[go: up one dir, main page]

JPS586762A - Centrifugal casting method - Google Patents

Centrifugal casting method

Info

Publication number
JPS586762A
JPS586762A JP10358781A JP10358781A JPS586762A JP S586762 A JPS586762 A JP S586762A JP 10358781 A JP10358781 A JP 10358781A JP 10358781 A JP10358781 A JP 10358781A JP S586762 A JPS586762 A JP S586762A
Authority
JP
Japan
Prior art keywords
layer
molten metal
casting
layers
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10358781A
Other languages
Japanese (ja)
Inventor
Toshiaki Morichika
森近 俊明
Junichi Sugitani
杉谷 純一
Takeshi Torigoe
鳥越 猛
Koji Tsuchida
土田 公司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP10358781A priority Critical patent/JPS586762A/en
Publication of JPS586762A publication Critical patent/JPS586762A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To produce a two-layered pipe wherein respective layers have prescribed uniform layer thicknesses and the adhesiveness between the layers is high in the manufacture in the two-layered centrifugally cast pipe by charging thermit simultaneously with the casting of the 2nd layer or after said casting. CONSTITUTION:In a centrifugal casting device, a required amt. of molten metal is charged to cast the 1st layer having design wall thickness. After the 1st layer solidifies down to the inner side thereof, the molten metal for the 2nd layer is charged to cast the 2nd layer of design wall thickness. In the stage of casting the 2nd layer, a proper amt. of thermit is charged thereto simultaneously with the charging of the molten metal or after said charging to remelt the thin-solidified layer (chill layer) of the 2nd layer produced in contact with the 1st layer by the quantity of heat evolved in accordance with thermit reaction. Despite the presence of the flux captured in the chill layer part (part of the flux charged after the casting of the 1st layer), it is floated and separated on the top surface of the molten metal for the 2nd layer by the remaining of said chill layer, and the 1st layer is melt-stuck to the 2nd layer, whereby the adhesiveness between both layers is improved.

Description

【発明の詳細な説明】 本発明は、遠心力鋳造方法、特に各層が所定の−均一な
層厚を有し、かつ層間の密着性にすぐれた二層遠心鋳造
管を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a centrifugal casting method, and more particularly to a method for manufacturing a two-layer centrifugally cast tube in which each layer has a predetermined and uniform layer thickness and has excellent interlayer adhesion.

二層遠心鋳造管は、二種の異なる金属を同心円状に鋳造
して二層構造とすることにより、各層の金属の特長を活
かし、苛酷な使用条件に耐え得るようにしたものであり
、例えば炭化水素類の熱分解・改質用反応管、いわゆる
タラツキングチューブなどとして用いられている。この
二層遠心鋳造管に所期の性能、特性を発揮させるには、
鋳造工程において、両層の金属の混り合いを防ぎ、各層
を所定の均一な層厚に形成せしめるとともに、両層を境
界面で金属学的に密着させ強固な結合状態にすることが
必要である。
Double-layer centrifugally cast pipes are made by casting two different metals concentrically to form a two-layer structure, making use of the characteristics of each layer of metal to withstand harsh usage conditions. It is used as a reaction tube for thermal decomposition and reforming of hydrocarbons, a so-called racking tube. In order to make this double-layer centrifugally cast pipe exhibit the desired performance and characteristics,
In the casting process, it is necessary to prevent the metals in both layers from mixing together, to form each layer to a predetermined uniform thickness, and to bring the two layers into metallurgical contact at the interface to create a strong bond. be.

二層遠心鋳造管は、遠心鋳造鋳型内に、外層(第1層)
としての金属溶湯を注入したのち、その内側面にフラッ
クスを投与し、ついで内層(第2層)となる金属溶湯を
注入することにより製造されるが、その場合に、第2層
金属溶湯の注入を比較的早い時点で行なうと、第1図C
I)に示すように鋳型(M)内の第1層金属(1)はそ
の表層部(1・1)が未凝固状態にあり、従って第1層
と第2層(2)は融合により容易に密着するものの、第
1層と第2層の溶融金属相互の溶融を生じる結果、同図
印に示すように、最終的に形成される第1層(1′)は
所期の層厚より薄いものとなり、−1第2層(2)は第
1層金属の多量の混入により、層厚が過大となるととも
に、当初の化学成分組成とは異なったものになってしま
う。
Two-layer centrifugal casting tube has an outer layer (first layer) inside the centrifugal casting mold.
It is produced by injecting molten metal as a layer, then applying flux to the inner surface of the molten metal, and then injecting molten metal to form the inner layer (second layer). If this is done at a relatively early point in time, Figure 1C
As shown in I), the surface layer (1.1) of the first layer metal (1) in the mold (M) is in an unsolidified state, so the first layer and second layer (2) are easily fused. However, as a result of mutual melting of the molten metals of the first and second layers, the finally formed first layer (1') is thicker than the intended layer thickness, as shown by the mark in the figure. The -1 second layer (2) becomes excessively thick due to the large amount of the first layer metal mixed in, and has a chemical composition different from the original one.

上記の不都合を回避するには、第1層を内側面まで完全
に凝固させ、かつ第2層溶湯の熱を受けても再溶融しな
い温度に降温したのちに第2層溶湯を注入するようにす
ればよいが、そうすると両層間の密着性に問題が生ずる
。すなわち、第2図に示すように、注入された第1層金
属溶湯(1)の内側面にフラックス(F)を投与し、そ
の状態で第1層(1)を凝固させたのち(同図〔I〕)
、第2層金属溶湯(2)を注入すると(同図〔■〕)、
該第2層は第1層との接触面に薄い凝固殻(チル層)(
2・1)を形成する(同図〔■〕)。その場合、フラッ
クス(F)の大部分は第2層溶湯の注入とともにその表
面に浮上するが、凝固殻(2・1)が早期に形成される
ため、一部の7ラツクスは浮上しきれず、そのまま第1
層(1)と第2層(2)の間に残、留した状態で各層の
凝固が完了する(同図〔■〕)。このため、両層間の結
合状態は極めて不完全なものとなり、両層間に残留した
フラックスは管材の致命的欠陥となる。
In order to avoid the above-mentioned disadvantages, it is necessary to completely solidify the first layer to the inner surface and cool it to a temperature at which it will not re-melt even when it receives the heat of the second layer molten metal, and then pour the second layer molten metal. However, if this is done, a problem will arise in the adhesion between the two layers. That is, as shown in Fig. 2, flux (F) is administered to the inner surface of the injected first layer molten metal (1), and the first layer (1) is solidified in that state. [I])
, when the second layer molten metal (2) is injected (same figure [■]),
The second layer has a thin solidified shell (chill layer) (
2.1) is formed (same figure [■]). In that case, most of the flux (F) floats to the surface with the injection of the second layer molten metal, but because the solidified shell (2.1) is formed early, some of the 7 fluxes cannot float completely. 1st as it is
Solidification of each layer is completed in a state where it remains between layer (1) and second layer (2) (Figure [■]). For this reason, the bond between the two layers becomes extremely incomplete, and the flux remaining between the two layers becomes a fatal defect in the tube material.

このような傾向は、特に、第2層金属の溶融点が第1層
金属のそれより高い程、顕著に現われる。
Such a tendency becomes more pronounced especially when the melting point of the second layer metal is higher than that of the first layer metal.

これを防止する方法としては、第2層金属溶湯の鋳造温
度を高めるかまたはその鋳造量を増やし、該溶湯の保有
熱量を高めることによって凝固殻(2・1)の形成を遅
らせ、もしくはその再溶融を図ることも考えられる。し
かしながら、前者の方法は、溶湯温度をそれほど高くす
ることができないから、その効果に限度があり、一方後
者の方法では、第2層厚の増大を伴なうため、薄い第2
層を必要とする場合には適用することができない。
As a method to prevent this, the formation of the solidified shell (2.1) is delayed by raising the casting temperature of the second layer molten metal or increasing the amount of casting to increase the amount of heat retained in the molten metal, or its regeneration. It is also possible to try to melt it. However, the former method cannot raise the temperature of the molten metal so high, so its effectiveness is limited, while the latter method requires an increase in the thickness of the second layer.
It cannot be applied when layers are required.

本発明は上記にかんがみてなされたものであり、第1層
を鋳造したのちに、第2層を鋳造するにあテ  、 たり、その鋳造と同時にもしくはその後に1、ルλット
、すなわち酸化鉄(FexOy)と金属アルミニウムと
がテルミット反応比で配合された粉末混合物を投与する
ことにより、両層間の密着性にすぐれた厚薄任意の層厚
を有する二層管を得る遠心力鋳造方法を提供する。
The present invention has been made in view of the above, and includes a method for casting the second layer after casting the first layer, or at the same time or after the casting. Provides a centrifugal casting method for obtaining a two-layer tube having an arbitrary layer thickness with excellent adhesion between the two layers by administering a powder mixture of iron (FexOy) and metal aluminum in a thermite reaction ratio. do.

以下、本発明方法について説明する。The method of the present invention will be explained below.

本発明方法によれば、遠心力鋳造装置において、まず常
法により所要量の金属溶湯を注入して設計肉厚を有する
第1層を鋳造する。第1層の内側には、内側面の酸化防
止を目的として通常用いられるフラックスを常法に従っ
て投与してよい。ついで、第1層がその内側面まで凝固
したのち、第2層金属溶湯を注入し、設計肉厚の第2層
を鋳造する。第2層の鋳造を、第1層内側面まで凝固し
たのちに行なうので、両層間の金属が混り合うことはな
い。
According to the method of the present invention, in a centrifugal casting apparatus, a required amount of molten metal is first injected in a conventional manner to cast a first layer having a designed thickness. A flux commonly used for the purpose of preventing oxidation on the inner surface may be applied to the inside of the first layer according to a conventional method. Then, after the first layer has solidified to its inner surface, a second layer molten metal is injected, and a second layer having a designed thickness is cast. Since the second layer is cast after solidifying up to the inner surface of the first layer, the metals between the two layers will not mix.

上記第2層の鋳造に際し、その溶湯の注入と同時もしく
はその後に適量のテルミットを投与し、第1層と接して
生ずる第2層の薄い凝固殻(チル層)を、下式で示され
るごときテルミット反応に伴なう発熱量にて再溶融させ
る。
When casting the second layer, an appropriate amount of thermite is administered at the same time as or after the injection of the molten metal, and a thin solidified shell (chill layer) of the second layer that is formed in contact with the first layer is formed as shown in the formula below. It is remelted by the heat generated by the thermite reaction.

FezOa+2A/ −AlzOs + 2Fe+20
0Kca/このチル層の再溶融によって、チル層部に捕
捉されていたフラックス(第1層鋳造後に投与されたフ
ラックスの一部)が存在しても第2層溶湯上面に浮上し
分離するとともに、第1層と第2層とが融着し、その密
着性は良好なものとなる。
FezOa+2A/-AlzOs+2Fe+20
0Kca/By remelting this chill layer, even if the flux (part of the flux injected after casting the first layer) that was trapped in the chill layer is present, it floats to the upper surface of the second layer molten metal and separates. The first layer and the second layer are fused and their adhesion becomes good.

すなわち、本発明は、第2層鋳造の際に投与されるテル
ミットを、チル層再溶融の熱源として機能させるもので
ある。このため、テルミットの投与量は、チル層の再溶
融に足る熱量をまかない得る量でなければならない。そ
の投与量は、第2層の鋳造量、その金属の比熱・溶融点
等により異なるが、通常、第2層溶湯iik1Kgに対
し、約0.2即以上であればよい。
That is, the present invention allows the thermite administered during second layer casting to function as a heat source for remelting the chill layer. Therefore, the dose of thermite must be sufficient to cover the amount of heat sufficient to remelt the chilled layer. The dosage varies depending on the casting amount of the second layer, the specific heat/melting point of the metal, etc., but it is usually about 0.2 kg or more per 1 kg of the second layer molten metal.

上記第2層の鋳造および所要量のテルミットの投与のの
ち、凝固を完了させ、その後第2層の内側のアルミナ層
(前記テルミット反応で生成)を剥離除去すれば、所定
の層厚と化学成分組成を備えた密着性の良好な二層管が
得られる。
After casting the second layer and dosing the required amount of thermite, solidification is completed, and the alumina layer inside the second layer (produced by the thermite reaction) is peeled off and the desired layer thickness and chemical composition are achieved. A two-layer tube with good adhesion and a good composition can be obtained.

上記テルミットの投与は、溶湯の注入と同様に鋳型の端
部に装着された端板に設けられている孔を介して行なえ
ばよい。その鋳型内への導入は、例えば空気などをキャ
リヤーガスとして行なうことができる。投与されるテル
ミットは、第2層溶湯に均一に分散することが望ましく
、このために、フラックスとの混合物として投与すると
よい。フ5”/クスはテルミットを流動化し、その分散
を促進する。このフラックスとしては、溶湯表面の酸化
防止に使用される一般的なものであってよい。
The thermite may be administered through holes provided in an end plate attached to the end of the mold, similar to the injection of molten metal. The introduction into the mold can be carried out using, for example, air as a carrier gas. It is desirable that the thermite to be administered is uniformly dispersed in the second layer molten metal, and for this purpose it is preferably administered as a mixture with a flux. The flux fluidizes the thermite and promotes its dispersion. This flux may be a commonly used flux for preventing oxidation on the surface of the molten metal.

なお、テルミットの反応により生成する鉄は、第2層溶
湯と融合するので、第2層厚がその分だけ増加するが、
これはその後の管内面切削工程で除去すればよく、ある
いはその増加分を見込んで、第2層溶湯注入量を調節す
ればよい。また、該鉄分の融合による化学成分組成の変
動も、あらかじめ第2層溶湯成分組成を適当に調節して
おくことにより容易に防ぐことができる。
In addition, since the iron produced by the thermite reaction fuses with the second layer molten metal, the thickness of the second layer increases by that amount.
This may be removed in the subsequent tube inner surface cutting step, or the amount of the second layer molten metal injected may be adjusted to account for the increase. Furthermore, fluctuations in the chemical composition due to the fusion of iron can be easily prevented by appropriately adjusting the composition of the second layer molten metal in advance.

なお、本発明方法は、その他の鋳造条件に特別の制限は
なく、例えば各層の溶湯の鋳造温度も通常どおりであっ
てよい。
In addition, in the method of the present invention, there are no particular restrictions on other casting conditions, and for example, the casting temperature of the molten metal of each layer may be the same as usual.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 遠心鋳造装置において、0.4%C−25%Cr −2
0%Ni−Fe溶湯25Kgを注入して設計肉厚15m
mの第1層を鋳造し、その内面に酸化防止のためのフラ
ックスを投与した。ついで第1層の内側面まで凝固した
のち、18 < Cr鋼溶湯5釉を注入し、層厚4mm
の第2層を鋳造するとともに、テルミット(酸化鉄(F
ezes) 75重量%、金属AI!25重量%)1即
を投与し、そのまま凝固させることにより、外径i 8
5 mm、第1層厚15mm、第2層厚4.5 mmの
二層管を得た。該二層管は、各層間の金属の混り合いが
なく、所定の成分組成と設計肉厚を有するほか、両層間
の密着性も完全であることが確認された。
In the example centrifugal casting apparatus, 0.4%C-25%Cr-2
Inject 25kg of 0% Ni-Fe molten metal to create a designed wall thickness of 15m.
The first layer of M was cast, and a flux was applied to its inner surface to prevent oxidation. Then, after solidifying to the inner surface of the first layer, 5 glazes of molten 18<Cr steel were injected to form a layer with a thickness of 4 mm.
In addition to casting the second layer of thermite (iron oxide (F
ezes) 75% by weight, metal AI! By administering 25% by weight) 1 and solidifying it as it is, the outer diameter i 8
A two-layer tube with a thickness of 5 mm, a first layer thickness of 15 mm, and a second layer thickness of 4.5 mm was obtained. It was confirmed that the two-layer pipe had no metals mixed between the layers, had a predetermined composition and designed wall thickness, and had perfect adhesion between both layers.

以上のように、本発明方法によれば、第1層が内側面ま
で凝固したのち第2層溶湯が注入されるので、両層間の
金属の混り合いによる各層厚の変動や各層金属の化学成
分組成の変化を生ずることがない。また、第1層に接し
て生成するチル層は再溶融されるので、たとえその部分
にフラックスが捕捉されていてもこれを浮上分離させる
とともに両層の密着性を金属学的にも完全ならしめ強固
な結合状態とすることができる。かくして、所定の化学
成分と厚薄任意の層厚を備えた密着性のよい二層遠心鋳
造管が得られる。
As described above, according to the method of the present invention, the molten metal for the second layer is injected after the first layer has solidified to the inner surface. No change in component composition occurs. In addition, since the chilled layer that forms in contact with the first layer is remelted, even if flux is trapped in that area, it is floated and separated, and the adhesion between both layers is made metallographically perfect. A strong bond can be created. In this way, a two-layer centrifugally cast tube with good adhesion, having a predetermined chemical composition and an arbitrary layer thickness can be obtained.

また、従来においては、第1層と第2層の混り合いを防
ぐ目的で本発明のごと、く第1層内側面凝固後に第2層
溶湯を注入すると、両層間の密着性が不完全となり、そ
の傾向は、第1層金属より溶融点の高い金属を第2層と
して用いる場合に顕著となることは前述したとおりであ
り、従って各層金属の材質選択に強い制限をうけていた
が、本発明方法によれば、そのような制限はうけないか
ら、任意の材質を組合せた二層管の製造が可能であり、
各種用途における多様な要求特性にも随意応じることが
できる。
Furthermore, in the past, when the molten metal for the second layer was injected after solidifying the inner surface of the first layer as in the present invention in order to prevent mixing of the first layer and the second layer, the adhesion between the two layers was incomplete. As mentioned above, this tendency becomes more pronounced when a metal with a higher melting point than the first layer metal is used as the second layer, and therefore there are strong restrictions on the selection of materials for each layer metal. According to the method of the present invention, such restrictions are not imposed, so it is possible to manufacture a double-layered pipe using any combination of materials.
It can also meet various required characteristics for various uses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〔I〕、〔■〕および第、2図〔I〕、〔■〕、
〔m”x〔■〕は遠心鋳造用回転鋳型内の各層金属の凝
固状況を示す′断面説明図である。 1:第1層、2:第2層、M:鋳型、F:フラックス。 第1図
Figure 1 [I], [■] and Figure 2 [I], [■],
[m”x [■] is a cross-sectional explanatory diagram showing the solidification status of each layer metal in the rotary mold for centrifugal casting. 1: First layer, 2: Second layer, M: Mold, F: Flux. Figure 1

【1】[到 第2図[1] [arrived] Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)外層と内層からなる二層遠心鋳造管の製造におい
て、外層を鋳造し、その内側面まで凝固したのち、内層
を鋳造するに際し、その鋳造と同時もしくはその後にテ
ルミットを投与することを特徴とする遠心力鋳造方法。
(1) In the production of a two-layer centrifugally cast tube consisting of an outer layer and an inner layer, the outer layer is cast and solidified to the inner surface, and then thermite is administered at the same time as or after the casting of the inner layer. Centrifugal casting method.
(2)テルミットをフラックスに混合して投与すること
を特徴とする上記第(1)項に記載の遠心力鋳造方法。
(2) The centrifugal casting method according to item (1) above, characterized in that thermite is mixed with flux and administered.
JP10358781A 1981-07-02 1981-07-02 Centrifugal casting method Pending JPS586762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358781A JPS586762A (en) 1981-07-02 1981-07-02 Centrifugal casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10358781A JPS586762A (en) 1981-07-02 1981-07-02 Centrifugal casting method

Publications (1)

Publication Number Publication Date
JPS586762A true JPS586762A (en) 1983-01-14

Family

ID=14357898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358781A Pending JPS586762A (en) 1981-07-02 1981-07-02 Centrifugal casting method

Country Status (1)

Country Link
JP (1) JPS586762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111496227A (en) * 2020-05-18 2020-08-07 邯郸慧桥复合材料科技有限公司 Double-liquid composite casting method
CN111496229A (en) * 2020-05-18 2020-08-07 邯郸慧桥复合材料科技有限公司 Double-liquid composite casting protective agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111496227A (en) * 2020-05-18 2020-08-07 邯郸慧桥复合材料科技有限公司 Double-liquid composite casting method
CN111496229A (en) * 2020-05-18 2020-08-07 邯郸慧桥复合材料科技有限公司 Double-liquid composite casting protective agent

Similar Documents

Publication Publication Date Title
US2191472A (en) Method of making coated articles
JPS586762A (en) Centrifugal casting method
JPS5542141A (en) Coat die forming method of large-sized cast iron casting
US4036282A (en) Process of ingot casting
JPS58209464A (en) Method for manufacturing layered composite metal sheet material
CN107530769A (en) Crystallizer protecting residue and use its continuous cast method, and using its manufacture slab
JPS586761A (en) Centrifugal casting method
JPS586765A (en) Centrifugal casting method
JPH0366447A (en) Casting method for multilayer slabs
US6120726A (en) Automatic tapping thimble
JPS586763A (en) Centrifugal casting method
JPS6120397B2 (en)
JPS56139271A (en) Manufacture of composite ingot
JPH01271045A (en) Manufacturing method of lead free-cutting steel using continuous casting method
JPS586764A (en) Centrifugal casting method
JPS62142053A (en) Production of quasi-rimmed sulfur free-cutting steel by continuous casting method
JPS6111702B2 (en)
KR810000590B1 (en) Method for repairing ingot moulds or mould stools
JPS61289947A (en) Continuous casting method and device for clad slabs
US3780788A (en) Method for continuously casting steel using a partially coated refactory nozzle
JPS61182862A (en) Production of wear resistant composite casting
JPS5847264B2 (en) Aluminum − Metals
JPS61238975A (en) Manufacture of composite pipe
JPS626767A (en) Two-layer centrifugal casting method
JPH01180776A (en) Filling stock for nozzle hole of molten metal container