JPS5864190A - Treatment of malodorous gas and organic waste water - Google Patents
Treatment of malodorous gas and organic waste waterInfo
- Publication number
- JPS5864190A JPS5864190A JP56160945A JP16094581A JPS5864190A JP S5864190 A JPS5864190 A JP S5864190A JP 56160945 A JP56160945 A JP 56160945A JP 16094581 A JP16094581 A JP 16094581A JP S5864190 A JPS5864190 A JP S5864190A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- activated carbon
- malodorous
- active carbon
- treatment process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000010815 organic waste Substances 0.000 title abstract 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 41
- 239000010802 sludge Substances 0.000 claims abstract description 32
- 239000002002 slurry Substances 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims description 18
- 239000002351 wastewater Substances 0.000 claims description 14
- 230000000813 microbial effect Effects 0.000 claims description 7
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 abstract description 7
- 238000004332 deodorization Methods 0.000 abstract description 6
- OKTJSMMVPCPJKN-YPZZEJLDSA-N carbon-10 atom Chemical compound [10C] OKTJSMMVPCPJKN-YPZZEJLDSA-N 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract 2
- 239000006103 coloring component Substances 0.000 abstract 1
- 239000008214 highly purified water Substances 0.000 abstract 1
- 238000000746 purification Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 33
- 238000010521 absorption reaction Methods 0.000 description 12
- 238000005273 aeration Methods 0.000 description 11
- 230000001877 deodorizing effect Effects 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 7
- 238000004062 sedimentation Methods 0.000 description 6
- 239000010800 human waste Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000011268 mixed slurry Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 241000404068 Cotula Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- GPWDPLKISXZVIE-UHFFFAOYSA-N cyclo[18]carbon Chemical class C1#CC#CC#CC#CC#CC#CC#CC#CC#C1 GPWDPLKISXZVIE-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001546 nitrifying effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、悪臭ガスの処理と有機性排水の処理を同一の
システム内で行なう方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating malodorous gases and organic wastewater in the same system.
従来、悪臭ガスの脱臭技術として#Φアルカリ吸収法、
活性炭吸着法、直火燃焼法、生物脱臭法などが知られて
いるが、本発明者らはこれら従来の脱臭技術に共通した
大きな問題点があることを見出し、これを解決する方法
を検討した結果本発明を完成したものである。Traditionally, the #Φ alkali absorption method was used as a deodorizing technology for foul-smelling gas.
Activated carbon adsorption methods, direct combustion methods, biological deodorization methods, etc. are known, but the present inventors found that these conventional deodorization technologies had major problems in common, and investigated ways to solve these problems. As a result, the present invention has been completed.
すなわち従来の脱臭技術は、いずれも悪臭ガスの脱臭と
いう単一機能の達成のみにとどまっており、この点に大
きな改良の余地がある。悪臭ガスはし尿処理場にその典
型例をみるように、有機性排水の処理施設から発生する
場合が大部分である。In other words, all of the conventional deodorizing techniques have been limited to achieving a single function of deodorizing malodorous gases, and there is considerable room for improvement in this respect. Most of the foul-smelling gases are generated from organic wastewater treatment facilities, such as human waste treatment plants.
従って、有機性排水の処理と悪臭ガスの脱臭処理とを別
個に把握するのではなく有機的にシステム化すれば大き
な改善が達成できるはずである。Therefore, rather than treating organic wastewater and deodorizing malodorous gases separately, it would be possible to achieve a significant improvement by systematizing them organically.
本発明はこのような発想に基づき種々検討を重ねた結果
完成されたものでし尿、下水などの有機性排水の処理と
悪臭ガスの脱臭処理を極めて合理的に達成できるプロセ
スを提供するこきを目的とするものであり、有機性排水
の生物処理工程内及び/又は該生物処理工程による生物
処理水の高度処理工程内に活性炭を懸濁せしめてCOD
を除去する工程と、活性炭と前記生物処理工程の微生物
スラリーを悪臭ガスとの気液接触工程忙導入し悪臭成分
を除去する工程の両工程釦わたって同一の活性炭を重複
使用することを特徴とするものであるO
本発明の一実施態様を図面を参照しながら説明すれば、
し尿、下水、各種産業排水などの有機性排水1け活性汚
泥処理プロセスの曝気槽3に流入し生物処理されたのち
、沈殿池などの固液分離装置3に流入し、沈殿汚泥4と
生物処理水6釦分離される。6け返送汚泥、7け余剰汚
泥、8け曝気用空気、tlFiブロワ−19け散気装置
である。The present invention was completed as a result of various studies based on this idea, and aims to provide a process that can extremely rationally achieve the treatment of organic wastewater such as human waste and sewage, and the deodorization of foul-smelling gas. Activated carbon is suspended in the biological treatment process of organic wastewater and/or in the advanced treatment process of biologically treated water by the biological treatment process to reduce COD.
The method is characterized in that the same activated carbon is repeatedly used in both processes: the step of removing the malodorous components, and the step of introducing the activated carbon and the microbial slurry from the biological treatment step into a gas-liquid contact step with the malodorous gas to remove the malodorous components. One embodiment of the present invention will be described with reference to the drawings.
Organic wastewater such as human waste, sewage, and various industrial wastewater flows into the aeration tank 3 of the activated sludge treatment process and undergoes biological treatment, then flows into the solid-liquid separator 3 such as a settling tank, where it is processed into settled sludge 4 and biologically treated. Six water buttons are separated. 6 units of return sludge, 7 units of excess sludge, 8 units of aeration air, and 19 units of tlFi blower air diffuser.
しかして、活性汚泥処理によってBOD成分が除去され
た生物処理水5に新鮮な粉末状活性炭10(又は微小粒
径の粒状活性炭)が添加され混和槽11において、前記
生物処理工程において除去不能な色度成分、非生物分解
性CODが吸着除去され、活性炭分離槽1zにて活性炭
18が分離され高度処理水10が得られる。Fresh powdered activated carbon 10 (or granular activated carbon of minute particle size) is added to the biologically treated water 5 from which BOD components have been removed by the activated sludge treatment, and in the mixing tank 11, the color that cannot be removed in the biological treatment process is added. COD and non-biodegradable COD are adsorbed and removed, and activated carbon 18 is separated in an activated carbon separation tank 1z to obtain highly treated water 10.
次に、COD、色度などを吸着した前記活性炭18Vi
、従来のように廃棄又は熱的再生を行なうのではなく、
悪臭ガス16の脱臭処理に使用したのち前記曝気4W2
において、活性炭13に吸着された悪臭成分の微生物分
解を行なう。Next, the activated carbon 18Vi adsorbed COD, chromaticity, etc.
, rather than traditional disposal or thermal regeneration,
After being used for deodorizing the malodorous gas 16, the aeration 4W2
In this step, the malodorous components adsorbed on the activated carbon 13 are decomposed by microorganisms.
すなわち、活性汚泥スラリー14と活性炭13を充填塔
、棚段塔などのガス吸収塔15の上部に供給し、悪臭ガ
ス16と向流式に気液接触させる。That is, the activated sludge slurry 14 and the activated carbon 13 are supplied to the upper part of a gas absorption tower 15 such as a packed tower or a tray tower, and brought into gas-liquid contact with the malodorous gas 16 in a countercurrent manner.
吸収塔1Bにおいて悪臭ガス16中の悪臭成分は活性汚
泥による微生物分解と活性炭13による吸着作用によっ
て極めて効果的に除去され、脱臭ガス17となって系外
に放出される。一方、悪臭ガス16との気液接触を終え
た活性汚泥と活性炭13との混合スラリー18を曝気槽
2に落下流入させ、悪臭成分を吸収・吸着した活性汚泥
と活性炭が曝気槽2内に長時間滞留する間に、悪臭成分
を微生物の作用によって分解する。In the absorption tower 1B, malodorous components in the malodorous gas 16 are very effectively removed by microbial decomposition by activated sludge and adsorption by activated carbon 13, and are released as deodorized gas 17 to the outside of the system. On the other hand, the mixed slurry 18 of activated sludge and activated carbon 13 that has finished gas-liquid contact with the malodorous gas 16 is dropped into the aeration tank 2, and the activated sludge and activated carbon that have absorbed and adsorbed the malodorous components are kept in the aeration tank 2 for a long time. During the residence time, malodorous components are decomposed by the action of microorganisms.
上記一実施態様では、新鮮な粉末状活性炭10けまず高
度処理工程11,111において生物処理水5からCO
D、色度成分を吸着し、次いで悪臭ガス16から悪臭成
分を吸着し、さらに曝気槽2において有機性排水1中の
難生物分解性のCOD成分を吸着すると共に微生物の作
用によって再生される0
このように、粉末状活性炭10Vi充分にその吸着能力
が利用されたのち、固液分離装置3に活性汚泥とともに
流入して固液分離され、その一部が余剰汚泥7と共に系
外に排出される一方、残部は返送汚泥6と共忙管路19
,19’を経由して、それぞれ吸収塔151@気411
2にリサイクルされ再利用される。In one embodiment, fresh powdered activated carbon 10 is used to collect CO from the biologically treated water 5 in the advanced treatment process 11,111.
D. Adsorbs chromaticity components, then adsorbs malodorous components from the malodorous gas 16, and further adsorbs non-biodegradable COD components in the organic wastewater 1 in the aeration tank 2, and is regenerated by the action of microorganisms. In this way, after the adsorption capacity of the powdered activated carbon 10Vi is fully utilized, it flows into the solid-liquid separator 3 together with the activated sludge, where it is separated into solid and liquid, and a part of it is discharged from the system together with the excess sludge 7. On the other hand, the remaining portion is the return sludge 6 and the busy pipe 19.
, 19', absorption tower 151@ki 411, respectively.
2. Recycled and reused.
上記実施態様では、有機性排水の生物処理水からCOD
成分などを吸着した活性炭を、悪臭ガスの脱臭に再利用
し、たのち、悪臭ガスの脱臭に利用した活性炭を生物処
理工程の1気槽に導入し有機性排水からCODなどを除
去するのに再利用するよう和したので、活性炭の利用度
が著しく向上すると共に活性炭の生物再生が生起するの
で、新活性炭の使用量が少なくて済み活性炭の使用経費
が著しく節約でき、活性汚泥曝気槽において活性炭が活
性汚泥フロックの核になるので活性汚泥の沈降性が向上
し、したがって後続する固液分離工程を極めて効率良く
行なうことができるうえ、余剰汚泥の脱水性が活性炭粒
子の存在処よって向上すると共に脱水ケーキの発熱量も
増加するので焼却処分時の重油消費量が減少し、さらに
、ガス吸収塔15において悪臭ガス16中の酸素も混合
スラリー18に溶解させ該スラリーを曝気槽2に導入す
るようにした結果、曝気用空気8の供給量が節減でき、
プロワービの動力が少なくてすむなど、多くの利点が得
られる。In the above embodiment, COD from biologically treated water of organic wastewater is
The activated carbon that has adsorbed components is reused to deodorize malodorous gases, and later, the activated carbon used to deodorize malodorous gases is introduced into the 1-atm tank of the biological treatment process to remove COD etc. from organic wastewater. Since the activated carbon is reused, the utilization rate of activated carbon is significantly improved, and biological regeneration of activated carbon occurs, so the amount of new activated carbon used is small, and the usage cost of activated carbon is significantly reduced. becomes the core of the activated sludge flocs, improving the sedimentation properties of the activated sludge, making it possible to carry out the subsequent solid-liquid separation process extremely efficiently.In addition, the presence of activated carbon particles improves the dewaterability of excess sludge. Since the calorific value of the dehydrated cake also increases, the amount of heavy oil consumed during incineration is reduced.Furthermore, oxygen in the malodorous gas 16 is also dissolved in the mixed slurry 18 in the gas absorption tower 15, and the slurry is introduced into the aeration tank 2. As a result, the supply amount of aeration air 8 can be reduced,
There are many advantages such as less power required for the processor.
本発明においては、前記新鮮な活性炭を添加する工程は
前記高度処理工程、気液接触工程(悪、臭ガスの脱臭工
程)、生物処理工程のいずれでもよく、また、これら工
程のうち複数に添加してもよい。In the present invention, the step of adding fresh activated carbon may be any of the advanced treatment step, the gas-liquid contact step (deodorization step for bad smelly gases), or the biological treatment step, or it may be added to more than one of these steps. You may.
また、使用済の活性炭は上記図示例のように余剰汚泥と
共に引き抜くのが好ましいが、高度処理工程あるいけ気
液接触工程において引き抜いてもよい。Further, although it is preferable to extract the used activated carbon together with the excess sludge as in the example illustrated above, it may also be extracted in the advanced treatment process or the gas-liquid contact process.
さらに本発明においては、活性炭の重複利用の順序とし
ては、上記図示例の高度処理工程の→気液接触工程■→
生物処理工程■のほかに、■→◎→■、■→■→■など
、少なくとも6通りの順序が可能である。Furthermore, in the present invention, the order of redundant use of activated carbon is as follows: the advanced treatment step in the illustrated example above → the gas-liquid contact step ■→
In addition to the biological treatment step ■, at least six other orders are possible, such as ■→◎→■ and ■→■→■.
次忙本発明の実施例を示し、その効果を具体的に述べる
。An example of the present invention will be shown and its effects will be specifically described.
実施例
第1表に示す水質を有するし尿を、無希釈で公知の硝化
液循環生物学的硝化脱窒素性により処理したのち、塩化
第2鉄で凝集沈殿処理し、第2表に示す水質を有する処
理水を得た。Example Human waste having the water quality shown in Table 1 was treated without dilution by the known nitrifying solution circulation biological nitrification and denitrification process, and then coagulated and precipitated with ferric chloride to obtain the water quality shown in Table 2. Treated water was obtained.
次に、凝集沈殿処理工程の凝集槽の次に攪拌槽を設は前
記処理水に粉末活性炭を300 ”IN/m添加して吸
着処理した結果、C0D30町/ノ2色度20度の極め
て清澄な高度処理水を得た。Next, a stirring tank was installed next to the flocculation tank in the coagulation-sedimentation treatment process. As a result of adsorption treatment by adding powdered activated carbon at 300 IN/m to the treated water, the water was extremely clear with a chromaticity of 20 degrees. We obtained highly treated water.
しかして、上記高度処理水を分離した粉末活性炭を含有
する凝集沈殿スラッジと硝化槽内微生物スラリーを、ポ
ンプによって悪臭ガスの吸収塔(多孔板方式、直径2m
、高さ2m)の上部に供給し、悪臭ガス(し尿貯留槽、
前処理室及び脱水機室より発生する臭気濃度30000
〜40000のガス)を向流式に気液接触させた結果、
吸収塔排ガスの臭気#度け350〜450と極めて効果
的に脱臭されていた。一方、吸収塔に上記微生物スラリ
ーのみを供給した場合の吸収塔排ガス臭気濃度は150
0〜200oであり、前記高度処理工程で使用済の活性
炭の再利用効果が大きいことが判明した。The flocculation-sedimentation sludge containing powdered activated carbon separated from the above-mentioned highly treated water and the microbial slurry in the nitrification tank are then pumped into a malodorous gas absorption tower (perforated plate type, 2m in diameter).
, a height of 2 m), and a malodorous gas (human waste storage tank,
Odor concentration generated from the pretreatment room and dehydrator room: 30,000
~40,000 gas) in countercurrent gas-liquid contact,
The odor of the absorption tower exhaust gas was extremely effectively deodorized, with an odor level of 350 to 450 degrees. On the other hand, when only the above microbial slurry is supplied to the absorption tower, the odor concentration of the absorption tower exhaust gas is 150
0 to 200o, and it was found that the effect of reusing the activated carbon used in the advanced treatment process is large.
次に、吸収塔で悪臭ガスとの接触を終えた粉末活性炭、
凝集沈殿→スラッジおよび微生物スラリーの混合液(溶
存酸素7岬/))を硝化槽の水面に落下させて滝効果に
よって硝化槽内にエアレーションを生起せしめ、悪臭ガ
ス中の悪臭成分を吸着した活性炭を硝化槽(R留時間4
日)K長時間滞留させたのち、沈殿池で活性汚泥ととも
に沈降分離し、返送汚泥をすべて上記吸収塔に流入せし
めたのち曝気槽圧供給するようにした。この結果、活性
汚泥処理水の水質特にCODと色度が低下し、それに対
応して凝集沈殿処理水のCODと色度が前記第2表より
も良好となり、
COD・・団・・・・120キ/!
色度・・・・・・・・・90度
となった。Next, the powdered activated carbon that has finished contacting with the malodorous gas in the absorption tower,
Coagulation and sedimentation → A mixed solution of sludge and microbial slurry (7 capes/dissolved oxygen) is dropped onto the water surface of the nitrification tank, causing aeration in the nitrification tank due to the waterfall effect, and activated carbon that has adsorbed the malodorous components in the malodorous gas. Nitrification tank (R residence time 4
After being retained for a long time, the sludge was settled and separated together with the activated sludge in a settling tank, and all of the returned sludge was allowed to flow into the absorption tower, and then fed under pressure to an aeration tank. As a result, the water quality, especially the COD and chromaticity of the activated sludge treated water decreased, and the COD and chromaticity of the coagulation-sedimentation treated water became better than those shown in Table 2, and COD... Group... 120 tree/! Chromaticity: 90 degrees.
以上述べたように本発明け、悪臭ガスの脱臭と有機性排
水処理を合理的にシステム化し、活性炭を悪臭成分の吸
着用に使用すると共に1排水中のCODの吸着用及び/
又は排水の生物処理工程の合理化用に重複使用するよう
に構成したものであり、したがって本発明により活性炭
の吸着能力を充分活用でき、その消費量を大幅に削減す
ることができることは勿論、悪臭ガスの脱臭に必要な経
背は前記気液接触工程への悪臭ガスの送給動力及び活性
炭と微生物スラリの混合物の送給動力で済み、脱臭用の
薬剤を別途供給する必要がないので、極めて経済的に良
質の処理水及び脱臭ガスが得られるなど多大の利益が得
られるものである。As described above, the present invention rationally systemizes the deodorization of malodorous gases and the treatment of organic wastewater, uses activated carbon for adsorption of malodorous components, and uses activated carbon for adsorption of COD in wastewater.
Or, it is configured to be used repeatedly for rationalizing the biological treatment process of wastewater.Therefore, the present invention makes it possible to fully utilize the adsorption capacity of activated carbon and significantly reduce its consumption, as well as to eliminate foul-smelling gases. The cost required for deodorizing is just the power to feed the malodorous gas to the gas-liquid contact process and the power to feed the mixture of activated carbon and microbial slurry, and there is no need to separately supply deodorizing chemicals, making it extremely economical. This method offers many benefits, including the ability to obtain high-quality treated water and deodorized gas.
図面は本発明の一実施態様を示す系統説明図である。
1・・・・・・有機性排水、2・・・・・・嘩気楕、3
・・・・・・固液分離製置、4・・・・・J沈殿汚泥、
5・・・・・・生物処理水、6・・・・・・返送汚泥、
7・・・・・・余剰汚泥、8・・・・・・曝気用空気、
9・・・・・・散気装置、10・・・・・・粉末状活性
炭、11・・・・・・混和槽、12・・・・・・活性炭
分#槽、13・・・・・・活性炭、14・・・・・・活
性汚泥スラIJ +、15・・・・・・ガス吸収塔、1
6・・・・・・悪臭ガス、17・・・・・・脱臭ガス、
18・・・・・・混合スラリー、19.19′・・・中
管路、20・・・・・・高度処理水。The drawing is a system explanatory diagram showing one embodiment of the present invention. 1... Organic wastewater, 2... Fighting oval, 3
...Solid-liquid separation, 4...J sedimentation sludge,
5... Biologically treated water, 6... Returned sludge,
7... Surplus sludge, 8... Air for aeration,
9... Air diffuser, 10... Powdered activated carbon, 11... Mixing tank, 12... Activated carbon # tank, 13...・Activated carbon, 14...Activated sludge sludge IJ +, 15...Gas absorption tower, 1
6...Odor gas, 17...Deodorizing gas,
18...Mixed slurry, 19.19'...Medium pipe, 20...Highly treated water.
Claims (1)
工程による生物処理水の高度処理工程内に活性炭を懸濁
せしめてCODを除去する工程と、活性炭と前記生物処
理工程の微生物スラリーを悪臭ガスとの気液接触工程に
導入し悪臭成分を除去する工程の両工程にわたって同一
の活性炭を重複使用することを特徴とする悪臭ガスおよ
び有機性排水の処理方法。 2、前記同一の活性炭が前記高度処理工程、気液接触工
程、生物処理工程の順に使用される特許請求の範囲第1
項記載の方法。 3、前記同一の活性炭が前記高度処理工程、生物処理工
種、気液接触工程の順に使用される特許請求の範囲第1
項記載の方法。 4、前記同一の活性炭が前記生物処理工程、気液接触工
程、高度処理工程の顔に使用される特許請求の範囲第1
項記載の方法。 5、前記高度処理工程が、新鮮な活性炭を添加して処理
されるものである特許請求の範囲第2項記載の方法。 6、前記生物処理工程で使用した活性炭の一部を返送汚
泥と共に前記ネ液接触工糧へ返送する特許請求の範囲第
1項、第2項、第3項。 第4項又は第5項記載の方法0 7、前記生物処理工程の余剰汚泥を該生物処理工程で使
用した活性炭と共忙引き抜く特許請求の範囲第6項記載
の方法。[Claims] 1. A step for removing COD by suspending activated carbon in a biological treatment process for organic wastewater and/or in an advanced treatment process for biologically treated water by the biological treatment process; A method for treating malodorous gas and organic wastewater, characterized in that the same activated carbon is repeatedly used in both steps of introducing the microbial slurry in the treatment step into a gas-liquid contact step with malodorous gas and removing malodorous components. 2. Claim 1, wherein the same activated carbon is used in the order of the advanced treatment step, the gas-liquid contact step, and the biological treatment step.
The method described in section. 3. Claim 1, wherein the same activated carbon is used in the order of the advanced treatment process, biological treatment process, and gas-liquid contact process.
The method described in section. 4. Claim 1, wherein the same activated carbon is used in the biological treatment process, gas-liquid contact process, and advanced treatment process.
The method described in section. 5. The method according to claim 2, wherein the advanced treatment step is performed by adding fresh activated carbon. 6. Claims 1, 2, and 3, in which a part of the activated carbon used in the biological treatment step is returned to the liquid contact plant together with the returned sludge. 7. The method according to claim 6, wherein surplus sludge from the biological treatment process is co-extracted with activated carbon used in the biological treatment process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56160945A JPS5864190A (en) | 1981-10-12 | 1981-10-12 | Treatment of malodorous gas and organic waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56160945A JPS5864190A (en) | 1981-10-12 | 1981-10-12 | Treatment of malodorous gas and organic waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5864190A true JPS5864190A (en) | 1983-04-16 |
JPS6321556B2 JPS6321556B2 (en) | 1988-05-07 |
Family
ID=15725608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56160945A Granted JPS5864190A (en) | 1981-10-12 | 1981-10-12 | Treatment of malodorous gas and organic waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5864190A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894162A (en) * | 1988-04-27 | 1990-01-16 | Ciba-Geigy Corporation | Treatment of volatile organic substances at waste water treatment plants |
US5106496A (en) * | 1988-04-27 | 1992-04-21 | Ciba-Geigy Corporation | Treatment of volatile organic substances at waste water treatment plants |
JP2006218454A (en) * | 2005-02-14 | 2006-08-24 | Jsr Engineering Co Ltd | Apparatus and method for treating malodorous organic matter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52155175A (en) * | 1976-06-10 | 1977-12-23 | Fuji Kasui Kogyo Kk | Treatment of exhaust gas containing organic matter |
JPS5339651A (en) * | 1976-09-21 | 1978-04-11 | Kurita Water Ind Ltd | Treatment of waste water containing organic matters |
JPS5549558A (en) * | 1978-10-06 | 1980-04-10 | Hitachi Ltd | Altitude compensator for carburetor |
-
1981
- 1981-10-12 JP JP56160945A patent/JPS5864190A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52155175A (en) * | 1976-06-10 | 1977-12-23 | Fuji Kasui Kogyo Kk | Treatment of exhaust gas containing organic matter |
JPS5339651A (en) * | 1976-09-21 | 1978-04-11 | Kurita Water Ind Ltd | Treatment of waste water containing organic matters |
JPS5549558A (en) * | 1978-10-06 | 1980-04-10 | Hitachi Ltd | Altitude compensator for carburetor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894162A (en) * | 1988-04-27 | 1990-01-16 | Ciba-Geigy Corporation | Treatment of volatile organic substances at waste water treatment plants |
US5106496A (en) * | 1988-04-27 | 1992-04-21 | Ciba-Geigy Corporation | Treatment of volatile organic substances at waste water treatment plants |
JP2006218454A (en) * | 2005-02-14 | 2006-08-24 | Jsr Engineering Co Ltd | Apparatus and method for treating malodorous organic matter |
Also Published As
Publication number | Publication date |
---|---|
JPS6321556B2 (en) | 1988-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4179374A (en) | Apparatus for the treatment of wastewater | |
US3876536A (en) | Waste oxidation process | |
US4159945A (en) | Method for denitrification of treated sewage | |
CN110040807A (en) | Powder activity coke absorption-Fenton oxidation regeneration advanced treating agricultural chemicals waste water method | |
JPH11285696A (en) | Device and method for sewage treatment | |
JP2004097856A (en) | Equipment and method for waste liquid treatment | |
CN208562075U (en) | Ozone oxidation-BAC filtering-composite catalytic oxidation advanced treatment on coking wastewater system | |
JPH0531490A (en) | Biological treatment of organic sewage | |
JP2992692B2 (en) | Sewage purification method and apparatus | |
KR940000379A (en) | Advanced treatment of manure and high concentration organic wastewater | |
JPS5864190A (en) | Treatment of malodorous gas and organic waste water | |
JPH0687942B2 (en) | Biological deodorization method for odorous components | |
CN212269808U (en) | Reverse osmosis strong brine processing system | |
JPH0839100A (en) | Simultaneous treatment of kitchen waste water and garbage | |
JP3181521B2 (en) | Water treatment method and water treatment device | |
JP3706574B2 (en) | Waste water denitrification treatment method and treatment equipment | |
JP3555812B2 (en) | Advanced treatment method for organic wastewater | |
CN109796105A (en) | A kind of highly difficult organic wastewater treatment process | |
JPH03118891A (en) | Treatment of organic sewage | |
JPS61185394A (en) | Treatment of organic high concentration waste solution | |
RU1834859C (en) | Method for purification of sewage water at cattle-breeding farms "ekotechproekt" | |
CN222250309U (en) | Black and odorous water body normal position restoration water treatment facilities | |
JPH10328693A (en) | Biological treatment of wastewater containing organic solids | |
JPS6397293A (en) | Treatment of barn sewage by circulating water flow contact oxidation | |
CN111302477B (en) | Device and method for advanced treatment of secondary biochemical effluent of petrochemical wastewater |