[go: up one dir, main page]

JPS5868962A - Semiconductor memory storage - Google Patents

Semiconductor memory storage

Info

Publication number
JPS5868962A
JPS5868962A JP56167528A JP16752881A JPS5868962A JP S5868962 A JPS5868962 A JP S5868962A JP 56167528 A JP56167528 A JP 56167528A JP 16752881 A JP16752881 A JP 16752881A JP S5868962 A JPS5868962 A JP S5868962A
Authority
JP
Japan
Prior art keywords
gate
transistor
transistors
gate electrode
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56167528A
Other languages
Japanese (ja)
Inventor
Masao Taguchi
眞男 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56167528A priority Critical patent/JPS5868962A/en
Publication of JPS5868962A publication Critical patent/JPS5868962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Landscapes

  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (tt  発明の技術分野 本発明はスタチック型ランダムアクセスメモリーセルに
関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to static random access memory cells.

本発明はとくにMI8(義にはM2S)型トランジスタ
を用いた装置においてとくに有効であるがこれに限定さ
れるものではない。
The present invention is particularly effective in devices using MI8 (in M2S) type transistors, but is not limited thereto.

1m  従来技術と問題点 従来、スタチックmランダムアクセスメモリーセルはJ
[1図に示す如く交差接続された2つのトランジスタQ
 1* Q sと負荷トランジスタQ8・Q4KLって
構成され、これをマトリクス状に並べ同一ビット一対B
L、BL上に多数のセルをIik続する都合よ、ワード
1iWLKより制御される遇択用ト2ンジスタQi、Q
@を設けた6gIAのトランジスタで構成されてい九。
1m Conventional technology and problems Conventionally, static m random access memory cells are J
[Two transistors Q cross-connected as shown in Figure 1
1* Qs and load transistors Q8 and Q4KL, which are arranged in a matrix and a pair of identical bits B
For convenience of connecting a large number of cells on L, BL, optional transistors Qi, Q controlled by word 1iWLK are provided.
It consists of a 6gIA transistor with @.

メモリーの集積ピット数の同上の要求に対してビット当
りの占有面積を減らしかつ集積回路のテープ面積を増大
させないために、負荷トランジスタQi、Q・を固定抵
抗に1111換え番つのトランジスタで1ビツトをsg
する手段がとられる工うになった。
In order to reduce the area occupied per bit and to avoid increasing the tape area of the integrated circuit in response to the same requirements for the number of integrated pits in the memory, the load transistors Qi and Q were replaced with fixed resistors (1111), and 1 bit was processed using 1111 transistors. sg
Measures were now taken to do so.

第2図はこのようなセルのtgl路図であり、負荷抵抗
としては一般に高抵抗のポリシリコンが用いられる◇更
にメモリーセルを小型化するため、近年発表された公知
の技術(Ta0bxone etal s 18800
Dig、Tech、 pZ116(1980))では1
@z図中のトランジスタQy’、’Qaのゲートを構成
するポリシリコンと負荷抵抗となるポリシリコンを別工
程で形成し、負荷抵抗かトランジスタ上に立体的に配置
さnる4造が取らnた0第8図はこれを示す平面図であ
り、わかりやすくするため負荷抵抗やビット−1電源−
1接地巌を略しである0こnの詳細については前記公知
文献を参焦され次い0ゲート電極l−2とドレイン領域
8.4間は埋込コンタクトBNI e BNmに工って
1[*電気的に接続されているQこの構成で同−平向上
に配直さnた会つのトランジスタQy、Qa、Qe、Q
ioを更4C高集積化するためには、例えばli捩した
ゲートとゲート間を狭くする、ゲート自体の1−1長さ
を短くする等の方法しか残されておらず、こnらは何n
もパターンの微細化を要する◎しかし現実にはトランジ
スタが正常に動作する几めにはそのゲート長の縮少には
限界があってむやみに微細化はできない。またゲート、
ゲート間の間隔も許容される最小〃ロエ寸法に工つて決
定さnlこれを更に狭めることは。
Figure 2 shows the TGL circuit diagram of such a cell, and high-resistance polysilicon is generally used as the load resistor. ◇In order to further miniaturize the memory cell, a well-known technology announced in recent years (Ta0bxone et al s 18800
1 in Dig, Tech, pZ116 (1980))
The polysilicon forming the gates of the transistors Qy' and Qa in the @z diagram and the polysilicon serving as the load resistor are formed in separate processes, and the four structures are placed three-dimensionally on the load resistor or transistor. Figure 8 is a plan view showing this, and the load resistance and bit-1 power supply are shown for ease of understanding.
1 Abbreviation for grounding. For details, please refer to the above-mentioned known document. 0 A buried contact BNI e BNm is made between the gate electrode l-2 and the drain region 8.4. In this configuration, the electrically connected transistors Qy, Qa, Qe, Q are arranged on the same plane.
In order to further increase the 4C integration of I/O, the only methods left are, for example, narrowing the gap between the twisted gates and the gates, or shortening the length of the gate itself by 1-1, and what are these methods? n
◎ However, in reality, there is a limit to the reduction of the gate length for transistors to function properly, and it is not possible to make them too small. Also the gate,
The spacing between the gates is also determined by the minimum allowable loe dimension, which can be narrowed further.

例えば製造装置をより微細な加工が可能なものに変更す
る(例えば従来性われていたフォトマスクを用いたりソ
ゲ2フイ工程から電子ビームやX巌を用い友ものに変更
する)等の必ilIを生じるため看しい製造コストの上
昇につながる〇 (3)発明の構成 本発明はこの点にかんがみ、8つのトランジスタのゲー
ト電極間の分1111*f:第1のトランジスタと第3
のトランジスタのゲート電極を別工程で作ることにLD
、ailのトランジスタのゲート周囲に形成された層間
絶縁Jllを介して両方のトランジスタのゲート電極同
志を電気的に分−しftg造のメモリーセル・を提供す
るものであり、この4!台、ゲート間隔は層間絶縁属の
膜厚8N度となるため、従来公知の工程によってgoo
oA−800OAのゎず〃為な間隔で公庫が可能となる
For example, it is necessary to change the manufacturing equipment to one that is capable of finer processing (for example, to use a photomask that was conventionally used, or to change from the conventional 2-fi process to one that uses an electron beam or X-ray). 〇 (3) Structure of the Invention In view of this point, the present invention is designed to reduce the distance between the gate electrodes of the eight transistors 1111*f: the first transistor and the third transistor.
LD to make the gate electrode of the transistor in a separate process
, ail, the gate electrodes of both transistors are electrically separated from each other via interlayer insulation Jll formed around the gates of the transistors, thereby providing an FTG-structured memory cell. Since the interlayer insulating metal film thickness is 8N degrees, the gap between the base and gate is 8N degrees, so the goo
OA-800OA allows public treasury at regular intervals.

更に本発明を用いることによ、す、従来はMISトラン
ジスタのゲート、電極かアクティブ領域とのパターン位
置ず′i″Lを・生じてもトランジスタの性能を劣化さ
せないように一部をフィールド酸化編上まで延長させ2
石形成させていたか、こりゲートの延長部分のむだ面構
が減り、メモリーの占有面積は刀ロエ寸法を値細化しな
くても縮少化できる。以下これを回向をもって説明する
Furthermore, by using the present invention, field oxidation is applied to a part of the MIS transistor in order to prevent the performance of the transistor from deteriorating even if the pattern position between the gate, electrode, and active region is changed. Extend it to the top 2
Perhaps because of stone formation, the unnecessary surface structure of the extended part of the gate is reduced, and the area occupied by the memory can be reduced without reducing the size of the sword. This will be explained in detail below.

(4)発明の実施例 第4図は本発明の一実施例によるメモリーセル平向図を
示すもので、回向上は第8図に対応し、ゲート長の最小
M幅は同一に描いである。トランジスタQ、は第、具層
目のポリシリコンまたはこ几ζ類似の性質をもつメタル
シリサイドS高融点メタル等によって形成さnたゲート
電極lを有する0例えば公知の方法に工す基板P型シリ
コン゛を鈑化し、厚さ800AのSiO□を形成してゲ
ート絶縁膜とし、 OV D (Chemical V
apor Deposition) 法で堆積したポリ
シリコンを加工してQ、のゲート電極を得る。このゲー
ト形成に先立ちゲート酸化膜の一部に開工部を設けてお
くと、当該部分ではゲート電極とシリコン基板か接触し
、ゲート電憶材料中の不純物が基板内に拡散されると埋
込コンタク) BNsが形成される。この部分でQ、の
ゲートとQ′・のドレインが接続される。次に不要なゲ
ート酸化膜を除去し更にQ、のゲート電極lの同門に層
間絶縁1Nを形成する。この方法はいくつかの公知の方
法が利用できるが、例えば増 改比伝を用いると、高濃
度に不純物が゛ドープされたポリシリコンはシリコン基
板に比べて数倍の速さで熱酸化されるためトランジスタ
Qaのゲート改1ヒ膜形成を行う過程でQ?(’>ゲー
ト電#&lのまわりには厚い、例えばgsooA程度の
840.膜が形成される◎ Q、とQ、は原則的には同一のゲート酸化膜厚とするみ
しかル、これらのトランジスタがチャネルドープ構造を
とる場合、あえてゲート酸化膜厚を^らせた方か電気的
には両トランジスタの特注がバランスし、フリップフロ
ップ回路として望ましいこともある。即ち98部分のチ
ャネルはQ?のゲート酸化後、この酸化膜が一度除去さ
れ再び酸化されるためにチャネルドープのドーズ重に変
化が生じるため、それによるvj性変動分を補償するよ
う両トランジスタのゲート酸化膜厚を異らせてもよい。
(4) Embodiment of the invention FIG. 4 shows a plan view of a memory cell according to an embodiment of the present invention. The rotation height corresponds to FIG. 8, and the minimum width M of the gate length is drawn the same. . The transistor Q is a P-type silicon substrate fabricated by a known method, for example, and has a gate electrode L formed of a polysilicon layer or a metal silicide having similar properties to a high melting point metal.゛ is plated, SiO□ with a thickness of 800A is formed as a gate insulating film, and OVD (Chemical V
Polysilicon deposited by the apor deposition method is processed to obtain the gate electrode of Q. If an opening is made in a part of the gate oxide film prior to gate formation, the gate electrode will come into contact with the silicon substrate in that part, and if the impurities in the gate storage material are diffused into the substrate, a buried contact will occur. ) BNs are formed. At this part, the gate of Q and the drain of Q' are connected. Next, unnecessary gate oxide films are removed, and interlayer insulation 1N is formed on the same gate of gate electrodes Q and I. Several known methods can be used for this method, but for example, when using enhanced heat transfer, polysilicon doped with impurities at a high concentration is thermally oxidized several times faster than a silicon substrate. Therefore, in the process of forming the gate modification film of transistor Qa, (A thick 840. film, for example gsooA, is formed around the gate electrodes #&l.) Q and Q are basically the same gate oxide film thickness, but these transistors When the transistor has a channel doped structure, it is better to purposely increase the thickness of the gate oxide film or to custom-make both transistors, which balances electrically and is desirable as a flip-flop circuit.In other words, the channel at the 98th part is Q? After gate oxidation, this oxide film is once removed and oxidized again, resulting in a change in the dose weight of the channel dope, so the gate oxide film thicknesses of both transistors are made different to compensate for the resulting vj variation. Good too.

もちろんQ、の電極lを形成後Q、のゲート形成前にチ
ャネルドープをやり直しても艮し1゜この場会見7部分
はゲート・ポリシリコンがンスクとなってチャネルドー
プはされない。ま友Q、とQak比べるとQ、のゲート
部は工程的にQ8よりも前に作らnるためにチャネルド
ープさnた不純物が再分布しゃすいOこれらを補正しQ
y、Qs乞電気的に許谷軛囲内にバランスさせる几めに
Q。
Of course, even if the channel doping is redone after forming the electrode 1 of Q and before forming the gate of Q, the gate polysilicon will not be doped in the area 7 in this case because the gate polysilicon becomes a mask. Comparing Mayu Q and Qak, the gate part of Q is made before Q8 in terms of process, so the channel doped impurities are easily redistributed.
y, Qs to be electrically balanced within the range of Q.

のゲート電極形成後に装置のチャネルド−1(不N物は
基板と同一の導電型もしくは道導電型もあり得る)を行
い、かつゲート酸化膜厚もQt、Qsで独立に制(2)
し、異なる厚さに設足することが望ましい。
After forming the gate electrode, the device's channel dome (the non-N material may have the same conductivity type as the substrate or the same conductivity type) is performed, and the gate oxide film thickness is controlled independently by Qt and Qs (2).
However, it is desirable to install them at different thicknesses.

Q8のゲート・ポリシリコン形成に先立ちグーゲート絶
縁膜の一部に開口部を設けておくことにより、埋込コン
タクトBNlft形成し得るO Q、 、Q。
By providing an opening in a part of the goo gate insulating film prior to forming the gate polysilicon of Q8, a buried contact BNlft can be formed in OQ, , Q.

形成後金EIKヒ素をイオン注入しソース、ドレイン領
域を形成する0なおQ9.QIO及び周辺回路のトラン
ジスタはQ、と同時もしくはQlと同時に形成される。
After formation, gold EIK arsenic is ion-implanted to form source and drain regions.Q9. QIO and peripheral circuit transistors are formed at the same time as Q or at the same time as Ql.

ソース書ドレイン領域形成直後の文−X′断面形状を第
5図に示す。同図にて、10はpalシリコン基板%1
1はフィールド酸化層、口はトランジスタ4.用ゲート
酸化膜、18はゲート電極1.3間を絶縁するための8
jυ、膜であ、る。
FIG. 5 shows the cross-sectional shape of the line-X' immediately after the formation of the source write and drain regions. In the same figure, 10 is PAL silicon substrate%1
1 is a field oxide layer, and the mouth is a transistor 4. a gate oxide film 18 for insulating between the gate electrodes 1.3;
jυ, it is a membrane.

次に埋込コンタクトBNx*BN”部分にコンタクトし
電源とを結ぶ薄膜負荷抵抗を形震する0この負荷抵抗を
ポリシリコ′71Xで構成するとすれば本発明のメモリ
ーセルは8層ポリシリコン構造となるが、もし第2層目
のポリシリコイの一部金向抵抗となるように選択的不純
物ドーピングを行えば2層ポリシリコン構造も可能であ
る0[源の給電−はトランジスタQ、またはQ、用のゲ
ート11億と同時に形成されたポリシリコン層で構成し
ても艮いし、8層目のポリシリコンの一部を低抵抗化し
て用いても良い。次に層間絶縁膜を被層後、コンタクト
ホールN Os e N O4e N (3%を形成し
、アルミニウム等に工り配線層としてアース配線、ビッ
ト線対を形成する。前者はNOaで、後者はNo4eN
OIでそれぞれコンタクトする。以下は通常のtaus
メモリ一工程と同一である。5g6図に最終形層の断面
を示す0間図にて14はゲート用ポリシリコン層1.2
と負荷抵抗用ポリシリコン7dlSども絶縁するノー間
絶縁膜であり、本図では負荷抵抗用に8@ポリシリコン
構造を採用した場合を例ボ1である。16はP2Oのク
ロき層間絶縁膜であり、こnを貫通して角116己のコ
ンタクトホールNO8゜NO4,NO5が形成さf′L
′fc後にアルミニウム等の金属配線層17が形成さ几
た状態を図示しであるOなお、上記央厖例ではゲート電
極同志の重なり品分はフィールド領域上のみにある場−
8−を例示し ′たが、この重なりは一部は能動w4域
上であっても。
Next, a thin film load resistor is connected to the buried contact BNx*BN" and connected to the power source. If this load resistor is made of polysilicone '71X, the memory cell of the present invention will have an 8-layer polysilicon structure. However, if a part of the second layer of polysilicon is selectively doped with impurities to make it resistive to gold, a two-layer polysilicon structure is also possible. The polysilicon layer formed at the same time as the gate 1.1 billion may be used, or a part of the 8th layer of polysilicon may be used with a lower resistance.Next, after covering the interlayer insulating film, contact holes are formed. N Os e N O4e N (forms 3% and forms a wiring layer on aluminum etc. to form ground wiring and bit line pairs. The former is NOa, the latter is No4eN
Contact each person through OI. Below is normal taus
It is the same as one process of memory. In Figure 5g6, 14 is the gate polysilicon layer 1.2 in the diagram showing the cross section of the final layer.
This is an insulating film between the capacitor and the polysilicon 7dlS for the load resistor. In this figure, the case where an 8@polysilicon structure is adopted for the load resistor is shown as an example in Bo 1. 16 is a P2O black interlayer insulating film, through which contact holes NO8° NO4, NO5 with a corner 116 are formed f'L.
The figure shows a state in which a metal wiring layer 17 made of aluminum or the like is formed after fc. Note that in the above example, if the overlapping parts of the gate electrodes are only on the field area,
8- is shown as an example, but this overlap may partially be on the active w4 area.

また埋込コンタクト土であってもよいことは勿論である
Of course, buried contact soil may also be used.

(5)発明の効果 以上のように本発明に工nば、スタチック型のメモリセ
ルを構成する交差接続トランジスタ対の各ゲート電極を
互いに一部重ねて配置しである/こめセル面積を著しく
縮小することが可能になり、呆槓に向上のうえで優れた
実用効果が得られる。
(5) Effects of the Invention According to the present invention, each gate electrode of a pair of cross-connected transistors constituting a static memory cell is arranged to partially overlap each other, thereby significantly reducing the cell area. It becomes possible to do this, and with great improvements, excellent practical effects can be obtained.

4、図面の簡単な説明          、3第1図
及び第2図はそれぞれ公知のスメナックィliソランダ
ムアクセスメモリーセルの回路図、第8図は従来例のメ
モリーセル平面図、第6図は本発明大施例のメモリーセ
ルの要部を示す一+血図、第5図は本発明実施例のメモ
リーセルの製造過程中の構造断面図であって%第4図の
x−x’断面に相当する図、第6図はg5図のメモリー
セルの製遺王程最終段階における構造断面図であ4゜t
、g・・・・・・・・・・・・・・・ゲート電極8.4
・・・・・・・・・・・・・・・ドレイン領域113.
14.16・・・・・・層閣絶II&膜15・・・・・
・・・・・・・・・・・・・負荷抵抗用ポリシリコン層
Vss 第 1図  □ DD 第 λ 図 n ’3 図 t 男4F!1
4. Brief Description of the Drawings 3. FIGS. 1 and 2 are circuit diagrams of a known Smenacki Solundum access memory cell, FIG. 8 is a plan view of a conventional memory cell, and FIG. 6 is a diagram of a conventional memory cell. Figure 5 is a cross-sectional view of the structure of the memory cell according to the embodiment of the present invention during the manufacturing process, and corresponds to the xx' cross section in Figure 4. Figure 6 is a structural cross-sectional view at the final stage of the manufacturing process of the memory cell shown in Figure g5.
, g......Gate electrode 8.4
・・・・・・・・・・・・Drain region 113.
14.16...Ryoukakuzetsu II & Membrane 15...
・・・・・・・・・・・・Polysilicon layer for load resistance Vss Figure 1 □ DD λ Figure n '3 Figure t Man 4F! 1

Claims (3)

【特許請求の範囲】[Claims] (1)  互いにドレインとゲートを交差m絖したSつ
の電界効果トランジスタを少くとも有するランダムアク
セスメモリーセルにおいて、一方のトランジスタのゲー
ト電極上に絶縁膜を介して佃方のトランジスタのグー1
ト電極が一部重ねられていることt−特徴とする半導体
記憶装置。
(1) In a random access memory cell having at least S field effect transistors whose drains and gates cross each other, the gate electrode of one transistor is placed on the gate electrode of the other transistor through an insulating film.
A semiconductor memory device characterized in that two electrodes are partially overlapped.
(2)前記一方のトランジスタのゲート電極?i繭叫他
方のトランジスタのドレイン領域に、前記他方のトラン
ジスタのゲート電極は#紀一方のトランジスタのトンイ
ン領域に堀込コンタクト構造で接続されていることf:
特徴とする特許請求のm囲第1項紀賊の記憶装置。
(2) Gate electrode of one of the transistors? The gate electrode of the other transistor is connected to the drain region of the other transistor in a trench contact structure to the tunnel region of the other transistor.
A storage device for thieves in Paragraph 1 of the patent claims.
(3)  前記2つのトランジスタはMI8mであり前
記一方のトランジスタのゲート絶縁−厚と前記他方のト
ランジスタのゲートI8縁厚が異りて設足され1両トラ
ンジスタの電気的置注をバランスさせ九ことを:¥f値
とする特許請求の範囲第1項紀−の半導体記憶装置。
(3) The two transistors are MI8m, and the gate insulation thickness of the one transistor and the gate I8 edge thickness of the other transistor are different, and the electrical placement of both transistors is balanced. A semiconductor memory device according to claim 1, wherein: ¥f value.
JP56167528A 1981-10-20 1981-10-20 Semiconductor memory storage Pending JPS5868962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56167528A JPS5868962A (en) 1981-10-20 1981-10-20 Semiconductor memory storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56167528A JPS5868962A (en) 1981-10-20 1981-10-20 Semiconductor memory storage

Publications (1)

Publication Number Publication Date
JPS5868962A true JPS5868962A (en) 1983-04-25

Family

ID=15851360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167528A Pending JPS5868962A (en) 1981-10-20 1981-10-20 Semiconductor memory storage

Country Status (1)

Country Link
JP (1) JPS5868962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488248A (en) * 1991-12-30 1996-01-30 At&T Corp. Memory integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488248A (en) * 1991-12-30 1996-01-30 At&T Corp. Memory integrated circuit

Similar Documents

Publication Publication Date Title
JPS60231357A (en) Semiconductor memory device
JP3167366B2 (en) Integrated circuit device and method of manufacturing the same
JPS61183952A (en) Semiconductor storage device and its manufacturing method
JPH0342514B2 (en)
JPH0554699B2 (en)
JPH0365905B2 (en)
JPH0766297A (en) Semiconductor storage device
JPS62286270A (en) Semiconductor memory
JPS59201461A (en) Read only semiconductor memory device and manufacture thereof
JPS6014462A (en) Semiconductor memory element
JPS61140168A (en) semiconductor storage device
US4513304A (en) Semiconductor memory device and process for producing the same
US5200356A (en) Method of forming a static random access memory device
JPS62174968A (en) semiconductor equipment
JPS6155258B2 (en)
JPS63281457A (en) Semiconductor memory
JPH02275665A (en) Semiconductor memory and manufacture thereof
JPS58134458A (en) Manufacture of capacitor in semiconductor device
JPS5868962A (en) Semiconductor memory storage
JPH0365664B2 (en)
JPS6167955A (en) Semiconductor storage device and its manufacturing method
JPS6123361A (en) Semiconductor memory device
JP2718955B2 (en) Semiconductor memory device and method of manufacturing the same
JPS60194573A (en) Semiconductor memory device
JPS61140171A (en) Semiconductor memory device