[go: up one dir, main page]

JPS5868743A - Radation sensitive organic polymer material - Google Patents

Radation sensitive organic polymer material

Info

Publication number
JPS5868743A
JPS5868743A JP56167173A JP16717381A JPS5868743A JP S5868743 A JPS5868743 A JP S5868743A JP 56167173 A JP56167173 A JP 56167173A JP 16717381 A JP16717381 A JP 16717381A JP S5868743 A JPS5868743 A JP S5868743A
Authority
JP
Japan
Prior art keywords
group
alkyl group
organic polymer
radiation
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56167173A
Other languages
Japanese (ja)
Inventor
Koichi Hatada
結城平明
Yutaka Tsubokura
坪倉豊
Shigeru Danjo
檀上滋
Hiraaki Yuuki
難波進
Hiroaki Aritome
畑田耕一
Susumu Nanba
有留宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56167173A priority Critical patent/JPS5868743A/en
Publication of JPS5868743A publication Critical patent/JPS5868743A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は半導体素子、磁気バブルメモリ素子集積回路等
の製造に必要な微細パターン形成に好適な電子線、X線
、イオンビーム等の放射線に高い感応性を示すポジ形放
射線感応性有機高分子材料に関する。 従来、半導体素子、磁気バブルメモリ素子。 集積回路等の電子部品を製造するためのパターン形成法
としては、紫外線または可視光線に感応するフォトレジ
ストを利用する方法が幅広く実用化されているが、近年
、半導体素子等の高密度化、高集積化を計る目的で、1
μm以下の幅のパターンを形成する方法が要求されてい
る。 しかし、上記の光を使用する方法では、その光の固有な
性質である、回折、散乱および干渉等により、1μm以
下の幅のパターンを精度よ(形成することは極めて困難
であり、同時に歩留りの低下も著しく、紫外線または可
視光線を使用する方法は、1μm以下の幅のパターンを
形成する方法としては不適であった。 これに対処して、最近、紫外線または可視光線を使用し
て微細加工を施す写真食刻技術に代って、たとえば電子
線、X線、イオンビーム等の高エネルギーの放射線を用
いるリソグラフィ技術が開発、研究され、これに伴って
上記放射線に対して感応性を示すイ」料が抽々検N−J
されている。なかでも放射線の照射によって高分子鎖の
切断反応を詩起して、その被照射部分が現像液に可溶性
となりパターンを形成するポジ形放射線感応性イj機品
分子利料、たとえばポリ(メタクリル酸メチル)、ポリ
−(1−ブテンスルホン)等は放射線の照射によって架
橋反応な訪起して、その被照射部分が現像液に不浴性と
なりパターン形成するネガ形感応性有機月別に比して、
感度時性曲線からイυられるガンマ値が太きいために、
旨解像度のパターンを生成せしめ、微細加工用レジス)
I料としては極めて好都合である。しかし、前記した拐
料をはじめとしてポジ形感応性有機高分子祠料はネガ形
のそれに比して、その感度が1/10〜1/1oooと
低く、その結果パターン形成に要する時間が長くなり実
用性に乏しいものであった。 また、近年、半導体素子等の高密度化、高集積化ととも
に、微細加工技術には従来の湿式エツチングに代ってプ
ラズマまたは加速イオンを用いるドライエツチングが多
用される傾向にあり、放射線感応性有機高分子拐料には
上記ドライエツチングに耐えることが必須になりつつあ
る、しかしながら、ポジ形感応性有機高分子材料はネガ
形のそれに比して耐ドライエツチング性に劣っており、
実用上の決定的な欠点であった。 本発明の目的は上記したような従来技術の欠点をな(す
る、電子線、X線、イオンビーム等の高エネルギーな放
射線に対して商い感応性を有するポジ形放射蘇a<応性
有機高分子材料を提供することKあり、とくに放射線照
射により分子中にカルボキシル基(−COON )が生
成することにより被照射部分がアルカリ溶液に可溶性と
なることから、アルカリ現像ができることを特徴とする
ポジ形放射線感応性有機11&1分子−4A科を提供す
イ)ことにある。 上記の目的を達成するために、・ト発明者等は放射線感
応性を有すると思われる有機高分子材料を種々険削の結
果、この種の(イ刺と
The present invention is a positive radiation-sensitive organic polymer material that is highly sensitive to radiation such as electron beams, X-rays, and ion beams and is suitable for forming fine patterns necessary for manufacturing semiconductor devices, magnetic bubble memory device integrated circuits, etc. Regarding. Conventional semiconductor devices, magnetic bubble memory devices. As a pattern forming method for manufacturing electronic components such as integrated circuits, methods using photoresists that are sensitive to ultraviolet or visible light have been widely put into practical use. For the purpose of integration, 1
There is a need for a method of forming patterns with a width of .mu.m or less. However, with the above method of using light, it is extremely difficult to accurately form a pattern with a width of 1 μm or less due to the unique properties of the light, such as diffraction, scattering, and interference, and at the same time, it is difficult to form a pattern with a width of 1 μm or less, and at the same time, the yield is reduced. The degradation was also significant, and methods using ultraviolet or visible light were unsuitable for forming patterns with a width of 1 μm or less.In response to this, recently, microfabrication using ultraviolet or visible light has been developed. As an alternative to photo-etching techniques, lithography techniques using high-energy radiation such as electron beams, The fee is determined by lottery N-J
has been done. Among these, positive-acting radiation-sensitive materials, such as poly(methacrylic acid methyl), poly-(1-butenesulfone), etc., undergo a cross-linking reaction when irradiated with radiation, and the irradiated area becomes non-bathable in the developer and forms a pattern. ,
Because the gamma value calculated from the sensitivity time curve is large,
Generates high-resolution patterns (resist for microfabrication)
This is extremely convenient as an I charge. However, the sensitivity of positive-type sensitive organic polymer abrasives, including the above-mentioned abrasive materials, is 1/10 to 1/1000 lower than that of negative-tone abrasives, and as a result, the time required for pattern formation is longer. It lacked practicality. In addition, in recent years, with the increasing density and integration of semiconductor devices, dry etching using plasma or accelerated ions has been increasingly used in microfabrication technology instead of conventional wet etching. It is becoming essential for polymeric materials to withstand the above-mentioned dry etching. However, positive-type sensitive organic polymeric materials have inferior dry-etching resistance compared to negative-type ones.
This was a decisive practical drawback. The object of the present invention is to overcome the drawbacks of the prior art as described above, and to develop a positive-type radiation-responsive organic polymer that is sensitive to high-energy radiation such as electron beams, X-rays, and ion beams. In particular, positive-acting radiation is characterized in that the irradiated area becomes soluble in an alkaline solution due to the formation of carboxyl groups (-COON) in the molecule by radiation irradiation, so that alkaline development is possible. A) It provides sensitive organic 11 & 1 molecule-4A family. In order to achieve the above purpose, the inventors have developed this type of material by cutting various organic polymer materials that are considered to be radiation sensitive.

【2て、CI−IIも。 H,。 (式中1り1.はメチル基、エチル基、n−プロピル基
又はフェニル基を表わし、1(2,は氷水、アルギル基
、アリール基又はアルアルキル基ん(アルギル基にアリ
ール基が置換したもの)を表わし、1も、は水素、アル
キル基、アリール基、アルアルキル基又はハロゲン原子
を表わす。n しt重合1Wを示す数値を表わす。) あるいは C(C’I(J)几 几 (式中1もはメチル基、エチル基、n−プロピル基又は
フェニル基を表わし、凡はアルキル基、アリール基、又
はアルアルキル基を表わし、比は水素、アルキル基、ア
リール基、アルアルキル基又はハロゲン原子を表わす。 nは重合度を示す数値を表わす。) で示されるα−置換アクリル酸エステル系重合体を見い
出すに至った。 尚、前記したα−置換アクリル酸エステル系重合体は単
独重合体又は2種以上の単量体の共重合体として使用さ
れる。 更には、前記一般式で示されるα−置換アクリル酸エス
テル系重合体からなる反復単f+’LとGl。 =C基を有する付加知合性単lit体の111合により
得た反復単位を含む共11【合体もlj’t QJ線熱
感応性有機高分子材料して使用できる。 すなわち、上記のようなIIL合体は1′1王子線、X
線、イオンビーム等の高エネルギーな放射線の照射によ
って高分子鎖の切断反応を線用するほかに、分子中にカ
ルボキシル基(−C(に)II)が生成し、その結果そ
の被照射部分が”アルh IJ %液に可溶性となるこ
とから、アルカリ現像ができるポジ形放射線感応性有機
高分子((料として使用でき、分子中に芳香族環構造を
含有1〜ているために、耐ドライエツチング1/j:に
対する耐性に優れているものである。 かつ又、被照射部分のみがアルカリ現像故に可溶性とな
るために極めてii4+ l’)’I’像性のレジスト
パターンが得られ、放射線感応1/l: d)アルカリ
現1□□□を行なうことにより極めてll/I< /:
「るというl+、′f、徴を有し、ているー 例えば、ポリメタクリル酸α、α−ジメチルベンジル(
前記した一般式(2)において、R1がメチル基を、■
(,2がメチル基を、R8が水素を表わす。)を電子線
照射した場合の赤外線吸収スペクトルの変化を示すと図
のようになる。すなわち、電子線照射を行なう前のポリ
メタクリル酸α、α−ジメチルベンジルの赤外線吸収ス
ペクトルは図の1に示す通りであるが、これにt6x1
 o −’ C/alr の電子線照射を行なうと、図
の2に示す如く、1729.1132.764及び70
0cm−’のポリメタクリル酸α、α−ジメチルベンジ
ルに特有の吸収が減少し、かわってポリメタクリル酸に
特有の1707.1175及び1265tyn’の吸収
が現われ、ポリマ中にカルボキシル基(−(:00H)
が生成していることが確認された。尚、図の6は別途合
成したポリメタクリル酸の赤外線吸収スペクトルであり
、参考として掲げた。電子線照射により生成したポリメ
タクリル酸はアルカリ可溶性であるために、アルカリ現
像を行なうことにより選択的に電子線照射部のみを除1
モすることができ、ポジ形のレジストパターンが得られ
る。 次に、本発明に1Mいてイφ)tj ′4−る4」本1
について説明する。 本発明において使用される放射線感応性有機高分子月利
は以下のようにして得ろことができる。 すなわち、 1?。 、1 晶1ら 1(6 (式中R,はメチル基、エチルみ、+1−プロピル基又
はフェニル基を表わし、It、は水素、アルギル基、了
り−ル基又はアルアルギルJ、l; (アルキル基にア
リール基が置換したもの)を衣わし、几。 は水素、アルキル基、アリール基、アルアルキル基又は
ハロゲン原子を表わす。士−44−合一度−郁1も 一般式[相]二   〇乱=C ■ −0 ζ 孔 (式中りはメチル基、エチル基、n−プロピル基又はフ
ェニル基を表わし、比はアルキル基、アリール基、又は
アルアルキル基を表わし、凡は水素、アルキル基、アリ
ール基、アルアルキル基又はハロゲン原子を表わす。+
−+お垂合一度−を一氷づI1値−を−表−b−すう−
) で示される単量体の一棟以上をラジカル1合又はアニオ
ン重合などによりビニル1合させるととにより得た高分
子月利、あるいは一般式(5)又は(1勺で示した単1
体の一種以1−とC1■、=C基を有する付加重合性単
量体の−fili l:J、」−とをビニル重合により
共1■合さぜた高分子H料が放射線感応性有機高分子月
利として使用される。 なお、一般式(A)又は(1勺で示17た単量体と共重
合させるCI(、=C基を有する伺加1j合性単解体に
ついて述べると、メタクリル酸アルキルエステルなどの
ように、放射線の照射によりそのポリマー中にカルボキ
シル基(−00011)が生成するものでは、前記した
一般式(A)又は(1’9で示した単量体といかなる共
重合組成でも使用され、α−メチルスチレン、イソブチ
レンなどのように放射線の照射により、そのポリマー中
にカルボキシル基が生成しないものでは、その共重合組
成は前記一般式(八又は(檜で示した単bt体より得た
重合単位10〜999モル係に対し、90〜001モル
チであることが望ましい。90モル係より多い場合には
放射線照射後の被照射部分のアルカリ可溶性が大きくな
く、その結果、放射線感応性が低くなり、実用に供し難
い。 本発明の放射線感応性有機高分子材料を半導体素子等の
パターンを形成するために使用する場合には、例エバ・
 トルエン等の通常の有機溶媒に溶解させたものが使用
され、通常は素子基板にスピンコーティングされる。コ
ーテイング後、適当な温度条件でプリベークしたのち、
所望のパターンに放射線を照射後、被照射部分を現像液
に溶解させることによりレジストパターンが得られる。 この際、使用される現像液としては、メチルイソブチル
ケトン −イソグロビルアルコール系有機溶媒も使用で
きるが、少ない放射線照射針で、高解像性のレジスF 
パターンを得るためには、アルカリ性の現像液たとえば
、ナトリウムアルコラードをアルコールに溶解させた現
像液、ピリジ/、ピペリジン、トリメチルアミン、トリ
エチルアミン、水酸化ナトリウム、テトラメチルアンモ
ニウムハイドロオキサイドなどの有機、無機塩基性物質
をアルコール等に溶解させた現歇液などを用いると極め
て好都合である。 以下に本発明を合成例および実施例につぎ具体的に詳細
に説明する、 合成例1 攪拌器、冷却器、21ね下口−1−を伺した31の三っ
[1フラスコに250m1!のエチルヨー−チルを入れ
、α。 α−ジメチルベンジルアルコール139.!I+ 、)
1 ) 1)エチルアミン250m1を加えてづ#押し
、7N −1” o −トよりメタクリル酸クロライド
156gとエチルエーテル200yy+l  の混合浴
液を約5時間で滴下1〜だ。滴下後、IW拌を続けなが
ら上d己フラスコを水浴で加熱し、反応混介物を約5時
間還流させた。 還流後、水500Tnlを加えて反応を停止1−シ、エ
ーテル層をデカンテーションにより分離し、飽和塩化ア
ンモニウム水ta液で6回、つづいて飽和炭酸ナトリウ
ム水浴液で3回洗浄l〜、最後に上記エーテル浴液に無
水ll1f酸ナトリウムを添加1〜で一昼夜放置して乾
燥した。乾燥剤を分離後、エチルエーテルを留去し、θ
、NIに法面によりメタクリル酸α、α−ジメチルベン
ジル(?Jli 点: 58〜61℃10.6配置1ソ
)129gを得た、 合成例2 攪拌器、冷却器、滴下ロートを付した31の三つロフラ
スコに200m1のエチルエーテルを入れ、1−フェニ
ルエタノール129gとトリエチルアミン200m1を
加えて攪拌し、滴下ロートよりメタクリル酸クロライド
130.Fと200m1のエチルニーデルの混合浴液を
約2時間で滴下した。滴下終了後、攪拌を続けながら上
記フラスコを水浴で加熱し、反応混合物を約10時間還
流させた。 還流後、水5DOmlを加えて反応を停止し、エーテル
層をデカンテーションにより分離し、51普%の塩醒水
溶液で6回、つづいて10重量んの炭酸水素す) IJ
ウム水浴液で6回洗浄し、最後に上記エーテル浴液に無
水硫酸ナトリウムを添加して一昼夜放置して乾燥した。 乾燥剤を分離後、エチルエーテルを留去し、減圧法面に
よりメタクリル酸α−メチルベンジル(沸点:60〜6
6℃10.2noni(j’ ) 1501を得た。 合成1+It 5 メタクリルl’121−(七)置換フェニル)エチルの
合成は、合成例1〜2で示さ才lた手順と同様にして行
なった。なお、合成スギームは次の通りである。 1も (但し、ltlはアルギル基、アリール楠、アルアルキ
ル基又はハロゲン原子を表わす。)すなわち、1−(モ
ノ置換フェニル)エタノールとトリエチルアミンをエー
テル中で攪1’l’ L、それにメタクリル酸クロライ
ドな滴下して、脱堪酸反応を行なうことによりメタクリ
ル酸1−(モノ置換フェニル)エチルを得た。 合成例4 メタクリル酸1−メチA−1−(モノ置換フェニル)エ
チルの合成は合成例1〜2で示された手順と同様にして
行なった。なお、合成スキームは次の通りである。 Cト1゜ ri。 (但し、H,はアルキル基、アリール基、アルアルキル
基又はハロゲン原子を表わす。)すなわち、1−メチA
−1−(モノ置換フェニル)エタノールとトリエチルア
ミンをエーテル中で攪拌し、それにメタクリル酸クロラ
イドを1薗下して、脱塩酸反応を行なうことによりメタ
クリル酸1−メチA−1−(モノ置換フェニル)エチル
ヲ得た。 合成例5 攪拌器、還流冷却器、滴下ロートをイ・jした11の三
つロフラスコにシフTニルノ大?ノール13sy、t−
IJエチルアミン106g、乾燥エーテル240m1と
塩化第一銅2.4 gを入れ、滴下ロートからメタクリ
ル酸クロライド94.9と乾燥エーテル240meの混
合浴液を攪拌しなから約1時間で滴下した。その後3時
間加熱還流させて反応さ)にだ。上澄みの反応生成物の
エーテルM 7&を分1111fしたのち、残存する固
体中の生成物をエーテルで711jl jlb lハし
た。両エーテルMiを合わせて水30[]mlで4回洗
浄した。この洗#Ikをニーデル150m/で2回抽出
し、前者のエーテル浴液と合わせ、これを杓ひ水500
m1で1回、次いで2N−J’AA 111!l730
0yn/でろ回、史に0.7N−jg、炭酸ナトリウi
、、 600m1 テ2 回洗浄したのち、50&の無
水1pIC酸マグネシウムで一昼夜乾燥させた。この重
液からエーテルを溜去し、メタクリル酸ジフェニルメチ
ルの粗結晶を得た。これを石油エーテルより再結晶した
のち、を種度I】−ヘキサンで円結晶して翁q製メタク
リル酸ジフェニルメチル1s2y (融点ニア8〜79
℃)を得たー 合成例6 合成例1で得たメタクリル酸α、α−ジメチルペンジノ
し5gをアゾビスイソブチロニトリル004g を重合
開始剤として1.4i0Cで10時間、塊状重合させた
。尚、重合はN2ガスを封入した封管中で行なった。 得られた重合物を約20m1のトルエンに溶解しガラス
フィルターで濾過して少量の不溶物を除いたのち、約5
00mA!のメタノール中に投じ、白色粉末状の重合体
を得た。この重合体のN量平均分子量は液体クロマトグ
ラフィーにより測定した結果、ポリスチレン換算で約1
20万であった。 合成例7 合成例2で得たメタクリル酸α−メチルベンジル5gを
アゾビスイソブチロニトリル0.04.9 を重合開始
剤として、60℃で10時間、塊状重合させた。得られ
た1合物を合成例6と同様にして精製し、重量平均分子
量約150万のポリ(メタクリル酸α−メチルベンジル
)を得た。 実施例1 合成例6で得たポリ(メタクリル酸α、α−ジメチルベ
ンジル)をトルエンに溶)i’rさせ、5mfit%の
レジスト溶液を作成した。つづいて、上記レジスト溶液
をシリコンウェハ上に1100Orpででスピンコーテ
ィング[2て、07μm厚の高分子被膜を形成させた。 これを90℃で30分間シリベークしたのち、電子線照
射装置内に入れて、真空中加速電圧20KVの電子線に
よって、場所的に照射量の異なる照射を行なった。これ
をす) IJウムメチラートの5重量%のメタノール溶
液からなる現像液あるいはメチルイソブチルケトンーイ
ソグロビルアルコール(1:3容積比)からなる現像液
に6分間浸漬したのち、メタノールあるいはイングロビ
ルアルコールでリンスし、被照射部分を溶解させて除去
した。種々の異なる照射量で1it(射した箇所につい
て、薄膜段差計を用いて残存高分子被膜の膜厚を測定し
、現像後残存膜厚(規格化)を電子線照射量(クーロン
/cal )に対してブロットシ、感電子線特性を表わ
す第2図不−得た。 これより残膜率が零となる最l」・照射量を求めたとこ
ろ、前記したアルカリ現像液を用いた場合、8X10−
’クーロン/C肩でキ)す、有機現像液を用いた場合6
X10−’クーロン/′詞であり、アルカリ現像を行な
うことにより、たとえば代表的なポジ形レジストである
ポリメタクリル酸メチルに比し、1桁以上の高い感度を
示すことがわかった。 次いで、アルゴンガス圧2X10−’ Torr1イオ
ンエネルギー密度0.25W/A*Iによるイオンエツ
チングを行なったところ、この重合体のイオンエツチン
グ速度は200A/分であり、ポリメタクリル酸メチル
のイオンエツチング速度の約50%であり、低かった。 シリコン酸化膜のイオンエツチング速度は約2004/
分であることから、エツチングの不均一性等を考慮して
シリコン酸化膜の2倍以十の厚さのレジスト膜を塗布す
ることにより基板のエツチングが可能である。 実施例2 合成例7で得たポリ (メタクリル酸α−メチルベンジ
ル)を6]L量%のトルエン@液とし実施例1と同様に
してシリコンウェハ」−に1μm厚の高分子被膜な形成
させた。ついで90℃で30分間、プリベークしたのち
加速電圧20KVの電子線を照射し、ナトリウムメナラ
ートの5 、iff iff%メタノール済液で現像し
た、残膜率が零となる最小照射量を求めた所5X10−
’クーロン/IIであり、コントラストを示ずガンマ値
が5と大きく、Wr像性に優れていることが確認された
1、 実施例3〜8 合成例6および7と同様にして各種組成の放射線感応性
高分子材料を合成し、実施例1および2と同様にしてト
ルエンに溶解させてレジスト浴液を作成した。これをシ
リコンウェハ上にスピンコーティングして、約1μm厚
の高分子被膜を形成させた。 次いで、加速電圧20!<Vの電子線または加速電圧1
 oKVの回転水冷式銀の対陰イがからの波長4.2A
の軟X線を用いて電子線感度またはX態感度を求 めブ
こ。 それらの結果をまとめて表に示すが、いずれも放射線に
対する感応性が茜く、また解像性もすぐれており、すぐ
れたポジ形レジストの得られていることが確認された。 実施例9 実施例1と同様にして作成したシリコンウェハ上のポリ
(メタクリル酸(χ、α−ジメチルベンジル)の0.7
μ7i厚の薄膜に、場所的に照射61の異なる電子線照
射を行ない、トリエチルアミンの5重量%のメタノール
溶液からなる現像液、水酸化ナトリウムの5重置%のメ
タノール溶液からなる原像液、あるいはテトラメチルア
ンモニウムハイドロオキサイドの5皿量%水浴液からな
る現像級を用いて、被照射部分を溶解させて除去した。 実施例1と同様にして残膜率が′岑と/jる最小照射量
を求めたところ、それぞれ8X10’Ω包、 1.2X
10 ’つ祇1.2X10 ’ C,台であり、現像液
として神々のアルカリ浴液が使用できることか確認され
た。 比較例1,2 実施例と同様にして谷411!組成の放射線感応性高分
子材料(但し、本発明によるものではないもの)を合成
1〜、電子線感度を求めた。その結果を表に示したが、
本比較例におけるものはいずれも電子線に対する感応性
が悪(、実用に供し得ぬものでル)った。 以−Lの1説明に明らかなように、本発明による放射線
感応計高分子拐料を、例えば電子線レジストと1〜で半
導体素子製作用クロムマスクの製作に用いれば極めてパ
ターン精度の高いマスクを作製することができる。また
、電子線照射による重接描画やX線の一括照射により極
めてパターン精度の高いレジスト膜を形成させることが
でき、半導体工業の分野において、従来の写真食刻技術
に代って、超微細化半導体等の製造に実用できるもので
ある。以上のようにして、本発明による一分子材料は極
めて効用の大なるものである。
[Secondly, CI-II as well. H. (In the formula, 1. represents a methyl group, ethyl group, n-propyl group, or phenyl group, and 1 (2. represents ice water, an argyl group, an aryl group, or an aralkyl group. 1 also represents hydrogen, an alkyl group, an aryl group, an aralkyl group, or a halogen atom. In the formula, 1 represents a methyl group, ethyl group, n-propyl group, or phenyl group, and approximately represents an alkyl group, aryl group, or aralkyl group, and the ratio is hydrogen, an alkyl group, an aryl group, an aralkyl group, or (Represents a halogen atom. n represents a numerical value indicating the degree of polymerization.) An α-substituted acrylic ester polymer was found. It is used as a combination or a copolymer of two or more monomers.Furthermore, a repeating unit consisting of an α-substituted acrylic acid ester polymer represented by the above general formula f+'L and Gl. Co-11 [combinations] containing repeating units obtained by 111-combination of addition-intellectual monoliths with 11-1 can also be used as lj't QJ-ray heat-sensitive organic polymer materials. That is, the above-mentioned IIL combinations are 1 '1 Oji Line, X
In addition to cutting polymer chains by irradiation with high-energy radiation such as ion beams or ion beams, carboxyl groups (-C(ni)II) are generated in molecules, and as a result, the irradiated part Since it is soluble in IJ% solution, it can be used as a positive radiation-sensitive organic polymer that can be developed with alkali. It has excellent resistance to etching 1/j: In addition, since only the irradiated portion becomes soluble due to alkaline development, a resist pattern with extremely high ii4+ l')'I' image quality can be obtained, resulting in radiation sensitivity. 1/l: d) By performing alkaline reaction 1□□□, it becomes extremely ll/I< /:
For example, polymethacrylic acid α, α-dimethylbenzyl (
In the general formula (2) described above, R1 is a methyl group,
The figure shows the change in the infrared absorption spectrum when (, 2 represents a methyl group and R8 represents hydrogen) is irradiated with an electron beam. That is, the infrared absorption spectrum of polymethacrylic acid α,α-dimethylbenzyl before electron beam irradiation is as shown in Figure 1.
o −' C/alr electron beam irradiation, as shown in Figure 2, 1729.1132.764 and 70
The absorption characteristic of α,α-dimethylbenzyl polymethacrylate at 0cm-' decreases, and instead the absorption of 1707.1175 and 1265tyn' characteristic of polymethacrylic acid appears, and the carboxyl group (-(:00H )
was confirmed to be generated. In addition, 6 in the figure is an infrared absorption spectrum of polymethacrylic acid synthesized separately, and is shown as a reference. Since polymethacrylic acid produced by electron beam irradiation is alkali-soluble, only the electron beam irradiated area can be selectively removed by alkaline development.
A positive resist pattern can be obtained. Next, according to the present invention, 1M φ)tj '4-ru4'' book 1
I will explain about it. The radiation-sensitive organic polymer used in the present invention can be obtained as follows. In other words, 1? . , 1 Crystal 1 et al. 1 (6 (In the formula, R represents a methyl group, ethyl group, +1-propyl group, or phenyl group, It represents hydrogen, an argyl group, an aryl group, or an aralgyl group J, l; (an alkyl group substituted with an aryl group), and 几. represents hydrogen, an alkyl group, an aryl group, an aralkyl group, or a halogen atom. 〇 Random = C ■ -0 ζ Hole (In the formula, the value represents a methyl group, ethyl group, n-propyl group, or phenyl group, the ratio represents an alkyl group, aryl group, or aralkyl group, and the ratio represents hydrogen, alkyl group) represents a group, an aryl group, an aralkyl group, or a halogen atom.+
- + one time - one ice cream - table - b - su -
) Polymer monthly yield obtained by combining one or more of the monomers represented by the formula (5) or (1) by radical polymerization or anionic polymerization, or by combining one or more of the monomers represented by the general formula (5) or (1).
A polymeric H material obtained by combining one type of 1- and an addition-polymerizable monomer with C1, =C group -fili l:J,''- by vinyl polymerization is radiation-sensitive. Used as an organic polymer. Incidentally, regarding CI (,=C group-containing monomers which are copolymerized with monomers represented by the general formula (A) or (17), such as methacrylic acid alkyl esters, etc. For those in which a carboxyl group (-00011) is generated in the polymer by irradiation with radiation, any copolymerization composition with the monomer shown in general formula (A) or (1'9) may be used, and α-methyl For polymers such as styrene and isobutylene in which carboxyl groups are not generated in the polymer by irradiation with radiation, the copolymerization composition is as follows: 999 molar ratio, preferably 90 to 001 molar ratio.If it is more than 90 molar ratio, the alkali solubility of the irradiated area after radiation irradiation will not be large, resulting in low radiation sensitivity, making it impractical for practical use. When using the radiation-sensitive organic polymer material of the present invention to form a pattern of a semiconductor element, etc.,
It is used dissolved in a common organic solvent such as toluene, and is usually spin-coated onto a device substrate. After coating, prebaking at appropriate temperature conditions,
After irradiating a desired pattern with radiation, a resist pattern is obtained by dissolving the irradiated portion in a developer. At this time, a methyl isobutyl ketone-isoglobil alcohol organic solvent can also be used as the developing solution, but it is possible to use a high-resolution resist F with a small amount of radiation exposure needle.
To obtain a pattern, use an alkaline developer, for example, a developer prepared by dissolving sodium alcoholade in alcohol, an organic or inorganic basic developer such as pyridine/piperidine, trimethylamine, triethylamine, sodium hydroxide, tetramethylammonium hydroxide, etc. It is extremely convenient to use a liquid solution prepared by dissolving the substance in alcohol or the like. The present invention will be explained in detail below with reference to Synthesis Examples and Examples. Add ethyl yo-tyl and α. α-Dimethylbenzyl alcohol 139. ! I+,)
1) 1) Add 250 ml of ethylamine, press #1, and drop a mixed bath solution of 156 g of methacrylic acid chloride and 200 yy+l of ethyl ether from 7N-1" over a period of about 5 hours. After dropping, continue IW stirring. The upper flask was heated in a water bath, and the reaction mixture was refluxed for about 5 hours. After reflux, 500 Tnl of water was added to stop the reaction. The ether layer was separated by decantation, and saturated ammonium chloride was added. Washed 6 times with an aqueous solution and then 3 times with a saturated sodium carbonate solution.Finally, anhydrous sodium chloride was added to the ether bath solution and left to dry overnight.After separating the desiccant, Ethyl ether is distilled off, θ
, 129 g of α,α-dimethylbenzyl methacrylate (?Jli point: 58-61°C, 10.6 degrees Celsius) was obtained by pouring it onto NI. Put 200ml of ethyl ether into a three-necked flask, add 129g of 1-phenylethanol and 200ml of triethylamine, stir, and add 130ml of methacrylic acid chloride from the dropping funnel. A mixed bath solution of F and 200 ml of ethyl needle was added dropwise over about 2 hours. After the dropwise addition was completed, the flask was heated in a water bath while stirring, and the reaction mixture was refluxed for about 10 hours. After refluxing, 5 DO ml of water was added to stop the reaction, the ether layer was separated by decantation, and diluted 6 times with a 51% salt aqueous solution, followed by 10 wt. of hydrogen carbonate).
Finally, anhydrous sodium sulfate was added to the ether bath solution, and the mixture was left to stand overnight to dry. After separating the drying agent, ethyl ether was distilled off, and α-methylbenzyl methacrylate (boiling point: 60-6
6° C. 10.2 noni(j') 1501 was obtained. Synthesis 1+It 5 methacrylic l'121-(7) Substituted phenyl)ethyl was synthesized in a similar manner to the procedure demonstrated in Synthesis Examples 1-2. The synthetic sugeem is as follows. 1 (However, ltl represents an argyl group, an aryl camphor, an aralkyl group, or a halogen atom.) That is, 1'l' L of 1-(monosubstituted phenyl)ethanol and triethylamine are stirred in ether, and methacrylic acid chloride is added to the mixture. 1-(monosubstituted phenyl)ethyl methacrylate was obtained by adding the mixture dropwise and carrying out an acid-reducing reaction. Synthesis Example 4 Synthesis of 1-methyA-1-(monosubstituted phenyl)ethyl methacrylate was carried out in the same manner as in Synthesis Examples 1 and 2. The synthesis scheme is as follows. C 1゜ri. (However, H represents an alkyl group, an aryl group, an aralkyl group, or a halogen atom.) That is, 1-methyA
-1-(mono-substituted phenyl) 1-methacrylic acid A-1-(mono-substituted phenyl) is obtained by stirring ethanol and triethylamine in ether, adding one volume of methacrylic acid chloride thereto, and performing a dehydrochloric acid reaction. I got Ethyl. Synthesis Example 5 A 11-inch three-bottle flask equipped with a stirrer, a reflux condenser, and a dropping funnel was placed in a Schiff-T Nirno-sized flask. norl 13sy, t-
106 g of IJ ethylamine, 240 ml of dry ether, and 2.4 g of cuprous chloride were added, and a mixed bath solution of 94.9 ml of methacrylic acid chloride and 240 ml of dry ether was added dropwise from the dropping funnel over about 1 hour without stirring. Thereafter, the mixture was heated under reflux for 3 hours to complete the reaction. After distilling the supernatant reaction product into ether M7, the product in the remaining solid was triturated with ether. Both ethers Mi were combined and washed four times with 30 [] ml of water. This wash #Ik was extracted twice with a needle of 150 m/m, combined with the former ether bath solution, and this was washed with a ladle of water of 500 m/m.
once in m1, then 2N-J'AA 111! l730
0yn/dero times, history 0.7N-jg, sodium carbonate i
After washing twice with 600ml of water, it was dried with 50ml of anhydrous 1pIC acid magnesium overnight. Ether was distilled off from this heavy liquid to obtain crude crystals of diphenylmethyl methacrylate. After recrystallizing this from petroleum ether, it was circularly crystallized from seed degree I]-hexane to obtain diphenylmethyl methacrylate 1s2y (melting point near 8-79
- Synthesis Example 6 5 g of α,α-dimethylpendino methacrylic acid obtained in Synthesis Example 1 was subjected to bulk polymerization at 1.4 iOC for 10 hours using 0.04 g of azobisisobutyronitrile as a polymerization initiator. . The polymerization was carried out in a sealed tube filled with N2 gas. The obtained polymer was dissolved in about 20 ml of toluene and filtered through a glass filter to remove a small amount of insoluble matter.
00mA! of methanol to obtain a white powdery polymer. As a result of measuring the N weight average molecular weight of this polymer by liquid chromatography, it was found that the average molecular weight of this polymer was approximately 1
It was 200,000. Synthesis Example 7 5 g of α-methylbenzyl methacrylate obtained in Synthesis Example 2 was subjected to bulk polymerization at 60° C. for 10 hours using 0.04.9 g of azobisisobutyronitrile as a polymerization initiator. The obtained compound 1 was purified in the same manner as in Synthesis Example 6 to obtain poly(α-methylbenzyl methacrylate) having a weight average molecular weight of about 1.5 million. Example 1 Poly(α, α-dimethylbenzyl methacrylate) obtained in Synthesis Example 6 was dissolved in toluene to prepare a 5 mfit% resist solution. Subsequently, the above resist solution was spin-coated on the silicon wafer at 1100 rpm to form a polymer film with a thickness of 07 μm. After silibakeing this at 90° C. for 30 minutes, it was placed in an electron beam irradiation device and irradiated with an electron beam at an acceleration voltage of 20 KV in a vacuum with different irradiation doses depending on the location. After soaking for 6 minutes in a developing solution consisting of a 5% by weight methanol solution of IJ um methylate or a developing solution consisting of methyl isobutyl ketone-isoglobil alcohol (1:3 volume ratio), it was soaked in methanol or inglobil alcohol. The irradiated area was dissolved and removed by rinsing. The film thickness of the remaining polymer film was measured using a thin-film step meter for the irradiated area at various different irradiation doses, and the remaining film thickness (normalized) was expressed as the electron beam irradiation amount (coulombs/cal). On the other hand, Figure 2, which shows the electron beam sensitivity characteristics of the blot film, was obtained.From this, the maximum irradiation amount at which the residual film rate becomes zero was determined.
'Coulomb/C shoulder), when using an organic developer 6
X10-'coulombs/', and it was found that by performing alkaline development, it exhibited a sensitivity that was one order of magnitude higher than that of, for example, polymethyl methacrylate, which is a typical positive resist. Next, when ion etching was performed at an argon gas pressure of 2 x 10-' Torr1 and an ion energy density of 0.25 W/A*I, the ion etching rate of this polymer was 200 A/min, which was lower than the ion etching rate of polymethyl methacrylate. It was about 50%, which was low. The ion etching rate of silicon oxide film is approximately 2004/
Therefore, etching of the substrate is possible by applying a resist film that is at least twice as thick as the silicon oxide film, taking into account the non-uniformity of etching. Example 2 The poly (α-methylbenzyl methacrylate) obtained in Synthesis Example 7 was made into a 6]L% toluene solution and a 1 μm thick polymer film was formed on a silicon wafer in the same manner as in Example 1. Ta. After prebaking at 90°C for 30 minutes, the sample was irradiated with an electron beam at an accelerating voltage of 20 KV, and developed with a 5% methanol solution of sodium menalate.The minimum irradiation dose at which the residual film rate was zero was determined. 5X10-
' Coulomb/II, showed no contrast, had a large gamma value of 5, and was confirmed to have excellent Wr image properties.1. Examples 3 to 8 Radiation of various compositions was prepared in the same manner as in Synthesis Examples 6 and 7. A sensitive polymer material was synthesized and dissolved in toluene in the same manner as in Examples 1 and 2 to prepare a resist bath solution. This was spin-coated onto a silicon wafer to form a polymer film about 1 μm thick. Next, the acceleration voltage is 20! <V electron beam or accelerating voltage 1
Wavelength 4.2A from oKV rotating water-cooled silver countercurrent
Determine the electron beam sensitivity or X-state sensitivity using soft X-rays. The results are summarized in the table, and it was confirmed that all of them had good sensitivity to radiation and excellent resolution, and that an excellent positive resist was obtained. Example 9 0.7% of poly(methacrylic acid (χ, α-dimethylbenzyl)) on a silicon wafer prepared in the same manner as in Example 1
A thin film with a thickness of μ7i is irradiated with electron beams with different irradiation levels at different locations, and a developing solution consisting of a 5% by weight methanol solution of triethylamine, an original image solution consisting of a 5% by weight methanol solution of sodium hydroxide, or The irradiated area was dissolved and removed using a developer consisting of a 5% water bath solution of tetramethylammonium hydroxide. In the same manner as in Example 1, the minimum irradiation dose at which the remaining film rate was determined was 8×10′Ω and 1.2×, respectively.
It was confirmed that the size was 10' x 1.2 x 10' C, and God's alkaline bath solution could be used as the developer. Comparative Examples 1 and 2 Tani 411 in the same manner as in the example! A radiation-sensitive polymer material having a composition (not according to the present invention) was synthesized from Synthesis 1, and the electron beam sensitivity was determined. The results are shown in the table,
All of the samples in this comparative example had poor sensitivity to electron beams (and could not be put to practical use). As is clear from the explanation in Part 1 below, if the radiation sensitizer polymeric material according to the present invention is used, for example, in conjunction with an electron beam resist to produce a chrome mask for semiconductor device production, a mask with extremely high pattern accuracy can be produced. It can be made. In addition, it is possible to form a resist film with extremely high pattern precision by double contact drawing using electron beam irradiation or by batch irradiation with X-rays, and in the field of semiconductor industry, it is possible to form a resist film with extremely high pattern precision. It can be put to practical use in manufacturing semiconductors and the like. As described above, the monomolecular material according to the present invention is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポリメタクリル酸α、α−ジメチルベンジルの
電子線照射ll1lおよび醒子線照射後の赤外線吸収ス
ペクトルと、ポリメタクリル酸の赤外応性高分子材料の
感電子線%’+4を示す図である。 1〜3:赤外純吸収スペクトル
Figure 1 shows the infrared absorption spectrum of polymethacrylic acid α, α-dimethylbenzyl after electron beam irradiation ll1l and Seiko ray irradiation, and the electron beam sensitive %'+4 of the infrared responsive polymer material of polymethacrylic acid. It is. 1-3: Infrared pure absorption spectrum

Claims (1)

【特許請求の範囲】 1 電子線、X線、イオンビーム等の高エネルギーな放
射線の照射によって分子中にカルボキシル基(−COO
H)が生成する有機高分子化合物からなることを特徴と
するポジ形レジストとなる放射線感応性有機高分子制別
。 2 有機高分子化合物が 1へ ! CHLも。 (式中1(1はメチル基、エチル基、n−プロピル基又
はフェニル基を表わし、R1は水素、アルキル基、アリ
ール基又はアルアルキル基(アルキル基にアリール基が
置換したもσ))を表わし、1へは水素、アルキル基、
アリール基、アルアルキル基又はノ・ロゲン原子を表わ
す。 nは重合度を示す数値を表わす。) ■ C(C+ L ) li、。 1(、。 (式中It、はメチル基、エチル基、[1−プロピル基
又はフェニル基を表わし、1モ、はアルキル基、アリー
ル基、又はアルアルキル基【(を表わし、■も、は水素
、アルキル基、アリール基、アルアルキル基又はハロゲ
ン原子を表わす。■は重合度を示す数値を表わす。) を有するα−IK換アクリル酸エステル系垂合体からな
ることを特徴とする特許請求の範囲第1項記載の放射線
感応性有機高分子材料。 6、 有機高分子化合物が CHR。 ts (式中1t1はメチル基、エチル基、n−プロピル基又
はフェニル基を表わし、几、は水素、アルキル基、アリ
ール基又はアルアルキル基(アルキル基にアリール基が
置換したもの)を表わし、R1は水素、アルキル基、ア
リール基、アルアルキル基又はハロゲン原子を表わす。 nは重合度を示す数値を表わす。、) あるいは 喝 C(CI 1. ) 11.。 ■tJ (式中R,はメチル基、エチル基、n−プロピル基又は
フェニル基を表わし、It、はアルキル基、アリール基
、又はアルアルキルJ、9を表わし、1%、は水素、ア
ルキル基、アリール基、アルアルキル基又はハロゲン原
子を表わす。nは重合度を示す数値を表わす。) を有するα−置換アクリル酸エステル系重合体と、Cl
−1,=C基を有する伺加111.合性単針体の重合に
より得られた反復学位を含む共重合体であることを特徴
とする特♂I・請求の範囲第1項記載の放射線感応性有
機高分子材料。
[Claims] 1. Carboxyl groups (-COO
H) A radiation-sensitive organic polymer compound forming a positive resist characterized by being composed of an organic polymer compound produced by H). 2 Organic polymer compounds become 1! CHL too. (In the formula, 1 (1 represents a methyl group, ethyl group, n-propyl group, or phenyl group, R1 is hydrogen, an alkyl group, an aryl group, or an aralkyl group (also σ in which the alkyl group is substituted with an aryl group)) 1 is hydrogen, an alkyl group,
Represents an aryl group, an aralkyl group, or a norogen atom. n represents a numerical value indicating the degree of polymerization. ) ■ C(C+L) li,. 1(,. (In the formula, It represents a methyl group, ethyl group, [1-propyl group, or phenyl group, 1mo represents an alkyl group, aryl group, or aralkyl group [(, represents hydrogen, an alkyl group, an aryl group, an aralkyl group, or a halogen atom.■ represents a numerical value indicating the degree of polymerization). The radiation-sensitive organic polymer material according to Item 1. 6. The organic polymer compound is CHR. It represents an alkyl group, an aryl group, or an aralkyl group (an alkyl group substituted with an aryl group), and R1 represents hydrogen, an alkyl group, an aryl group, an aralkyl group, or a halogen atom. n is a numerical value indicating the degree of polymerization. ) or C (CI 1.) 11. ■tJ (wherein R represents a methyl group, ethyl group, n-propyl group, or phenyl group, and It represents an alkyl group, an aryl group, or an alkyl group. a-substituted acrylic ester polymer having alkyl J, 9; 1% represents hydrogen, an alkyl group, an aryl group, an aralkyl group, or a halogen atom; n represents a numerical value indicating the degree of polymerization) and Cl
-1,=C group containing 111. The radiation-sensitive organic polymeric material according to claim 1, characterized in that it is a copolymer containing a repeating degree obtained by polymerizing a polymerizable mononeedle.
JP56167173A 1981-10-21 1981-10-21 Radation sensitive organic polymer material Pending JPS5868743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56167173A JPS5868743A (en) 1981-10-21 1981-10-21 Radation sensitive organic polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56167173A JPS5868743A (en) 1981-10-21 1981-10-21 Radation sensitive organic polymer material

Publications (1)

Publication Number Publication Date
JPS5868743A true JPS5868743A (en) 1983-04-23

Family

ID=15844766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167173A Pending JPS5868743A (en) 1981-10-21 1981-10-21 Radation sensitive organic polymer material

Country Status (1)

Country Link
JP (1) JPS5868743A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752635A (en) * 1985-12-25 1988-06-21 Toyo Soda Manufacturing Co., Ltd. Halogen-containing polyacrylate derivatives
US5225316A (en) * 1990-11-26 1993-07-06 Minnesota Mining And Manufacturing Company An imagable article comprising a photosensitive composition comprising a polymer having acid labile pendant groups
US5294484A (en) * 1991-08-03 1994-03-15 Sony Corporation Polyvinyl aromatic carboxylic acid ester and video printing paper
US5552260A (en) * 1992-11-30 1996-09-03 Minnesota Mining And Manufacturing Company Shoot and run printing materials
EP1835342A2 (en) 2006-03-14 2007-09-19 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
JP2008096951A (en) * 2006-03-14 2008-04-24 Fujifilm Corp Positive resist composition and pattern forming method using the same
WO2017002833A1 (en) * 2015-06-30 2017-01-05 富士フイルム株式会社 Photocurable composition, pattern forming method and method for manufacturing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847320A (en) * 1971-10-12 1973-07-05
JPS5234934B2 (en) * 1974-09-27 1977-09-06
JPS55159436A (en) * 1979-05-14 1980-12-11 Fujitsu Ltd Positive type resist material and pattern forming method
JPS5767928A (en) * 1980-10-15 1982-04-24 Nippon Telegr & Teleph Corp <Ntt> Positive type resist for dry etching
JPS57118243A (en) * 1981-01-14 1982-07-23 Toshiba Corp Formation of fine resist pattern
JPS57122430A (en) * 1981-01-22 1982-07-30 Nippon Telegr & Teleph Corp <Ntt> Positive type resist material with dry etching resistance
JPS5848048A (en) * 1981-09-17 1983-03-19 Matsushita Electric Ind Co Ltd Resist material for use in far ultraviolet exposure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847320A (en) * 1971-10-12 1973-07-05
JPS5234934B2 (en) * 1974-09-27 1977-09-06
JPS55159436A (en) * 1979-05-14 1980-12-11 Fujitsu Ltd Positive type resist material and pattern forming method
JPS5767928A (en) * 1980-10-15 1982-04-24 Nippon Telegr & Teleph Corp <Ntt> Positive type resist for dry etching
JPS57118243A (en) * 1981-01-14 1982-07-23 Toshiba Corp Formation of fine resist pattern
JPS57122430A (en) * 1981-01-22 1982-07-30 Nippon Telegr & Teleph Corp <Ntt> Positive type resist material with dry etching resistance
JPS5848048A (en) * 1981-09-17 1983-03-19 Matsushita Electric Ind Co Ltd Resist material for use in far ultraviolet exposure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752635A (en) * 1985-12-25 1988-06-21 Toyo Soda Manufacturing Co., Ltd. Halogen-containing polyacrylate derivatives
US4822721A (en) * 1985-12-25 1989-04-18 Toyo Soda Manufacturing Co., Ltd. A method of image-wise exposing and developing halogen-containing polyacrylate derivatives
US5225316A (en) * 1990-11-26 1993-07-06 Minnesota Mining And Manufacturing Company An imagable article comprising a photosensitive composition comprising a polymer having acid labile pendant groups
US5314785A (en) * 1990-11-26 1994-05-24 Minnesota Mining And Manufacturing Company Photosensitive materials
US5294484A (en) * 1991-08-03 1994-03-15 Sony Corporation Polyvinyl aromatic carboxylic acid ester and video printing paper
US5552260A (en) * 1992-11-30 1996-09-03 Minnesota Mining And Manufacturing Company Shoot and run printing materials
EP1835342A2 (en) 2006-03-14 2007-09-19 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
JP2008096951A (en) * 2006-03-14 2008-04-24 Fujifilm Corp Positive resist composition and pattern forming method using the same
EP1835342A3 (en) * 2006-03-14 2008-06-04 FUJIFILM Corporation Positive resist composition and pattern forming method using the same
US7625690B2 (en) 2006-03-14 2009-12-01 Fujifilm Corporation Positive resist composition and pattern forming method using the same
WO2017002833A1 (en) * 2015-06-30 2017-01-05 富士フイルム株式会社 Photocurable composition, pattern forming method and method for manufacturing device
JPWO2017002833A1 (en) * 2015-06-30 2018-04-19 富士フイルム株式会社 Photocurable composition, pattern forming method and device manufacturing method
US10739678B2 (en) 2015-06-30 2020-08-11 Fujifilm Corporation Photocurable composition, pattern forming method, and method for manufacturing device

Similar Documents

Publication Publication Date Title
JP3847991B2 (en) Copolymer resin and method for producing the same, photoresist containing the copolymer resin, and semiconductor element
KR100301354B1 (en) Resist Composition and Resist Pattern Formation Method
EP0519297B1 (en) Radiation-sensitive composition comprising as binders novel polymers with units derived from amides of alpha,beta-unsaturated carboxylic acids
JP7215005B2 (en) Polymer and method for producing same, positive resist composition, and method for forming resist pattern
TW201238984A (en) Monomers, polymers, photoresist compositions and methods of forming photolithographic patterns
DE4207261C2 (en) Styrene monomers with 2,2-bis-trifluoromethyl-oxaethano bridge members, polymers and their use
TW201241019A (en) Polymers, photoresist compositions and methods of forming photolithographic patterns
TW201420611A (en) Photoresists comprising multiple acid generator compounds
WO2021157551A1 (en) Composition for lithography and pattern-forming method
JP3643491B2 (en) COMPOUND, COPOLYMER AND METHOD FOR PRODUCING SAME, PHOTORESIST COMPOSITION, METHOD FOR FORMING PHOTORESIST PATTERN USING THE SAME, AND SEMICONDUCTOR DEVICE
JP2000086725A (en) Photoresist monomer, photoresist copolymer, production of photoresist copolymer, photoresist composition, formation of photoresist pattern and semiconductor element
JPS5868743A (en) Radation sensitive organic polymer material
KR100198408B1 (en) Resist material and process for use
DE4126409A1 (en) RADIATION-SENSITIVE MIXTURE WITH A POLYMERIC BINDING AGENT WITH UNITS OF (ALPHA) - (BETA) - UNSETTED CARBONIC ACIDS
JPS61249049A (en) Resist development method
JPH0160812B2 (en)
JP6750317B2 (en) Copolymer and positive resist composition
JPH09325473A (en) Radiation-sensitive resin composition
JPS61143746A (en) Novel high-energy ray sensitive material
JPS5868745A (en) Method of manufacturing embossed structures
JPS6349213B2 (en)
JPS59198448A (en) Radiation-sensitive organic high polymer material
JP4229392B2 (en) Method for producing acrylic or methacrylic acid ester having oxacyclopentyl group
JPS59223421A (en) Resist material
JPH0449706B2 (en)