[go: up one dir, main page]

JPS5864194A - Method for operating cell for aerating active sludge - Google Patents

Method for operating cell for aerating active sludge

Info

Publication number
JPS5864194A
JPS5864194A JP56165049A JP16504981A JPS5864194A JP S5864194 A JPS5864194 A JP S5864194A JP 56165049 A JP56165049 A JP 56165049A JP 16504981 A JP16504981 A JP 16504981A JP S5864194 A JPS5864194 A JP S5864194A
Authority
JP
Japan
Prior art keywords
water
temperature
sea water
gas liquid
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56165049A
Other languages
Japanese (ja)
Other versions
JPH0143597B2 (en
Inventor
Hiroyuki Sato
博幸 佐藤
Kenichi Kajiyama
梶山 健一
Yasuo Senba
仙場 保夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP56165049A priority Critical patent/JPS5864194A/en
Publication of JPS5864194A publication Critical patent/JPS5864194A/en
Publication of JPH0143597B2 publication Critical patent/JPH0143597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To accurately control the concentration of purified liquid and to enhance the effect of purification, by treating liquid to be purified, which is prepared by diluting raw water with preheated hot water and diluting water containing a controlled amount of unpreheated water, with active sludge in an aerating cell. CONSTITUTION:Gas liquor reserved in a gas liquor tank 3 is supplied to an aerating cell 5 by a pump 4, and its supply amount to the aerating cell 5 is maintained at a predetermined value by a controlling valve 6, which is operated in connection with a flow rate-controlling adjustor 6', provided in a supply pipe line. As diluting water to dilute the gas liquor, cold sea water of about 10-32 deg.C directly gathered from the sea and warm sea water above 30-45 deg.C heated by using it for cooling in a factory are conjunctly used. A controlling means 13 calculates the mixing ratio of the cold sea water C to the warm sea water H so that the mixed sea water becomes at a predetermined temperature, and instructs the opening rate of each controlling valve 10, 11 so as to obtain a predetermined amount of the mixed sea water.

Description

【発明の詳細な説明】 本発明は活性汚泥曝気槽の操業方法に関し、詳細には、
被処理廃水(原水)の濃度調整用として混合される稀釈
用水の供給法を工夫し、処理水の濃度と温度を併行的に
制御する方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for operating an activated sludge aeration tank, and in particular,
This invention relates to a method for simultaneously controlling the concentration and temperature of treated water by devising a method for supplying dilution water that is mixed to adjust the concentration of wastewater (raw water) to be treated.

周知の通り活性汚泥処理法とは廃水中に含まれる有害成
分をバクテリアで分解して無害化する方法であ〕、主に
下水の浄化技術として発展してき   。
As is well known, activated sludge treatment is a method of decomposing harmful components contained in wastewater using bacteria to render them harmless, and has been developed primarily as a sewage purification technology.

たが、最近では一般の化学工業分野で4利用され好結果
を得ている。
However, recently it has been used in the general chemical industry with good results.

例えばコークス製造工場で=−クス炉ガス冷却用として
使用された噴霧散水廃泄(一般にガス液と呼ばれる)中
にけシアン分やフェノール分が多重音まれているが、こ
のガス液の浄化にも活性汚泥法が利用されている。
For example, in coke manufacturing plants, cyanide and phenol are present in the spray water waste (generally called gas liquid) used to cool the gas in the coke oven. Activated sludge method is used.

第1図はこのガス液活性汚泥処理法を例示する工程説明
図であ〕、ガス液ビット1に収集されたガスHAをポン
プ2で1旦ガス液タンク8へ送って貯藏し喪後、〆ンデ
4によって曝気槽6へ送り込む。6は流量制御弁であり
、流量調節計6′からの信号によって開度を調節し、設
定され丸流量が得られる様に構成しているので、曝気槽
M[Fi常に所定量のガス液零供給される。また曝気槽
6には、ガス液を所定濃度に稀釈すると共にその温度を
調節する為に、海水等の稀釈水が流量制御弁7及び流量
調節計τによシ所定量ずつ供給される。
FIG. 1 is a process diagram illustrating this gas liquid activated sludge treatment method. The gas HA collected in the gas liquid bit 1 is first sent to the gas liquid tank 8 by the pump 2 and stored. It is sent to the aeration tank 6 by the cylinder 4. Reference numeral 6 designates a flow rate control valve, whose opening degree is adjusted according to the signal from the flow rate controller 6', and is configured to obtain a set, round flow rate. Supplied. Further, a predetermined amount of dilution water such as seawater is supplied to the aeration tank 6 through a flow control valve 7 and a flow rate regulator τ in order to dilute the gas liquid to a predetermined concentration and adjust its temperature.

曝気槽6内I/cはバクテリアの集合体である活性汚泥
が瀾養されており、攪拌装置19で曝気下に混合するこ
とによってガス液中の有害成分を生物学的に分解し、無
害化した後外部へ排出する。図中5′は曝気槽6内の温
度を検知する為の温度計であυ、矢印Sは後述する温度
制御用の蒸試吹込みを示す。
Activated sludge, which is a collection of bacteria, is cultivated in the aeration tank 6 I/C, and by mixing it under aeration with the stirring device 19, harmful components in the gas liquid are biologically decomposed and rendered harmless. After that, it is discharged outside. In the figure, 5' is a thermometer υ for detecting the temperature inside the aeration tank 6, and arrow S indicates a test steam injection for temperature control, which will be described later.

ところでこの様な活性汚泥処理における有害物の除去能
力Fi%轍生物たるバタテリアの生活環境殊に処理水の
温度及び濃度に督しく影響されることがWi認されてお
シ、高い処理効果を得る為には温度及び濃度を厳密に管
理しなければならない。
By the way, it has been recognized that the removal ability of harmful substances in such activated sludge treatment is significantly influenced by the living environment of batataeria, which are rutting organisms, and especially by the temperature and concentration of the treated water, and high treatment effects can be obtained. For this purpose, temperature and concentration must be strictly controlled.

なお、ガス液(#水)中の被処理物質の濃度は。Furthermore, the concentration of the substance to be treated in the gas liquid (#water) is:

通常許容できる範囲内でばらついているのみであり、は
ぼ−宇とみなすことができるので&濃度管理は処理水中
の原水であるガス液の濃度を管理すればよい。以下濃度
とは処理水中の原水a度をさす。しかしながら上記の様
な従来蔭では、曝気槽5の温度を温度計5′で監視しつ
つ稀釈水の流量を設定する流量制御法が行なわれている
だけであるから、海水の様な季節による温度使化が大き
い稀釈水を使用した場合は温度制御を正確に行なうこと
ができない。またtm度を中心に制御すると濃度管理が
不十分にな)、何れにしても最適の生物学的反応条件を
得ることは困難である。そこでこの様な問題に対処する
為曝気槽5に蒸fisを吹込んで温度制御を行なう方法
もあるが、その為の配管や蒸電発生般備に要する経済的
な負担は相当大きい。しかもこの方法は冬場の様に処理
水の温度が低(なる煩向のある時期にしか適用できず、
夏場の様に稀釈水も曝気用空電も高温になる時期では後
述する様に曝気好適温度を陵駕してしまうことが多いの
で、蒸慨を吹込むことは却って逆効果である。従ってこ
の様な補助手段に頼ることなく処理水中のガス液a度及
び温度を正確に制御し得る技術の開発が待たれている。
Since the variation is only within a normally permissible range and can be considered as a nuisance, the concentration can be controlled by controlling the concentration of the gas liquid, which is the raw water in the treated water. The concentration below refers to the a degree of raw water in the treated water. However, in the conventional method as described above, only a flow rate control method is used in which the temperature of the aeration tank 5 is monitored with a thermometer 5' and the flow rate of dilution water is set. If diluted water with a large dilution is used, temperature control cannot be performed accurately. Moreover, if control is centered on the tm degree, concentration control will be insufficient), and in any case, it is difficult to obtain optimal biological reaction conditions. In order to deal with this problem, there is a method of controlling the temperature by blowing steam into the aeration tank 5, but the economical burden required for piping and steam generation equipment for this purpose is quite large. Moreover, this method can only be applied when the temperature of the treated water is low, such as in winter.
In summer, when both the dilution water and the aeration static electricity are at high temperatures, the optimum temperature for aeration is often exceeded, as will be described later, so injecting steaming water is rather counterproductive. Therefore, there is a need for the development of a technique that can accurately control the degree and temperature of the gas liquid in the treated water without relying on such auxiliary means.

本発明者等は上記の様な事情に着目し、ガス液濃度及び
温度を比較的簡単な構成で同時に制御し得る様な方法を
開発すべく研究を進めてきた。そして通常の処理工場内
にけ一加熱されていない一般工業用水の他、各種設備で
冷却用として使用され熱交換によって加温された工業用
水が大量に存在するという事実に看目し、これらの両者
を稀釈水として併用すれば容易に温度制御もできるので
はないかという着想を得た。
The present inventors have focused on the above-mentioned circumstances and have conducted research to develop a method that can simultaneously control gas liquid concentration and temperature with a relatively simple configuration. Considering the fact that in addition to general industrial water that is not heated in normal treatment plants, there is also a large amount of industrial water that is used for cooling in various facilities and heated by heat exchange. I got the idea that if both were used together as dilution water, the temperature could be easily controlled.

本発明はかかる着想を実現すべく鋭意研究の結果5を成
されたものであって、その構成は、yA水を稀釈用水で
稀釈して@電槽に供給し活性汚泥処理を行なうに当り、
稀釈用水として予熱されたi%!扇水と非予熱水を併用
し1両者の使用割合を制御することにより、処理水中の
原水濃度と1M度を制−するところに要旨が存在する。
The present invention has been made as a result of intensive research to realize such an idea, and its configuration is that when yA water is diluted with dilution water and supplied to the tank for activated sludge treatment,
i% preheated as dilution water! The gist lies in controlling the raw water concentration and 1M degrees in the treated water by using fan water and non-preheated water together and controlling the ratio of the two used.

以下実施例を示す図面に基づいて本発明の構成及び作用
効果を睨明するが2図は代表例であって本発明を限定す
る性質のものではない。
The structure and effects of the present invention will be explained below based on the drawings showing examples, but FIG. 2 is a representative example and does not limit the present invention.

42図は本発明の実施例を示す概略工程図で。Figure 42 is a schematic process diagram showing an example of the present invention.

ガス液等は前述の場合と同様の手順でガス液ビットl、
ボンデ2経由でガス諭タンク8に送って貯溜される。図
中14Fi熱交換型冷却器であって。
For gas liquid, etc., use the gas liquid bit l,
It is sent to the gas tank 8 via the bonder 2 and stored there. The figure shows a 14Fi heat exchange type cooler.

ガス液を予め所定の温度まで冷却する為に設けたもので
あシ、熱交換用冷却用水の流路には流量制御弁15が設
けられ、冷却器14の後方のガス液温度を検知し且つ流
量制御弁15の開度を指示する為の指示調節計15′の
作用によって、ガス液が所定ors度まで低下する様に
冷却用水の流量を調節する。この熱交換はガス液を事前
に降温し、後に行なわれるガス液稀釈工程の温度制御幅
を狭める為の補助手段であり、特に夏場の様に稀釈用水
の温度が高いときは有効であるが、稀釈用水が低湿であ
る冬場には省略することもできる。
This is provided to cool the gas liquid to a predetermined temperature in advance, and a flow rate control valve 15 is provided in the flow path of the cooling water for heat exchange to detect the gas liquid temperature behind the cooler 14. By the action of the indicator controller 15' for indicating the opening degree of the flow rate control valve 15, the flow rate of the cooling water is adjusted so that the gas liquid decreases to a predetermined ors degree. This heat exchange is an auxiliary means for lowering the temperature of the gas liquid in advance and narrowing the temperature control range in the gas liquid dilution step that will be performed later, and is especially effective when the temperature of the dilution water is high, such as in the summer. It can be omitted in winter when the dilution water is low in humidity.

ガス液タンク8に貯溜されたガス液はボンデ4によって
曝気槽6へ供給されるが、送給管路には流量制御調節計
6′に連結して作動する制御弁6が設けられておシ、曝
気槽6へのガス液送給量は予め設定し走置に保たれる。
The gas liquid stored in the gas liquid tank 8 is supplied to the aeration tank 6 by the bonder 4, and the supply pipe is provided with a control valve 6 which is operated by being connected to a flow rate control regulator 6'. The amount of gas liquid fed to the aeration tank 6 is set in advance and kept constant.

本発明ではこのガス液を稀釈する稀釈用水として1例え
ば海から[I#取水した冷海水(10〜B2℃程度)と
工場内で冷却に用い昇温した温海水(sO〜41S’C
以上)を併用する。伺稀釈用水としては海水の他湖水、
河用水、工業用水等立地条件に応じて最も経済的な水を
選択すればよい。上記各幅木は季節及び操業条件等によ
って上記の様な温度範囲で変動するが、如何なる場合で
4冷海水が1品海水よりも層温になることはないものと
する。
In the present invention, the dilution water for diluting this gas liquid is 1, for example, cold seawater taken from the sea (about 10 to 2℃) and warm seawater (sO to 41S'C) that has been heated and used for cooling in the factory.
(above) are used together. In addition to seawater, lake water,
The most economical water can be selected depending on the location conditions, such as river water or industrial water. The temperature of each of the baseboards described above varies depending on the season and operating conditions, etc., but under no circumstances should the temperature of 4-cold seawater be higher than that of 1-cold seawater.

従ってこの冷海水と温海水の使用割合を調整することに
よって全海水の流量(iDちガス液の稀釈率)゛を一定
K11i持しつつ温度を自由に調節することができる。
Therefore, by adjusting the ratio of cold seawater and warm seawater used, the temperature can be freely adjusted while keeping the total seawater flow rate (iD, dilution rate of gas liquid) constant K11i.

即ち冷海水C及び温海水Hの各供給管路には流量制御弁
10.11が夫々設けられており、これらは後述する如
く制御装置111’lからの指示によって開度が調整さ
れる。また各供給管路は制御弁10及び11の下流側で
合流する様になっておフ、所定の温度及び流量に調整さ
れた軟部で曝気槽5へ供給されるが、この管路をガス液
供給管路に合流させガス液と混合してから曝気槽5へ供
給することも可能である。
That is, each of the supply pipes for cold seawater C and warm seawater H is provided with a flow rate control valve 10.11, and the opening degree of these valves is adjusted according to an instruction from a control device 111'l as described later. In addition, each supply pipe is arranged to join downstream of the control valves 10 and 11, and is supplied to the aeration tank 5 through a soft part that is adjusted to a predetermined temperature and flow rate. It is also possible to supply the gas to the aeration tank 5 after merging it into the supply pipe and mixing it with the gas liquid.

制御装flt1Bは、混合海水が所定の温度となる様に
冷海水Cと温海水Hの混合割合を演算し、且つその混合
割合で所定の混合海水普が得られる様に各制御弁10及
び11の開度を指示する機能を有しており、oA度指示
調節計51′に予め設定した目ml!11度よシも曝気
槽5内の温度が高いときは、冷海水用流量制御弁lOの
開度を大きくすると共に温海水用流量制御弁11の開度
を小さくして混合海水の温度を低下させ、一方曝気檜6
内の温度が上記設定温度よ〕も低いときけ、冷海水用流
量制御弁10の開度を小さくすると共VC温海水用流量
制御弁、11の開度を大きくして混合海水の温度を高め
る。この場合混合海水用流量制御弁12には所定の混合
海水流量が設定されてi?〕、この流量を満足する様に
制御弁10及び1】の前記開度調整が行なわれるので、
結局曝気槽5へ供給される混合海水は温度及び流量共に
目標通〕の値に設定される。
The control device flt1B calculates the mixing ratio of cold seawater C and warm seawater H so that the mixed seawater has a predetermined temperature, and operates each control valve 10 and 11 so that a predetermined mixed seawater temperature is obtained at the mixing ratio. It has a function to indicate the opening degree of the oA degree indicating controller 51'. When the temperature inside the aeration tank 5 is higher than 11 degrees, the opening degree of the cold seawater flow control valve 10 is increased and the opening degree of the warm seawater flow control valve 11 is decreased to lower the temperature of the mixed seawater. On the other hand, aerated cypress 6
When the temperature in the mixed seawater is lower than the set temperature, the opening degree of the cold seawater flow control valve 10 is decreased, and the opening degree of the VC warm seawater flow control valve 11 is increased to increase the temperature of the mixed seawater. . In this case, a predetermined mixed seawater flow rate is set in the mixed seawater flow rate control valve 12, i? ], the openings of the control valves 10 and 1] are adjusted so as to satisfy this flow rate.
In the end, the temperature and flow rate of the mixed seawater supplied to the aeration tank 5 are set to values that meet the target values.

その結果ii1[4115内における処理水温度及びガ
ス液濃度を常に最適範囲に保持することがてき。
As a result, the temperature of the treated water and the gas liquid concentration within the ii1[4115] can always be maintained within the optimum range.

高い処理効率が保障される。High processing efficiency is guaranteed.

第8図は本発明の他の実施例を示す一部工程説明図であ
ル、特に曝気槽6の容量が極めて大きい場合に適してい
る。即ち大容量の曝気槽6を使用した場合は、ガス液と
混合海水を直接供給すると両者の分散に時間がかかシ、
@気槽5内に温度分布及び濃度分布を生じることがある
。しかしながら第f4図の如(@電槽5の前に混合槽8
を配置し。
FIG. 8 is a partial process explanatory diagram showing another embodiment of the present invention, which is particularly suitable when the capacity of the aeration tank 6 is extremely large. That is, when a large-capacity aeration tank 6 is used, if the gas liquid and mixed seawater are directly supplied, it will take time to disperse the two.
@Temperature distribution and concentration distribution may occur in the air tank 5. However, as shown in Figure f4 (@mixing tank 8 before battery tank 5)
Place.

該混合槽−8内に所定量のガス液及び混合海水を導入し
この段階で処理水の温度及び濃度を制御した後、これを
曝気槽5へ供給すれば、上記の様な温Jf及び濃度の不
均一も解消することができる。この場合の混合槽8にお
ける湿度及びガス液濃度の制御法は第2図の例と全く同
様に行なえばよい。
After introducing a predetermined amount of gas liquid and mixed seawater into the mixing tank-8 and controlling the temperature and concentration of the treated water at this stage, if this is supplied to the aeration tank 5, the temperature Jf and concentration as described above can be achieved. It is also possible to eliminate non-uniformity. In this case, the humidity and gas liquid concentration in the mixing tank 8 may be controlled in exactly the same manner as in the example shown in FIG.

本発明は概略以上の様に構成されており、稀釈用水とし
て冷水と温水を併用することによって処理水の温度と濃
度を正確に制御し、活性汚泥による生物学的反応にとっ
て最適の条件を確保し得ることになり、処理効率を高レ
ベルで安定化し傅ることになった。しか4b曝望檜に設
けてい友補助的温度調節手段たる加温蒸気O吹込設備等
が全く不要となシ、工場内の各橋設備で冷却用に使用さ
れた後排出されている熱交換水を温水として有効利用す
る方法であるから経済的な負担も殆んどなく。
The present invention is roughly constructed as described above, and by using both cold water and hot water as dilution water, the temperature and concentration of treated water can be accurately controlled to ensure optimal conditions for biological reactions by activated sludge. As a result, processing efficiency was stabilized at a high level. However, there is no need for heating steam O blowing equipment, etc., which is an auxiliary temperature control means installed in the 4b cypress, and heat exchange water is discharged after being used for cooling at each bridge facility in the factory. Since it is a method of effectively using water as hot water, there is almost no economic burden.

極めて実用的な方法である。This is an extremely practical method.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 ガス液35m’/hr を混合海水120w//hrで
稀釈して175mシ’hrの処理水とし、曝気槽内の温
度を80℃に保って活性汚泥処理を行なう場合につき、
第8図の方法に準じて処理時の温度及び濃度を制御し九
、第4図(イ)、(に)はこの場合の温度バランスを示
す系統図である。
Example 1 In the case of diluting 35 m/hr of gas liquid with 120 w/hr of mixed seawater to obtain 175 m/hr of treated water and performing activated sludge treatment while maintaining the temperature in the aeration tank at 80°C,
The temperature and concentration during treatment were controlled according to the method shown in FIG. 8, and FIGS. 4(a) and 4(b) are system diagrams showing the temperature balance in this case.

壕ず外気温度の高い夏場においては温海水、冷海水共温
度が比較的高((/I!源水:約45り、冷m水:FJ
8!・℃)、ガス液(ガス液ピッ)1の出口部温度は約
70℃)を上記温海水と冷海水の混合海水で稀釈しても
曝気槽5における目標温度を80℃にすることができな
いので、冷却器14によってガス液温度を80℃に低下
させる。次に混合槽8に設けた温度指示調節針b”O設
定温度を81.6℃とし、t!1混合槽8 K 65 
yy//h rでガス液を供給すると共に、制御装置1
111gによシ冷・温水流量制御弁10.11の開度を
調整しつつ120tri/hK混合海水を供給した。こ
の場合混合海水の温度は82℃でめp、混合槽8内の被
処理水温度はほぼ81.6℃の安定した値を示した。こ
の処理水を曝気槽6へ導入し、約29℃の曝気用空電を
供給しながら活性汚泥処理を行なったところ、処理水の
温度は常時安定して80℃を示した。このときの温度バ
ランスは第4図U)に示す通力である。
In the summer when the outside air temperature is high, both the warm and cold seawater temperatures are relatively high (/I! Source water: about 45℃, cold water: FJ
8! The target temperature in the aeration tank 5 cannot be set to 80°C even if the gas liquid (gas liquid pipe 1 has an outlet temperature of approximately 70°C) is diluted with the above-mentioned mixed seawater of warm seawater and cold seawater. Therefore, the gas liquid temperature is lowered to 80° C. by the cooler 14. Next, set the temperature indicator b”O set temperature on the mixing tank 8 to 81.6°C, and set the t!1 mixing tank 8 K 65
In addition to supplying gas liquid at yy//hr, the control device 1
120tri/hK mixed seawater was supplied to 111g while adjusting the opening degree of cold/hot water flow control valve 10.11. In this case, the temperature of the mixed seawater was 82°C, and the temperature of the water to be treated in the mixing tank 8 was a stable value of approximately 81.6°C. When this treated water was introduced into the aeration tank 6 and activated sludge treatment was carried out while supplying an aeration static electricity of about 29°C, the temperature of the treated water was always stable at 80°C. The temperature balance at this time is the current shown in FIG. 4 U).

次に外IC温度の低い冬場においては、温海水は約80
℃、冷海水は約10℃と何れも低温であるので、約70
℃のガス液を冷却器14で冷却することなくそのまま混
合槽8に供給しつつ温度制御を行なった。この場合、曝
気用空電の温度が低((約5℃)曝気槽5内の被処理水
温度は相当降下するので、混合槽8における温度指示調
節計5#の設定温度を42℃と相当高めに一設定するこ
とによって、曝気槽5内の被処理水温度を80℃一定に
保持することができた。このときの湿度バランスは第4
図(ロ)に示した通りである。
Next, in winter when the outside IC temperature is low, warm seawater has a temperature of about 80%
℃, and cold seawater is about 10℃, which is a low temperature of about 70℃.
℃ gas liquid was supplied to the mixing tank 8 as it was without being cooled by the cooler 14, and the temperature was controlled. In this case, the temperature of the static electricity for aeration is low ((approximately 5 degrees Celsius)) and the temperature of the water to be treated in the aeration tank 5 drops considerably, so the set temperature of the temperature indicator controller 5# in the mixing tank 8 is set to 42 degrees Celsius. By setting the temperature higher, the temperature of the water to be treated in the aeration tank 5 could be maintained at a constant 80°C.The humidity balance at this time was
As shown in Figure (b).

尚上記では夏場及び冬場での制御例を示したが。In the above, examples of control in summer and winter were shown.

春季や秋季の様に外電温度がその中間値となるときはそ
れに応じて冷却器14の運転の要否及び温度指示調節計
5“の設定温度を適宜定めることによって、曝気槽5内
の処理水m度を80℃に保持することができる。またガ
ス液の温度が変動したときでも、上記の方法に準じて@
気槽内のm度を容易に目標通りに設定することができる
。筒本発明法は高温原水を対象とするあらゆる活性汚泥
法に利用できる。
When the outside electric temperature is at an intermediate value such as in spring or autumn, the treated water in the aeration tank 5 can be controlled by appropriately determining whether or not the cooler 14 should be operated and the set temperature of the temperature indicating controller 5''. m degree can be maintained at 80°C.Also, even when the temperature of the gas liquid fluctuates, it can be maintained at 80°C according to the above method.
m degrees in the air tank can be easily set as desired. The method of the present invention can be used in any activated sludge method that targets high-temperature raw water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の活性汚泥処理における処理水の制御例を
示す工°程説明図、第2図は本発明の実施例を示す工程
錠明図、第8図は本発明の他の実施例を示す一部工程説
明図、第4図(イ)、(嗜は実施例における温度バラン
スを示す糸絖図である。 l・・・ガス液ヒツト  8・・・ガス液タンク5・・
・曝気槽     6,7,10.11−・・論量制御
弁5“・・・温度指示調節針 8・・・混合槽9・・・
混合装置 出願人  関西熱化学株式会社
Fig. 1 is a process diagram showing an example of controlling treated water in conventional activated sludge treatment, Fig. 2 is a process diagram showing an embodiment of the present invention, and Fig. 8 is another embodiment of the present invention. A partial process explanatory diagram showing the process, FIG.
・Aeration tank 6, 7, 10.11-...Stoichiometric control valve 5"...Temperature indication adjustment needle 8...Mixing tank 9...
Mixing device applicant Kansai Thermal Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 tlll[水を稀釈用水で稀釈して処理水となし曝気槽
に供給し活性汚泥処理を行なうに当り、稀釈用水として
予熱された高温水と非予熱水を併用し、両者の使用割合
を制御することによ〕、処理水中の原水濃度及び温度を
制御することを特徴とする活性汚泥曝気槽の操業方法。 (2、特許請求の範囲第1項において、稀釈用水として
海水を使用する活性汚泥曝気槽の操業方法。
[Claims] tllll [When water is diluted with dilution water to become treated water and supplied to an aeration tank for activated sludge treatment, preheated high-temperature water and non-preheated water are used together as dilution water, and both A method for operating an activated sludge aeration tank characterized by controlling the concentration and temperature of raw water in treated water by controlling the usage ratio of (2. A method for operating an activated sludge aeration tank in which seawater is used as dilution water in claim 1.
JP56165049A 1981-10-15 1981-10-15 Method for operating cell for aerating active sludge Granted JPS5864194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165049A JPS5864194A (en) 1981-10-15 1981-10-15 Method for operating cell for aerating active sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165049A JPS5864194A (en) 1981-10-15 1981-10-15 Method for operating cell for aerating active sludge

Publications (2)

Publication Number Publication Date
JPS5864194A true JPS5864194A (en) 1983-04-16
JPH0143597B2 JPH0143597B2 (en) 1989-09-21

Family

ID=15804858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165049A Granted JPS5864194A (en) 1981-10-15 1981-10-15 Method for operating cell for aerating active sludge

Country Status (1)

Country Link
JP (1) JPS5864194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237056A (en) * 2006-03-07 2007-09-20 Kyoei Steel Ltd Waste beverage processing method and waste beverage processing equipment
JP2008080281A (en) * 2006-09-28 2008-04-10 Sumitomo Chemical Co Ltd Microbial acclimatization apparatus, wastewater treatment apparatus, microorganism acclimatization method and wastewater treatment method
JP2009045512A (en) * 2007-08-14 2009-03-05 Mitsubishi Paper Mills Ltd Waste heat recovery method for activated sludge treatment tank inflow wastewater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6937998B2 (en) 2019-12-19 2021-09-22 大日本印刷株式会社 Laminated body, and printing or drawing method for the laminated body
EP4245555A4 (en) 2020-11-13 2024-12-11 Dai Nippon Printing Co., Ltd. Laminate, print product, and method using laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237056A (en) * 2006-03-07 2007-09-20 Kyoei Steel Ltd Waste beverage processing method and waste beverage processing equipment
JP2008080281A (en) * 2006-09-28 2008-04-10 Sumitomo Chemical Co Ltd Microbial acclimatization apparatus, wastewater treatment apparatus, microorganism acclimatization method and wastewater treatment method
JP2009045512A (en) * 2007-08-14 2009-03-05 Mitsubishi Paper Mills Ltd Waste heat recovery method for activated sludge treatment tank inflow wastewater

Also Published As

Publication number Publication date
JPH0143597B2 (en) 1989-09-21

Similar Documents

Publication Publication Date Title
JP6118428B2 (en) Energy efficient systems and processes for treating sludge
US20090305379A1 (en) Digester system
JPH05277358A (en) Corrosion control for wet oxidation system
JPS5864194A (en) Method for operating cell for aerating active sludge
KR20120036194A (en) Wastewater treatment plant capable of temperature controll of aeration tank
JP4792982B2 (en) Waste heat recovery system
JP3709824B2 (en) Control method of nitrogen removal process
CN108557980A (en) A kind of thermocouple combined oxidation reactor
JP3911591B2 (en) Wastewater treatment method
JPH08108195A (en) Method and apparatus for removing nitrogen in water
CN109310988A (en) Low temperature wet-air oxidation
JP4645568B2 (en) Microbial acclimatization apparatus, wastewater treatment apparatus, microorganism acclimatization method and wastewater treatment method
JP6993156B2 (en) Methane fermentation system
JP3646466B2 (en) Biological activated carbon treatment equipment
JPH021000B2 (en)
US11926536B2 (en) Method for starting up hot ultrapure water production system, and hot ultrapure water production system
CN208732741U (en) A kind of device for cultivating anaerobic ammonia oxidizing bacteria
KR20160076505A (en) sequencing batch reactor
JPH03169395A (en) Dissolved oxygen controlling method in aerobic digestion tank
JPH07229603A (en) Method and apparatus for preventing corrosion of boiler equipment
JPH0443718B2 (en)
JP2001276809A (en) Organic wastewater treatment method and apparatus
JPS635833Y2 (en)
KR200483331Y1 (en) Reactor for Sequencing Batch
JPH0527476B2 (en)