[go: up one dir, main page]

JPS5868937A - Formation of insulating film on semiconductor crystal - Google Patents

Formation of insulating film on semiconductor crystal

Info

Publication number
JPS5868937A
JPS5868937A JP56167390A JP16739081A JPS5868937A JP S5868937 A JPS5868937 A JP S5868937A JP 56167390 A JP56167390 A JP 56167390A JP 16739081 A JP16739081 A JP 16739081A JP S5868937 A JPS5868937 A JP S5868937A
Authority
JP
Japan
Prior art keywords
gas
semiconductor crystal
insulating film
crystal
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56167390A
Other languages
Japanese (ja)
Inventor
Masamichi Okamura
岡村 正通
Eiichi Yamaguchi
栄一 山口
Yoshitaka Furukawa
古川 吉孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56167390A priority Critical patent/JPS5868937A/en
Publication of JPS5868937A publication Critical patent/JPS5868937A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent evaporation of P from the surface of a semiconductor crystal when an insulating phosphorus nitride film is to be formed on the semiconductor InP crystal by a method wherein formation thereof is performed in an atmosphere containing P. CONSTITUTION:After a semiconductor crystal 12 consisting of an InP crystal is set in a reaction tube 10, the surface of the crystal 12 is cleaned supplying HCl+H2 gas from a gas source 4. Then after the inside of the reaction tube 10 is replaced with PH3+H2 gas supplied from a gas source 3, the crystal 12 is heated by a heat source 11. At this time, evaporation of P from the surface of the crystal 12 is suppressed effectively by existence of PH3 gas. Then, after supply of gas from the gas source 3 is cut, NH3 gas and PCl5+H2 gas are supplied respectively from a gas source 1 and a gas source 2. Accordingly, a vapor phase reaction of gases mentioned above is performed in the reaction tube 10, and as a result, an insulating film 13 consisting of P3N5 or PN is formed on the semiconductor crystal 12.

Description

【発明の詳細な説明】 本発明は、絶縁ゲート形MI8電界効果トランジスタの
ゲート絶縁膜を形成する場合に適用し得る、半導体結晶
上への絶縁膜の形成法に関し、特にV族元素就中燐CP
)を有するI−V族化合物半導体結晶上に、絶縁膜を形
成する場合に適用して好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an insulating film on a semiconductor crystal, which can be applied to forming a gate insulating film of an insulated gate type MI8 field effect transistor. C.P.
) is suitable for application to the case where an insulating film is formed on a group IV compound semiconductor crystal.

半導体結晶上への絶縁膜の形成法として従来、熱酸化法
により半導体結晶上に半導体結晶の材料の酸化物でなる
絶縁膜を形成する方法、陽極ば化法により半導体結晶上
に半導体結晶の材料の酸化物でなる絶縁膜を形成する方
法、化学気相堆積法(所謂OVD法)によって8i02
゜Aj20.等でなる絶縁膜を形成する方法等が゛提案
されている。
Conventional methods for forming an insulating film on a semiconductor crystal include forming an insulating film made of an oxide of the semiconductor crystal material on the semiconductor crystal using a thermal oxidation method, and forming an insulating film made of an oxide of the semiconductor crystal material on the semiconductor crystal using an anodic oxidation method. 8i02 by chemical vapor deposition method (so-called OVD method), which is a method of forming an insulating film made of oxide of
゜Aj20. A method of forming an insulating film made of the following methods has been proposed.

′然し乍ら、従来提案されている方法の場合、半導体結
晶上の絶縁膜もS半導体結晶の表面を劣化せしめて形成
されたり、半導体結晶上の絶縁膜が化学的にも電気的に
も安定なものとして形成されなかったり、半導体結晶上
の絶縁膜が耐圧の高いものとして形成されなかったりす
る欠点を有していた。特に半導体結晶をinP 、 I
nGaAsP等の燐CP)を有するInA@  等のI
−V族化合物半導体結晶とする場合、その半導体結晶上
に絶縁膜を形成する過程で、半導体結晶の表向よりそれ
を構成する燐CP)が蒸発したりして絶縁−が半導体結
晶とのなす界面に高い濃度の表面単位を有せしめてなる
ものとして形成され、この為、半導体結晶上に絶縁膜を
形成してなる構成を用いて、半導体結晶を半導体S、絶
縁膜を絶縁体Iとせる絶縁ゲート形電界効果トランジス
タを#りた場合、その半導体S及び金属M(絶縁体1上
のゲート′II1.極)間の容量対電圧特性に大なるヒ
ステリシス特性を呈し、依って上述せる絶縁ゲート形M
I8電界効果トランジスタを製る場合に適用しても、そ
の絶縁ゲート形へIIS電界効果トランジスタを゛所期
の実用性のあるものとして製ることか出来ない等の欠点
を有していた。
'However, in the case of conventionally proposed methods, the insulating film on the semiconductor crystal is also formed by deteriorating the surface of the S semiconductor crystal, or the insulating film on the semiconductor crystal is not chemically or electrically stable. However, the insulating film on the semiconductor crystal may not be formed with high breakdown voltage. In particular, semiconductor crystals are inP, I
I such as InA@ with phosphorus CP such as nGaAsP)
- In the case of a group V compound semiconductor crystal, during the process of forming an insulating film on the semiconductor crystal, the phosphorus (CP) constituting it may evaporate from the surface of the semiconductor crystal, causing insulation to form between the semiconductor crystal and the semiconductor crystal. It is formed with a high concentration of surface units at the interface, and for this reason, a structure in which an insulating film is formed on a semiconductor crystal is used, with the semiconductor crystal being the semiconductor S and the insulating film being the insulator I. When an insulated gate field effect transistor is used, the capacitance versus voltage characteristic between the semiconductor S and the metal M (the gate 'II1. pole on the insulator 1) exhibits a large hysteresis characteristic. Shape M
Even when applied to the production of I8 field effect transistors, it has the drawback that it is impossible to produce IIS field effect transistors of the insulated gate type with desired practicality.

依って本発明は上述せる欠点のない新規′−な半導体結
晶上への絶縁膜の形成法を提案せんとするもので、以下
本発明の実施例を述べる所より明らかとなるであろう。
Therefore, the present invention proposes a novel method for forming an insulating film on a semiconductor crystal without the above-mentioned drawbacks, and this will become clear from the following description of embodiments of the present invention.

本発明の実施例に於ては、アンモニア(NH,)カスの
得られるガス源1・、5塩化燐(PO15)ガスを含む
水素(I()ガスの得られるガス#t2、ホスフィン(
PH5)ガスを含む水素(H)ガスの得られるガス源6
、及び塩化水素(1−IDJ)ガスを含む水素(H)ガ
スの得られるカス源4を夫々升5.6.7、及び8を介
して連結してなる反応管10が用意される。この場合ガ
スy1.1.2.6方反応管10の他窄より排気管9が
導出されてい−る。尚反応管10の周りに加熱源11が
配されているものとする。
In the embodiment of the present invention, gas source 1 from which ammonia (NH,) scum is obtained, gas #t2 from which hydrogen (I) gas containing phosphorus pentachloride (PO15) gas is obtained, phosphine (
Gas source 6 from which hydrogen (H) gas containing PH5) gas can be obtained
A reaction tube 10 is prepared by connecting a waste source 4 from which hydrogen (H) gas containing , and hydrogen chloride (1-IDJ) gas is connected via cells 5, 6, 7, and 8, respectively. In this case, an exhaust pipe 9 is led out from the other end of the gas y1.1.2.6-way reaction tube 10. It is assumed that a heat source 11 is arranged around the reaction tube 10.

而して先ず′、反応管10内にInPM晶でなる半導体
結晶12を適当な手段(図示せず)を用いて設置する。
First, a semiconductor crystal 12 made of InPM crystal is placed in the reaction tube 10 using an appropriate means (not shown).

次に弁8を予定の時間丈は開いて反応管10内に予定の
時間丈はガス源4よりの塩化水素()10/ )ガスを
含む水素(ロ)ガスを流し、その塩化水素(HOlりガ
スによる半導体結晶12の表面に対する軽いエツチング
処理をなさしめ、依って半導体結晶12の表向を清浄化
する。
Next, the valve 8 is opened for a predetermined length of time, and hydrogen (b) gas containing hydrogen chloride (10/) gas from the gas source 4 is flowed into the reaction tube 10 for a predetermined length of time. The surface of the semiconductor crystal 12 is lightly etched by the etching gas, thereby cleaning the surface of the semiconductor crystal 12.

次に弁7を開き、反応管10内にガス源6よりのホスフ
ィン(PH,)ガスを含む水X (H)ガスを流し、反
応管10内がホスフィン(PH,)  ガスを含む水素
(H)ガスにて全く置換せしめられた所で、加熱源11
により反応管10を加熱せしめ、半導体結晶12を40
0℃〜800℃の温度に加熱する。この場合半導体結晶
12の表面よりそれを構成する燐(P)が蒸発せんとし
ても、反応−Iir10内にホスフィン(Pi(、)ガ
スを含む水素(14)ガスが流され、この為反応管10
内にホスフィン(PH3)の分解により生じた燐(P)
の分圧/a−南するので、半導体結晶12の表(8)よ
りそれを構成する燐(P)が不必要に蒸発することがな
いものである。
Next, valve 7 is opened and water ) The heating source 11 is completely replaced with gas.
The reaction tube 10 is heated by heating the semiconductor crystal 12 by 40°C.
Heat to a temperature of 0°C to 800°C. In this case, even if the phosphorus (P) constituting the semiconductor crystal 12 does not evaporate from the surface of the semiconductor crystal 12, hydrogen (14) gas containing phosphine (Pi) gas flows into the reaction tube 10.
Phosphorus (P) generated by decomposition of phosphine (PH3) in
According to Table (8) of the semiconductor crystal 12, the phosphorus (P) constituting the semiconductor crystal 12 does not evaporate unnecessarily.

次に斯(−加熱源11により、半導体結晶12を400
℃〜800℃に加熱せしめている状態で、升7を閉じ、
カス源6よりのホスフィン(PH3)カスを含む水素(
)1)カスの反応w10内への供粕を断とし、これに代
え弁5及び6を開き、反応管10内にガス源1からのア
ンモニア(N)1:)カスを流すと共にガス源2からの
5塩化燐、(POI!5)カスを含む水素(H)ガスを
流し、反応’@10p3でアンモニア(NH5)ガスと
5塩化1JI(POJ、)  ガスとを気相反応せしめ
る。然るときは、加熱源11によって、反応管10内の
温度分布を過当に選定し置けば、アンモニア(M、)ガ
スと5塩化m(POf5)  カスとの反応により、ホ
スファーム((NPNH> 、、 )と塩化アンモ二−
ウム(NH4C!J)とが生成し、そのホスファーム(
(NPNH> 3..4)が、半導体結晶12の表面に
到達する前に於て、反応管10内の熱により加熱される
ことにより、窒化燐(P、NIs又はPN )に変化し
、そしてその屋化燐(P5N、又はPN)が半導体結晶
12上に到達するという機構で、又はホスファーム−(
(NPNH)、〜4)が半導体結晶12上の表面に到達
し、そしてそのホスファーム((NPNH)、4)が、
半導体結晶12上で加熱されることにより、窒化燐(P
2H4又はPN)に変化するという機構で、半導体結晶
12上に窒化燐(P、N、又はPN)でなる絶縁赦13
が形成されるものである。
Next, the semiconductor crystal 12 is heated to 400° C. by heating source 11
Close the cell 7 while heating it to ℃~800℃,
Hydrogen containing phosphine (PH3) scum from scum source 6 (
)1) Cut off the feeding of scum into the reaction w10, instead open the valves 5 and 6, and flow the ammonia (N) 1:) scum from the gas source 1 into the reaction tube 10, and at the same time Hydrogen (H) gas containing phosphorus pentachloride and (POI!5) residue from the reactor was flowed to cause a gas phase reaction between ammonia (NH5) gas and 1JI pentachloride (POJ,) gas in a reaction '@10p3. In such a case, if the temperature distribution in the reaction tube 10 is properly selected using the heating source 11, the reaction between ammonia (M) gas and pentachloride m (POf5) gas will cause phosphamide ((NPNH> ) and ammonium chloride
um (NH4C!J) is generated, and its phospharm (NH4C!J) is generated.
(NPNH>3..4) is heated by the heat inside the reaction tube 10 before reaching the surface of the semiconductor crystal 12, thereby changing into phosphorous nitride (P, NIs or PN), and By the mechanism that the phosphor compound (P5N or PN) reaches the semiconductor crystal 12, or phosphor-(
(NPNH), ~4) reaches the surface of the semiconductor crystal 12, and the phosphorium ((NPNH), 4)
By being heated on the semiconductor crystal 12, phosphorus nitride (P
2H4 or PN), an insulating film 13 made of phosphorus nitride (P, N, or PN) is formed on the semiconductor crystal 12.
is formed.

・  以上にて本発明の方法の実施例が明らかとなった
が、斯る方法によれば、・InP結晶でなる半導体結晶
12の配されてなる反応管10内で、アンモニア(NE
(3)ガスと5塩化燐(PO15)ガスとを気相反応せ
しめる工程を含んで、半導体結晶12上に窒化燐(P、
N5又はPN)でなる絶縁膜13を形成せしめるもので
あるが、この場合、絶縁膜13が燐(P)を含む雰囲気
で形成され、又絶縁族13自身が燐(P)を含む窒化燐
(PSN5又はPN)で得られるので、半導体結晶12
がlnP結茜でなることにより、その表面よりそれを構
成する燐(P)が蒸発せんとしそもそれが効果的に抑圧
され、従って絶縁膜16が半導体結晶12とのなす界面
に尚い濃度の表11II単位を有せしめているものとし
て形成されることがないものである。この為本発明の方
法によって半導体結晶12上に絶kj膜16を形成して
なる猶成を用いて、半導体結晶を半導体8%絶縁膜16
を動5縁体Iとせる絶縁ゲート形1界効果トランジスタ
を製った場合、その半導体S及びfflJlM(絶縁体
I上のゲート電極)間の答菫対篭圧特性に大なるヒステ
リシス特性を呈さす、依って本発明による方法を上述せ
る絶縁ケート形MI8電界効果トランジスタを製る場合
に適用しても、その絶縁ゲート形MIS電界効果トラン
ジスタを所期の実用性のあるものとして製ることが出来
るという大なる特徴を有するものである。
- The embodiment of the method of the present invention has been clarified above, and according to this method, ammonia (NE
(3) Includes a step of causing a gas phase reaction between the gas and phosphorus pentachloride (PO15) gas to form phosphorus nitride (P,
In this case, the insulating film 13 is formed in an atmosphere containing phosphorus (P), and the insulating film 13 itself is made of phosphorus nitride (N5 or PN) containing phosphorus (P). PSN5 or PN), the semiconductor crystal 12
Since the insulating film 16 is made of lnP ash, the evaporation of the phosphorus (P) constituting it from the surface is effectively suppressed, and therefore the insulating film 16 has a higher concentration at the interface with the semiconductor crystal 12. It is not formed as having a Table 11II unit. For this reason, by using the method of the present invention to form the absolute kj film 16 on the semiconductor crystal 12, the semiconductor crystal is covered with an 8% semiconductor insulating film 16.
When an insulated gate type single field effect transistor with a dynamic pentagonal body I is manufactured, a large hysteresis characteristic is exhibited in the field-to-field pressure characteristic between the semiconductor S and fflJlM (gate electrode on the insulator I). Indeed, even if the method according to the present invention is applied to the production of the above-mentioned insulated gate type MI8 field effect transistor, it is not possible to produce the insulated gate type MIS field effect transistor with the desired practicality. It has the great feature of being able to do so.

燐’(P、N5又はPN)で得られ、而してその9化燐
(P、N5又はPN)が化学的にも電気的にも比較的安
定であるので、半導体結晶12上の絶縁膜15を化学的
にも電気的にも比較的安定なものとして形成、し得るも
のである。
The insulating film on the semiconductor crystal 12 15 can be formed and made relatively stable both chemically and electrically.

更に絶縁膜15が窒化燐(P、N5又はPN)で得られ
、而してその窒化燐(、P、N5又はPN)でなる絶縁
j[13は比較的高い耐圧を有するので、半導体結晶1
2上の絶縁膜16を耐圧の萬いものとして形成し得るも
のである等の特徴も併せ壱rるものである。
Furthermore, the insulating film 15 is made of phosphorous nitride (P, N5, or PN), and since the insulating film 13 made of the phosphorous nitride (P, N5, or PN) has a relatively high breakdown voltage, the semiconductor crystal 1
The present invention also has the characteristics that the insulating film 16 on top of the insulating film 16 can be formed with a high withstand voltage.

向上遂に於ては、反応管10内でアンモニア(NH,)
ガスと5塩化燐(POJ5)  ガスとを気相反応せし
めるべく、それ等ガスを略々同じ時点より反応管10内
に流すものとして、述べたものであるが、先ずアンモニ
ア(NH,>ガスのみを反応管10内に流して半導体結
晶12の表面をアンモニア(NH,)ガスによって予め
窒化せしめ、次で反応管10内[5tm化燐(PC75
)  ガスをアンモニア(Ni45)ガスと共に諌ル、
これによりアンモニア(NH、)カスと5塩化蜘(PC
l3)  ガスとを気相反応せしめる様になすことも出
来、期(しても半導体結晶12上に窒化燐(P、N5又
はPN)でなる絶縁膜15を形成することが出来、又こ
の場合も、上述せる優れた特徴を以って絶縁族15を形
成し得るものである。
Finally, in the reaction tube 10, ammonia (NH,)
In order to cause a gas phase reaction between the gas and the phosphorus pentachloride (POJ5) gas, the gases were introduced into the reaction tube 10 from approximately the same point in time. is flowed into the reaction tube 10 to pre-nitridize the surface of the semiconductor crystal 12 with ammonia (NH,) gas.
) gas together with ammonia (Ni45) gas,
This results in ammonia (NH,) scum and pentachloride spider (PC)
l3) It is also possible to cause a vapor phase reaction with a gas, and in this case, an insulating film 15 made of phosphorus nitride (P, N5 or PN) can be formed on the semiconductor crystal 12. Also, the insulating group 15 can be formed with the above-mentioned excellent characteristics.

又上述に於ては半導体結晶12がInP結晶である場合
につき述べたが、InGaAsP (Ip如き−(P)
を有する川−■族化合物半導体結晶であるJ+!、+台
にも本発明゛を適用して、上述せる優れた特命を以って
窒化燐(P5N5又はPN)でなる絶縁膜16菱形成し
得ること明らかであろう。
Further, in the above, the case where the semiconductor crystal 12 is an InP crystal is described, but InGaAsP (Ip-like-(P)
J+!, which is a Kawa-■ group compound semiconductor crystal with It will be obvious that the present invention can be applied to the above-mentioned devices to form an insulating film made of phosphorous nitride (P5N5 or PN) with the above-mentioned excellent properties.

/その信奉発明の精神を脱することなしに樵々の父型変
更をなし得るであろう。
/ It would be possible to change the father figure of the woodcutter without departing from the spirit of religious invention.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明による半導体結晶上への絶縁族の形成法の説
明に供する略蔽−である。 図中、1.2.6及び4はガス源、5.6.7及び8は
弁、9は排気管、10は反応管、11は加熱源、12は
半導体結晶、13は絶縁族を夫々示す。 出願人 日本篭信11i、詰公社
The figure is a schematic diagram for explaining the method of forming an insulating group on a semiconductor crystal according to the present invention. In the figure, 1, 2, 6 and 4 are gas sources, 5, 6, 7 and 8 are valves, 9 is an exhaust pipe, 10 is a reaction tube, 11 is a heating source, 12 is a semiconductor crystal, and 13 is an insulating group, respectively. show. Applicant: Nippon Koshin 11i, Tsume Kosha

Claims (1)

【特許請求の範囲】[Claims] 半導体結晶の配されてなる反応管内で、アンモニア(N
H,)ガスと5塩化燐(Pot5)  ガスとを反応せ
しめる工程を含んで、上記半導体結晶上に窒化燐でなる
絶縁膜を形成せしめる事を特徴とする半導体結晶上への
絶縁膜の形成法。
Ammonia (N
A method for forming an insulating film on a semiconductor crystal, the method comprising forming an insulating film made of phosphorus nitride on the semiconductor crystal, including the step of reacting a phosphorus pentachloride (Pot5) gas with a phosphorus pentachloride (Pot5) gas. .
JP56167390A 1981-10-20 1981-10-20 Formation of insulating film on semiconductor crystal Pending JPS5868937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56167390A JPS5868937A (en) 1981-10-20 1981-10-20 Formation of insulating film on semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56167390A JPS5868937A (en) 1981-10-20 1981-10-20 Formation of insulating film on semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS5868937A true JPS5868937A (en) 1983-04-25

Family

ID=15848810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167390A Pending JPS5868937A (en) 1981-10-20 1981-10-20 Formation of insulating film on semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS5868937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351505A2 (en) * 1988-07-20 1990-01-24 International Business Machines Corporation Method for passivating a compound semiconductor surface
JPH033330A (en) * 1989-05-31 1991-01-09 Toshiba Corp Formation of insulating film onto semiconductor crystal substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351505A2 (en) * 1988-07-20 1990-01-24 International Business Machines Corporation Method for passivating a compound semiconductor surface
JPH033330A (en) * 1989-05-31 1991-01-09 Toshiba Corp Formation of insulating film onto semiconductor crystal substrate

Similar Documents

Publication Publication Date Title
US3385729A (en) Composite dual dielectric for isolation in integrated circuits and method of making
US4595453A (en) Method for etching a semiconductor substrate or layer
JPH0198242A (en) Method for forming single crystal magnesia spinel film
JPS5963732A (en) Thin film forming equipment
JP2505736B2 (en) Method for manufacturing semiconductor device
JPS5868937A (en) Formation of insulating film on semiconductor crystal
US3653991A (en) Method of producing epitactic growth layers of semiconductor material for electrical components
JPS63188977A (en) Gallium nitride compound semiconductor light emitting device
JPH03289140A (en) Manufacturing method of semiconductor device
JPS5868935A (en) Formation of insulating film on semiconductor crystal
JP3221129B2 (en) Semiconductor device manufacturing method
JPS5868936A (en) Formation of insulating film on semiconductor crystal
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
KR100480904B1 (en) Reactor and single crystal silicon layer formation method using the same
JPH0329316A (en) Formation of semiconductor thin film
JPH02203564A (en) Silicon carbide semiconductor device
KR970011647B1 (en) Formation method of gate oxide for semiconductor
JPS6057925A (en) Formation of tungsten film onto silicon
JPH01253271A (en) Semiconductor element
JP2622373B2 (en) Thin film transistor and method of manufacturing the same
JP2713979B2 (en) Method of forming insulating film
JPS6110233A (en) Manufacturing method of semiconductor device
JPS6359247B2 (en)
JP2776109B2 (en) Method for manufacturing semiconductor device
JPH0119264B2 (en)