[go: up one dir, main page]

JPS5870004A - Gas turbine wheel - Google Patents

Gas turbine wheel

Info

Publication number
JPS5870004A
JPS5870004A JP16880181A JP16880181A JPS5870004A JP S5870004 A JPS5870004 A JP S5870004A JP 16880181 A JP16880181 A JP 16880181A JP 16880181 A JP16880181 A JP 16880181A JP S5870004 A JPS5870004 A JP S5870004A
Authority
JP
Japan
Prior art keywords
cooling
wheel
groove
grooves
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16880181A
Other languages
Japanese (ja)
Inventor
Sadao Umezawa
梅沢 貞夫
Kensho Matsuda
松田 憲昭
Masayuki Nakamura
中村 真行
Fukuju Terunuma
照沼 福寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16880181A priority Critical patent/JPS5870004A/en
Publication of JPS5870004A publication Critical patent/JPS5870004A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve the riliability of strength against centrifugal stress and thermal stress, by providing a cooling groove on the inner diameter side of a wheel in stead of in the bottom of a groove for inserting a moving vane, and drilling a cooling hole connecting to the side surface of the wheel, in a moving vane cooling apparatus. CONSTITUTION:Wheels 1a, 1b are joined by a bolt 3, and a slit 10 is provided in the joined surfaces. Cooling grooves 12a, 12b are circumferentially provided in the outer circumferences of the wheels 1a, 1b, and cooling holes 11a, 11b are drilled from the side surfaces of the wheels 1a, 1b. Cooling air enters the cooling holes 11a, 11b through the slit 10, is distributed throughout the circumference uniformly via the cooling grooves 12a, 12b and is led via cooling grooves 13a, 13b into the moving vanes. Thus since the cooling holes 11a, 11b are positioned more inner circumferential positions than in the case of the prior art, the riliability of strength against centrifugal stress and thermal stress can be improved, and the high circumferential speed can be readily effected.

Description

【発明の詳細な説明】 本発明はガスタービンのホイールに係り、特に、空冷式
動翼を備えたガスタービンに好適なホイールに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wheel for a gas turbine, and particularly to a wheel suitable for a gas turbine equipped with air-cooled rotor blades.

空冷式動翼を備えたガスタービンで、冷却用空気を動翼
に導入する方法には、動翼のダブテール(動翼をホイー
ルに固定するだめの凸起)部に冷却空気を導びき、ダブ
テールにあけた孔から動翼内部に導入する方法が多く用
いられる。ダブテール部に冷′却空気を導び〈方法とし
て従来試みられている方法は大別して3つある。・ 第1図は1台のガスタービンの中にその3つの方法を採
用した例を示す。まず、第1の方法は(a)のようにホ
イール11の外周側面にカバー21をポルト22で取付
け、カバー21とケーシング23の間をシールし、カバ
ー21に設けた冷却孔20から動翼4.の根元に設けた
冷却溝13.に冷却空気を導びくものである。
In gas turbines equipped with air-cooled rotor blades, cooling air is introduced into the rotor blades by guiding the cooling air to the dovetail (a protrusion that secures the rotor blade to the wheel) of the rotor blade. A method is often used in which the rotor is introduced into the rotor blade through a hole drilled in the rotor blade. There are three methods that have been attempted in the past for introducing cooling air into the dovetail portion. - Figure 1 shows an example in which these three methods are adopted in one gas turbine. First, the first method is to attach the cover 21 to the outer circumferential side of the wheel 11 with a port 22 as shown in (a), seal between the cover 21 and the casing 23, and then connect the rotor blades to the cooling holes 20 provided in the cover 21. .. Cooling groove provided at the base of 13. It guides cooling air to the

この方式ではカバー21がホイール1.の外径にほぼ等
しい平均径の円輪に近い構造となるため、遠心応力が大
きく、ガスタービンの高周速化を図る上で障害に々ると
いう欠点がある。
In this method, the cover 21 is attached to the wheel 1. Since the structure is close to a circular ring with an average diameter approximately equal to the outer diameter of the gas turbine, there is a drawback that centrifugal stress is large, which is an obstacle to increasing the circumferential speed of the gas turbine.

第2の方法は(b)に示すように、ホイール1.とホイ
ール1bの外周付近にアーム16を張り出し、両アーム
間にシ・−ル板17を挿入してシールを行ない、アーム
16の付根から斜めにあけた冷却孔19を通して冷却溝
131に冷却空気を導びくものである。冷却空気はホイ
ール1.0ボルト3とボルト孔のすき間を通り、ホイー
ル1.とホイール1bとの間のトルク伝達を目的とした
カップリングのアーム25に設けられた冷却孔18を経
て、冷却孔19に導入される。
The second method is as shown in (b), in which the wheels 1. The arm 16 is extended near the outer periphery of the wheel 1b, and a seal plate 17 is inserted between both arms for sealing, and cooling air is introduced into the cooling groove 131 through a cooling hole 19 diagonally opened from the base of the arm 16. It is something that guides you. The cooling air passes through the gap between the wheel 1.0 bolt 3 and the bolt hole, and then passes through the gap between the wheel 1.0 bolt 3 and the bolt hole. It is introduced into the cooling hole 19 through the cooling hole 18 provided in the arm 25 of the coupling for the purpose of torque transmission between the engine and the wheel 1b.

この方式では冷却孔19を動翼4.の数だけ設けねばな
らず、機種によっては100本近くの孔が必要になるだ
め、加工時間が多く々るという欠点がある。また冷却孔
19を斜めにあけなければならないだめ、冷却孔19と
冷却溝13.との交点に鋭角部が形成され、遠心応力、
熱応力に対する応力集中が大きくなって、起動停止の繰
り返しによる疲労破壊が生じ易いという欠点がある。
In this method, the cooling holes 19 are connected to the rotor blades 4. Depending on the model, nearly 100 holes must be provided, and the machining time is often long. Also, since the cooling holes 19 must be opened diagonally, the cooling holes 19 and the cooling grooves 13. An acute angle is formed at the intersection with the centrifugal stress,
There is a drawback that stress concentration due to thermal stress becomes large and fatigue failure is likely to occur due to repeated starting and stopping.

第3の方法は(Oに示すように、ホイール15と1、の
間にスペーサ2をはさみ、スペーサ外周とホイール1b
及び1゜の外周のフック15.及び15eとの間でシー
ルを行ない、スペーサ2に設けたスリット10を通して
冷却空気を冷却溝13゜に導入するものである。冷却空
気はホイール]6の中心部に設けられた穴を通してスリ
ット10に導びかれる。この方式ではスペーサ2の外周
はホイール1.の冷却溝13.の位置に達しなければな
らず、外径が必然的に大きく々リガスタービンの高周速
化にとって障害になるとハう欠点がある。
The third method (as shown in O) is to sandwich the spacer 2 between the wheels 15 and 1, and connect the outer periphery of the spacer to the wheel 1b.
and a hook 15 with a circumference of 1°. and 15e, and cooling air is introduced into the cooling groove 13° through the slit 10 provided in the spacer 2. Cooling air is guided to the slit 10 through a hole provided in the center of the wheel 6. In this method, the outer periphery of the spacer 2 is the wheel 1. Cooling groove 13. This has the drawback that the outer diameter is necessarily large and becomes an obstacle to increasing the circumferential speed of the gas turbine.

本発明の目的は遠心応力及び熱応力に対して強度信頼性
が高く、ガスタービンの高周速化を可能とする冷却空気
導入方式を備えだガスタービンホイールを提供するにあ
る。
An object of the present invention is to provide a gas turbine wheel that has high strength reliability against centrifugal stress and thermal stress and is equipped with a cooling air introduction system that enables a high peripheral speed of the gas turbine.

本発明ではホイールの外周に1本または1本以上の円周
方向溝を設け、この溝をホイールの内周側へ必要な深さ
まで加工し、この溝とホイールの側面を連絡する孔を設
けることによって前記目的を達成する。回転する円板を
厚さ方向に2枚に分割しても、円板の応力はほとんど変
化しないことから容易に理解されるように、ホイールの
外周に円周方向の深い溝を設けても、応力にはほとんど
影響が無い。動翼を固定するためにホイールに設けられ
る溝(以下ダブテールと呼ぶ)がホイールの軸方向に加
工されている場合は、本発明による円周方向溝がダブテ
ールを軸方向に分割することになる。しかし、この場合
でもダブテールの応ブノは、ダブテールの軸、方向幅が
溝によって減少する割合だけ増加するのみであるから、
溝の幅を小さくすれば、はとんど影響が無い。一方、ホ
イーJl。
In the present invention, one or more circumferential grooves are provided on the outer periphery of the wheel, this groove is machined to the required depth on the inner periphery of the wheel, and a hole is provided that connects this groove with the side surface of the wheel. The above objective is achieved by: It is easy to understand that even if a rotating disk is divided into two pieces in the thickness direction, the stress in the disk hardly changes. Even if a deep groove is provided in the circumferential direction on the outer circumference of the wheel, It has almost no effect on stress. If the grooves (hereinafter referred to as dovetails) provided in the wheel for fixing the rotor blades are machined in the axial direction of the wheel, the circumferential grooves according to the invention will divide the dovetails in the axial direction. However, even in this case, the width of the dovetail increases only by the proportion that the axial width of the dovetail is reduced by the groove.
If the width of the groove is made small, there will be almost no effect. On the other hand, Hoi Jl.

側面から円周方向溝に連絡する孔は、動翼の枚数に関係
なく任意の個数とすることができるので、冷却空気の流
量などを考慮した必要最小限の数で良い。円周方向溝を
必要な位@まで深くすることことができるので、連絡の
だめの孔はホイー/L、軸に対し傾斜させる必要が無い
と同時に、従来技術であるスペーサを併用する場合には
、スペーサ外径を小さくすることができる。
The number of holes communicating with the circumferential grooves from the side surface can be any number regardless of the number of rotor blades, so the number may be the minimum number necessary in consideration of the flow rate of cooling air, etc. Since the circumferential groove can be made as deep as required, there is no need for the connecting hole to be inclined with respect to the wheel/L axis.At the same time, when using the conventional spacer, The outer diameter of the spacer can be reduced.

本発明の要点を更に詳細に記述するために以下本発明の
実施例を図面によって説明する。
In order to describe the main points of the present invention in more detail, embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明をアームとシール板によって冷却空気の
シールを行なうガスタービンホイールに適用した場合の
一実施例である。ホイール1.。
FIG. 2 shows an embodiment in which the present invention is applied to a gas turbine wheel that seals cooling air using an arm and a seal plate. Wheel 1. .

1、はボルト3によって結合され、結合面にはスリット
10が設けられる。ホイール1.、lbの外周にはダブ
テール5.、5bが軸方向に加工され、動翼4..4b
がダブテールに挿入される。
1 are connected by bolts 3, and a slit 10 is provided on the joining surface. Wheel 1. , dovetail 5. on the outer periphery of lb. , 5b are machined in the axial direction, and the rotor blades 4. .. 4b
is inserted into the dovetail.

ダブテール5−.5bの底には冷却溝131゜13、が
設けられ、その両端は動翼4−.4bのダブテール部に
設けられた突起によって塞がれる。
Dovetail 5-. A cooling groove 131°13 is provided at the bottom of the rotor blade 4-. It is closed by a protrusion provided on the dovetail portion of 4b.

ホイール1.、lbには冷却溝13..13bよりも内
径側にアーム16..16−が張り出し、両アームの間
にシール板17が挿入されて冷却空気の洩れをシールす
る。ホイーくし1.、Lbの外周に冷却溝12−.12
bが円周方向に設けられ、ホイールla、lbの側面か
ら冷却溝12.。
Wheel 1. , lb has a cooling groove 13. .. The arm 16. is located on the inner diameter side of the arm 13b. .. 16- extends, and a sealing plate 17 is inserted between both arms to seal the leakage of cooling air. Wheel comb1. , Lb are provided with cooling grooves 12-. 12
cooling grooves 12.b are provided in the circumferential direction, and cooling grooves 12.b are provided from the side surfaces of the wheels la, lb. .

12、に向って複数個の冷却孔1.1.、llbがあけ
られる。冷却空気は圧縮機(図示せず)からホイール1
.、1bの中心孔及びスリン)10を経て、冷却孔11
.、llbに入り、冷却溝12゜13、で全周に均等に
分散されて、冷却溝13.。
12, a plurality of cooling holes 1.1. , llb is opened. Cooling air is supplied to wheel 1 from a compressor (not shown).
.. , the cooling hole 11 through the center hole of 1b and the sulin) 10.
.. , llb, and are evenly distributed around the entire circumference in the cooling grooves 12, 13, and the cooling grooves 13. .

13、から動翼内部に導びかれる。13, and is guided into the inside of the rotor blade.

ホイール1.の外周部を斜視図で表わすと、第3図のよ
うになる。冷却孔11.はダブテール1個に対して1個
設ける必要は無く、冷却空気の流量を考慮して必要な個
数膜ければよい。
Wheel 1. A perspective view of the outer periphery of is shown in FIG. 3. Cooling hole 11. It is not necessary to provide one film for each dovetail, and it is sufficient to provide as many films as necessary in consideration of the flow rate of cooling air.

本実施例によれば冷却孔11−、llbを冷却溝13.
.13bに向って斜めにあける必要がないため、孔の端
部が鋭角になることが避けられ、遠心応力、熱応力の繰
り返しに対する強度作頼性の高いホイールが得られる。
According to this embodiment, the cooling holes 11-, llb are connected to the cooling grooves 13.
.. Since it is not necessary to make the hole diagonally toward the hole 13b, the end of the hole can be avoided from having an acute angle, and a wheel with high strength reliability against repeated centrifugal stress and thermal stress can be obtained.

また冷却孔11.。Also, the cooling hole 11. .

11bの数が少なくて済むため加工時間が短縮できる。Since the number of 11b is small, processing time can be shortened.

第4図は本発明をスペーサによって冷却空気のシールを
行なうガスタービンに適用した場合の一実施例である。
FIG. 4 shows an embodiment in which the present invention is applied to a gas turbine in which cooling air is sealed by a spacer.

第2図と異なる点はホイールl。The difference from Figure 2 is the wheel l.

とホイール1bの間にスペーサ2が挿入され、スペーサ
2の側面にスリン)10..10bが設けられて、冷却
空気がこれらスリットを通って冷却孔11.、llbに
導びかれる点である。
10. A spacer 2 is inserted between the wheel 1b and the spacer 2, and the side surface of the spacer 2 is lined. .. 10b are provided so that cooling air passes through these slits to the cooling holes 11. , llb.

本実施例によれば冷却孔11.、llbの位置までスペ
ーサ2の外径を小さくすることができるので、スペーサ
2の遠心応力を軽減できるという効果がある。
According to this embodiment, the cooling holes 11. , llb, the outer diameter of the spacer 2 can be reduced to the position of .

第5図は本発明を円周方向にダブテール溝が加工された
ガスタービンホイールに適用した場合の一実施例を示す
。第2図と異る点はダブテール5.。
FIG. 5 shows an embodiment in which the present invention is applied to a gas turbine wheel having dovetail grooves formed in the circumferential direction. The difference from Figure 2 is the dovetail 5. .

5bが円周方向に加工されている点だけであるが、本実
施例においては冷却溝12..12bがダブテール5.
.5.を分断することがないので、ダブテール部の応力
増加が無いという効果がある。
The only difference is that the cooling grooves 12.5b are machined in the circumferential direction in this embodiment. .. 12b is a dovetail 5.
.. 5. Since there is no separation, there is an effect that there is no increase in stress at the dovetail portion.

本発明によれば冷却孔をホイールの軸方向にあけること
ができると同時に、冷却孔の位置を従来ヨリモホイール
の内周に近い位置に設けることができるので、遠心応力
及び熱応力に対して強度信頼性が高く、且つ高周速化の
容易なガスタービンホイールが得られるという優れた効
果がある。
According to the present invention, the cooling holes can be formed in the axial direction of the wheel, and at the same time, the cooling holes can be located close to the inner circumference of the conventional Yorimo wheel, so it is strong against centrifugal stress and thermal stress. This has the excellent effect of providing a gas turbine wheel that is highly reliable and can easily achieve high circumferential speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術の断面図、第2図は本発明の一実施例
を示すガスタービンの断面図、第3図は第2図の一部の
拡大斜視図、第4図は本発明の他の実施例を示すガスタ
ービンの断面図、第5図は本発明のさらに他の実施例を
示すガスタービンの断面図である。 1・・・ホイール、2・・・スペーサ、4・・・動翼〈
 5・・・ダブテール、11・・・冷却孔、12・・・
冷却溝。 ′イ9ヒリ 10 (艮)    (b)     (C)め2の 2 Jfy3r;EJ 第4 口 / ゲ、ら(i3 ど
FIG. 1 is a sectional view of a conventional technology, FIG. 2 is a sectional view of a gas turbine showing an embodiment of the present invention, FIG. 3 is an enlarged perspective view of a part of FIG. 2, and FIG. 4 is a sectional view of a gas turbine according to an embodiment of the present invention. FIG. 5 is a sectional view of a gas turbine showing still another embodiment of the present invention. 1... Wheel, 2... Spacer, 4... Moving blade
5... Dovetail, 11... Cooling hole, 12...
cooling groove. 'i9hiri10 (艮) (b) (C)Me2 no 2 Jfy3r;EJ 4th mouth / ge, ra (i3 do

Claims (1)

【特許請求の範囲】[Claims] 1、回転する円板状のホイールの外周に設けた円周方向
または軸方向の溝と、この溝と嵌合する凸起を持った複
数個の動翼と、この動翼の内部に設けられ、前記ホイー
ルの内径側から冷却空気を導入する冷却孔とからなる前
記動翼を冷却する装置において、前記ホイール外周に設
けた円周方向の冷却溝と、この冷却溝の底は前記動翼挿
入のだめの溝の底よりも前記ホイールの内径側になるよ
うにし、前記ホイールの側面を連結する複数個の冷却孔
とを設けたことを特徴とするガスターピンホイール。
1. A circumferential or axial groove provided on the outer periphery of a rotating disc-shaped wheel, a plurality of rotor blades having protrusions that fit into the grooves, and a rotor blade provided inside the rotor blade. , a device for cooling the rotor blade comprising a cooling hole for introducing cooling air from the inner diameter side of the wheel, a cooling groove in a circumferential direction provided on the outer periphery of the wheel, and a bottom of the cooling groove formed in the groove where the rotor blade is inserted. A gas star pin wheel characterized in that a plurality of cooling holes are provided so as to be closer to the inner diameter side of the wheel than the bottom of the groove of the nodule, and to connect side surfaces of the wheel.
JP16880181A 1981-10-23 1981-10-23 Gas turbine wheel Pending JPS5870004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16880181A JPS5870004A (en) 1981-10-23 1981-10-23 Gas turbine wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16880181A JPS5870004A (en) 1981-10-23 1981-10-23 Gas turbine wheel

Publications (1)

Publication Number Publication Date
JPS5870004A true JPS5870004A (en) 1983-04-26

Family

ID=15874728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16880181A Pending JPS5870004A (en) 1981-10-23 1981-10-23 Gas turbine wheel

Country Status (1)

Country Link
JP (1) JPS5870004A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169201U (en) * 1986-04-17 1987-10-27
JP2000227002A (en) * 1999-01-25 2000-08-15 General Electric Co <Ge> Turbine with sediment trap
JP2021134790A (en) * 2020-02-21 2021-09-13 メカニカル・ダイナミクス・アンド・アナリシス・エルエルシー Gas turbine and spacer disk for gas turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169201U (en) * 1986-04-17 1987-10-27
JP2000227002A (en) * 1999-01-25 2000-08-15 General Electric Co <Ge> Turbine with sediment trap
JP2021134790A (en) * 2020-02-21 2021-09-13 メカニカル・ダイナミクス・アンド・アナリシス・エルエルシー Gas turbine and spacer disk for gas turbine

Similar Documents

Publication Publication Date Title
US4507052A (en) End seal for turbine blade bases
US3728041A (en) Fluidic seal for segmented nozzle diaphragm
US3728042A (en) Axial positioner and seal for cooled rotor blade
US4752185A (en) Non-contacting flowpath seal
KR950006401B1 (en) Interlaid seal of turbomachine rotor
JPH02245581A (en) Labyrinth seal device
KR102599936B1 (en) Gas turbine ring assembly comprising ring segments having integrated interconnecting seal
JPS624536B2 (en)
JPS5925846B2 (en) Nozzle guide vane assembly for turbo equipment
US4347037A (en) Laminated airfoil and method for turbomachinery
JP3120849B2 (en) Axial rotor blade structure for compressor or turbine
JPH0416615B2 (en)
JPH0424523B2 (en)
US2848190A (en) Radial flow turbo-machines
JP2016160935A (en) Turbine bucket platform for controlling incursion losses
JPS62118033A (en) Assembly of disk and side blade of turbine
JPS5870004A (en) Gas turbine wheel
JPS6056882B2 (en) Impeller element of an inward radial flow gas turbine
US6726442B2 (en) Disc turbine inlet to assist self-starting
JPH11200810A (en) Labyrinth seal mechanism
JPS60252103A (en) Rotor of steam turbine
US12049906B2 (en) Pump apparatus
JPH023006B2 (en)
JP3285793B2 (en) Gas turbine rotor
JPS6123803A (en) Stator vane