no different from the conventional process. Next, the above Sin,@15 is removed, and as shown in FIG.
0
【久】の厚さに形成する。
次いで同図向に示すように上記sto、s 17’を選
択的に除去して、ソース及びドレイン領域16゜16′
上に開口18.18’を設ける。
次いで蒸着法及びイオンミリング法等により、凡そ20
0[X]の厚さのAuGe合金層とその上に約5ooo
(ilの厚さのAu層を選択的に被着せしめ、約450
[”O]の温度で加熱処理を施こすことによシ、上記開
口18.18’内に露呈せるソース及びドレイン領域1
6.16’とオーミック接触をなし、且つSiO!膜1
7上に導出されソース及びドレイン電41ii19i9
’を形成する。
以上により得られ九本発明に係る半導体装置は、従来装
置Form to a thickness of [ku]. Next, as shown in the same figure, the sto and s 17' are selectively removed to form source and drain regions 16° and 16'.
An opening 18.18' is provided at the top. Then, by vapor deposition method, ion milling method, etc., about 20
0[X] thick AuGe alloy layer and about 5ooo on top of it
(selectively depositing an Au layer with a thickness of about 450 il)
By performing heat treatment at a temperature of ["O], the source and drain regions 1 are exposed in the openings 18 and 18'.
6.16' and in ohmic contact with SiO! Membrane 1
7 and the source and drain voltages 41ii19i9
' to form. The semiconductor device according to the present invention obtained as described above is similar to the conventional device.
【第2図参照】におけるコンタクト電極5.5′と引
き出し配線6,6′とからなるオーミック電極から、コ
ンタクト電極5.5′を取シ除含引き出し配線6,6′
にコンタクト電極を兼ねさせるようにしたものである。
かかる構造とすることによシ本発明の半導体装置はコン
タクト電極5.5′を形成するための位置合わせ余裕が
不要となり、素子が微細化される。
例えば、ゲート電極15.開口18.18’の寸法をそ
れぞれ2The contact electrode 5.5' is removed from the ohmic electrode consisting of the contact electrode 5.5' and the lead wires 6, 6', including the lead wires 6, 6' in [See Figure 2].
The electrode also serves as a contact electrode. By adopting such a structure, the semiconductor device of the present invention does not require a positioning margin for forming the contact electrodes 5, 5', and the element can be miniaturized. For example, gate electrode 15. The dimensions of the openings 18 and 18' are each 2
【μm】、また位置合わせ余裕も各2[μm], and the alignment margin is 2 each.
【μm】
とした場合、能動層の幅は従来装置においては26[μm]
In this case, the width of the active layer is 26 in the conventional device.
【μ
m】必要であったのが、本実施例では18[μ
m] In this example, 18
【μm】とな
り、70[μm], which is 70
【%】弱に削減される。
なお本発明は上記一実施例に限定されるものではなく、
更に種々変形して実施できる。
例えば前記一実施例では絶縁膜17をゲート電極15を
覆うように形成したが、これを反対にして、第4図に示
すようにゲート電極15もオーミック電[19,19’
と同じく絶#l117に設けた開口内において能動層2
と接触し、該開口内より絶縁膜17上に導出した構造と
してもよく、ゲートの構造は本発明を限定するものでは
ない。
を九使用する化合物半導体の種類、或いはゲート電極材
料、オーミック電極材料、及び製造方法等も適宜選択し
得るものである。
以上説明した如く本発明によれは半導体装置のパターン
を微細化することが可能となり、従って化合物半導体集
積回路装置を微細化、高密度化し得る。[%] Slightly reduced. Note that the present invention is not limited to the above embodiment,
Furthermore, various modifications can be made. For example, in the above-described embodiment, the insulating film 17 was formed to cover the gate electrode 15, but this was reversed, and as shown in FIG.
In the same manner as above, the active layer 2 is
The gate may have a structure in which it is brought into contact with the insulating film 17 from inside the opening, and the structure of the gate is not limited to the present invention. The type of compound semiconductor used, gate electrode material, ohmic electrode material, manufacturing method, etc. can be selected as appropriate. As explained above, according to the present invention, it is possible to miniaturize the pattern of a semiconductor device, and therefore, it is possible to miniaturize and increase the density of a compound semiconductor integrated circuit device.
第1図及び第2図は従来の半導体装置を説明する九めの
要部断面図、s6図及び第4図は本発明の一実施例及び
他の変形例を示す要部断面図である。
図において、1は絶縁性基板または半絶縁性基板、2は
能動層、15はゲート電極、16.16’はソース及び
ドレイン領域、17,711は絶縁膜、18.18’は
開口、19.19’はオーミック電極を示す。
第3図
第4図FIGS. 1 and 2 are ninth sectional views of essential parts for explaining a conventional semiconductor device, and FIGS. 6 and 4 are sectional views of essential parts showing one embodiment and other modifications of the present invention. In the figure, 1 is an insulating substrate or a semi-insulating substrate, 2 is an active layer, 15 is a gate electrode, 16.16' is a source and drain region, 17, 711 is an insulating film, 18.18' is an opening, 19. 19' indicates an ohmic electrode. Figure 3 Figure 4
Claims (1)
半導体よシなる能動層が選択的に形成されてなる素子基
板上に、前記能動層表面とショットキ接触を形成せるゲ
ート電極と、前記能動層表面に開口を有する絶縁層と、
前記開口内において前記能動層とオーミック接触を形成
し且つ前記絶縁膜上に導出され九オーミック電極とを具
備してなることを特徴とする半導体装置。On an element substrate comprising an insulating substrate or a semi-insulating substrate and an active layer made of a compound semiconductor selectively formed on the surface thereof, a gate electrode that forms a Schottky contact with the surface of the active layer, and the active layer. an insulating layer having an opening on its surface;
A semiconductor device comprising: a 9-ohmic electrode that forms ohmic contact with the active layer within the opening and is led out onto the insulating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56169531A JPS5870576A (en) | 1981-10-22 | 1981-10-22 | semiconductor equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56169531A JPS5870576A (en) | 1981-10-22 | 1981-10-22 | semiconductor equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5870576A true JPS5870576A (en) | 1983-04-27 |
JPH0353773B2 JPH0353773B2 (en) | 1991-08-16 |
Family
ID=15888217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56169531A Granted JPS5870576A (en) | 1981-10-22 | 1981-10-22 | semiconductor equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5870576A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62123775A (en) * | 1985-11-22 | 1987-06-05 | Nec Corp | Field effect transistor |
-
1981
- 1981-10-22 JP JP56169531A patent/JPS5870576A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62123775A (en) * | 1985-11-22 | 1987-06-05 | Nec Corp | Field effect transistor |
Also Published As
Publication number | Publication date |
---|---|
JPH0353773B2 (en) | 1991-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3994758A (en) | Method of manufacturing a semiconductor device having closely spaced electrodes by perpendicular projection | |
JPS5950567A (en) | Manufacture of field effect transistor | |
JPH03185739A (en) | Self-aligning t gate hemt | |
JPH02299245A (en) | Method for manufacturing field effect transistors | |
JP3210657B2 (en) | Heterojunction bipolar transistor | |
JPS6164171A (en) | Method for manufacturing semiconductor devices | |
JPS5870576A (en) | semiconductor equipment | |
US3275912A (en) | Microelectronic chopper circuit having symmetrical base current feed | |
JPS61240684A (en) | Schottky-type field effect transistor and manufacture thereof | |
JPS6195570A (en) | Junction gate field effect transistor | |
JP2868771B2 (en) | Method of forming alignment mark for electron beam exposure | |
JPS6112079A (en) | Method for manufacturing semiconductor devices | |
JPS5898979A (en) | Manufacture of fet | |
JPS6161549B2 (en) | ||
JPS6037173A (en) | Method of manufacturing field effect transistor | |
JPS5833714B2 (en) | Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor | |
JPS6155967A (en) | Manufacture of field-effect transistor | |
JPS616870A (en) | Manufacture of field-effect transistor | |
JP3153560B2 (en) | Method for manufacturing semiconductor device | |
JPH02231732A (en) | Semiconductor device and manufacture thereof | |
JPS6216574A (en) | Manufacture of field-effect transistor | |
JPS5955072A (en) | Manufacture of semiconductor device | |
JPH0360067A (en) | Manufacturing method of semiconductor device | |
JPS58112372A (en) | Manufacture of semiconductor device | |
JPH0783026B2 (en) | Method for manufacturing field effect transistor |