JPS5863129A - Manufacture of thin film semiconductor - Google Patents
Manufacture of thin film semiconductorInfo
- Publication number
- JPS5863129A JPS5863129A JP56161429A JP16142981A JPS5863129A JP S5863129 A JPS5863129 A JP S5863129A JP 56161429 A JP56161429 A JP 56161429A JP 16142981 A JP16142981 A JP 16142981A JP S5863129 A JPS5863129 A JP S5863129A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- germanium
- hydrogen gas
- ion
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000004065 semiconductor Substances 0.000 title abstract description 35
- 239000010409 thin film Substances 0.000 title abstract description 32
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 28
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 5
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 5
- -1 hydrogen gas ions Chemical class 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 9
- 150000001518 atomic anions Chemical class 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims 1
- 238000009834 vaporization Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 25
- 238000000034 method Methods 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 7
- 239000002245 particle Substances 0.000 abstract description 3
- 238000010494 dissociation reaction Methods 0.000 abstract description 2
- 230000005593 dissociations Effects 0.000 abstract description 2
- 238000010894 electron beam technology Methods 0.000 abstract 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 abstract 1
- 239000010408 film Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000005566 electron beam evaporation Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はゲルマニウム薄膜半導体とくに光起電力素子用
薄膜半導体の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a germanium thin film semiconductor, particularly a thin film semiconductor for photovoltaic devices.
従来、ゲルマニウム光起電力素子用の半導体の製造方法
としては、ゲルマニウム溶融体から結晶成長させた単結
晶インゴットを輪切りにしたダルマニウムウェハ若しく
ハリボン結晶等を基板としてこの基板に不純物の拡散等
を施こす方法やGeHa lこ不純物を添加したガス中
のグロー放電により不純物制御された非晶質ゲルマニウ
ム半導体薄膜を形成させる方法等が知られている。しか
しながら、単結晶を基板とする前者の場合は単結晶を形
成させる段階及び光起電力素子を形成する段階薯こおい
て複雑な工程を必要とするため、得られる光電素子は非
常に高価なものになるという問題点があった。Conventionally, the method for manufacturing semiconductors for germanium photovoltaic devices has been to use dalmanium wafers or halibon crystals, which are made by cutting a single crystal ingot grown from a germanium melt into rings, as a substrate, and to diffuse impurities into this substrate. There are known methods for forming an amorphous germanium semiconductor thin film with impurities controlled by glow discharge in a gas containing GeHa and impurities. However, in the former case where a single crystal is used as a substrate, complicated steps are required in the steps of forming the single crystal and forming the photovoltaic device, so the resulting photovoltaic device is very expensive. There was a problem with becoming.
一方、GeH,のグロー放電分解法で作成される非晶質
ゲルマニウムを用いる後者の方法は薄膜化が容易なため
、数ミクロンのものの作成が可能であり、原材料や電力
エネルギーが少なくて済み、且つ結晶質半導体では困難
であった連続性産や大面積化も可能であり、そして該非
晶質半導体の形成方法としては、グロー放電分解法が広
く採用されているほかにスパッタリング法が提案されて
いる。しかしながら、グロー放電分解法及びスパッタリ
ング法はともにGeH4又は水素もしくはアルゴンガス
の数トールから10−1ト一ル程度の比較的真空度の低
い低圧雰囲気中に於るプラズマを利用しているため、形
成されるゲルマニウム膜の膜質が悪くなったり、又、プ
ラズマ制御の困難性から生ずる物性上のバラツキや不均
一性が生じる等の難点を有し、廉価な光起電力素子を大
面積で連続生産するには、未だ解決しなければならない
問題点を多く残していた。On the other hand, the latter method, which uses amorphous germanium produced by the glow discharge decomposition method of GeH, can easily be made into a thin film, so it is possible to create a film of several microns, requiring less raw materials and electrical energy. Continuous production and large-area production, which are difficult with crystalline semiconductors, are possible, and as methods for forming amorphous semiconductors, glow discharge decomposition is widely used, and sputtering has been proposed. . However, both the glow discharge decomposition method and the sputtering method utilize plasma of GeH4, hydrogen, or argon gas in a relatively low-pressure atmosphere of several Torr to 10-1 Torr. However, it is difficult to continuously produce inexpensive photovoltaic devices over a large area. There were still many problems that needed to be resolved.
本発明は上記グロー放電法及びスパッタリング法番こよ
る非晶質ゲルマニウム薄膜半導体の製造方法に於ける問
題点を解消して、とくに光起電力素子として品質のすぐ
れた非晶質ゲルマニウム薄膜半導体を連続的に生産出来
、しかも大面積化が可能な薄膜半導体の製造方法を提供
することを目的としてなされたものである。The present invention solves the problems in the manufacturing method of amorphous germanium thin film semiconductors caused by the glow discharge method and sputtering method described above, and enables continuous production of amorphous germanium thin film semiconductors of excellent quality especially as photovoltaic devices. The purpose of this invention is to provide a method for manufacturing thin film semiconductors that can be produced in a large scale and can be made to have a large area.
すなわち本発明の要旨は、10−sトール以下の高真空
に排気された真空容器内に、8X10−4トールからl
Xl0−5)−ルの範囲の分圧を有する様に水素ガスを
導入し、該導入された水素ガスとゲルマニウムとヒ素又
はゲルマニウムとガリウムとが加熱蒸発された蒸気化物
質とに加速電子を衝突させて電離若しくは解離させ、か
くして生成した水素ガスイオン及び蒸気化物質の単原子
イオンに電界効果により高エネルギーを付与して電極基
板上番と射突させて薄膜ゲルマニウムを形成することを
特徴とする薄膜半導体の製造方法に存する。That is, the gist of the present invention is that 8X10-4 Torr to l
Hydrogen gas is introduced so as to have a partial pressure in the range of The hydrogen gas ions and monatomic ions of the vaporized substance are ionized or dissociated, and high energy is imparted to the hydrogen gas ions and monoatomic ions of the vaporized substance by an electric field effect to cause them to collide with the upper electrode substrate to form a thin film of germanium. It consists in a method of manufacturing a thin film semiconductor.
以下図面を参照しながら本発明の薄膜半導体の製造方法
について説明する。The method for manufacturing a thin film semiconductor of the present invention will be described below with reference to the drawings.
第1図は本発明方法で製造された薄膜半導体が用いられ
た光起電力素子の一例を示す断面図で該素子はショット
キーバリア型のものであり、図中lij基材であり、該
基材としては例えば、ポリ塩化ビニル、ポリフッ化ビニ
ル、酢酸セルロース、ポリエチレンテレフタレート、ポ
リエチレンテレフタレート、ポリエチレン、ポリプロピ
レン、ポリカーボネート、ポリイミド、ポリエーテルサ
ルフオン、ポリパラバン酸等の高分子材料、ガラス、磁
器、陶器等のセラミック材料或いはアルミニウム、ステ
ンレススチール等の金属材料などのフィルム状物又は薄
板状物から構成される。2は基板端子電極であり、該基
板端子電極2にその上に形成される薄膜半導体層3に対
してオーミックコンタクトが得られるような金属材料で
形成されており、該形成は通常金属蒸着の手法によって
行われる。FIG. 1 is a cross-sectional view showing an example of a photovoltaic device using a thin film semiconductor manufactured by the method of the present invention. Materials include, for example, polymeric materials such as polyvinyl chloride, polyvinyl fluoride, cellulose acetate, polyethylene terephthalate, polyethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyimide, polyether sulfonate, polyparabanic acid, glass, porcelain, ceramics, etc. It is composed of a film-like or thin plate-like material such as a ceramic material or a metal material such as aluminum or stainless steel. Reference numeral 2 denotes a substrate terminal electrode, which is formed of a metal material that provides ohmic contact with the thin film semiconductor layer 3 formed on the substrate terminal electrode 2, and is usually formed by metal vapor deposition. carried out by
そして上記金属材料としては、その上に形成される薄膜
半導体層3がn型非晶質ゲルマニウムである場合はステ
ンレス等を含む金属材料が好ましい。上記基材1と基板
端子電極2とにより電極基板が形成される。薄膜半導体
層3は本5−
発明方法により形成される非晶質ゲルマニウムよりなる
層であり、該層tin型若しくはP型半導体となされる
か若しくに、真性半導体、n型半導体及びP型半導体の
王者の中の三者以上が適宜組合わされて積層されたもの
である。When the thin film semiconductor layer 3 formed thereon is n-type amorphous germanium, the metal material is preferably a metal material including stainless steel or the like. An electrode substrate is formed by the base material 1 and the substrate terminal electrode 2. The thin film semiconductor layer 3 is a layer made of amorphous germanium formed by the method of the present invention, and the layer may be a tin-type or a p-type semiconductor, or may be an intrinsic semiconductor, an n-type semiconductor, or a p-type semiconductor. Three or more of the champions are appropriately combined and laminated.
薄膜半導体層3をn型のものとするには本発明方法にお
いて加熱蒸発させる物質としてゲルマニウムとヒ素を用
いればよく、又、P型のものとする番こはゲルマニウム
とガリウムとを用いればよく、又真性半導体とするには
ゲルマニウムのみを用いればよい。To make the thin film semiconductor layer 3 n-type, germanium and arsenic may be used as the substances to be heated and evaporated in the method of the present invention, and germanium and gallium may be used to make the thin-film semiconductor layer 3 p-type. Moreover, only germanium may be used to make it an intrinsic semiconductor.
又、薄膜半導体層3の厚さは数千オングストロームから
数ミクロンのオーダーの範囲とするのが好ましい。Further, the thickness of the thin film semiconductor layer 3 is preferably in the range of the order of several thousand angstroms to several microns.
次に第1図において4は薄膜半導体層3との間でショッ
トキーバリアを形成する金属4膜であり、該薄膜4#−
1100オングストロームから数ミクロンの範囲の厚さ
に蒸着されて形成されるのがよい。そして該薄膜4を構
成する金属材料としてはプラチナや金等が好適である。Next, in FIG. 1, 4 is a metal 4 film that forms a Schottky barrier with the thin film semiconductor layer 3, and the thin film 4#-
It is preferably deposited to a thickness ranging from 1100 angstroms to several microns. The metal material constituting the thin film 4 is preferably platinum, gold, or the like.
金属6−
薄膜4上にはクシ形又は線状等の構造の電流収集用の対
向端子電極5が配置されており、又、6は必要に応じて
最上層に蒸着形成などによって設けられていてもよい反
射防止膜である。Metal 6 - On the thin film 4, a counter terminal electrode 5 having a comb-shaped or linear structure for collecting current is arranged, and if necessary, the metal 6 is provided on the top layer by vapor deposition or the like. It is also a good anti-reflection film.
本発明で製造された薄膜半導体の光起電力素子への適用
例として第1図を示したが、これに限定されることはな
く他の形式の光起電力素子に適用することも可能である
。Although FIG. 1 is shown as an example of application of the thin film semiconductor manufactured by the present invention to a photovoltaic device, the present invention is not limited thereto and can be applied to other types of photovoltaic devices. .
次に、本発明方法を実施するための装置の一例を示す第
2図にもとずいて説明するに、第2図に示される装置に
おいては、
真空槽ll内の真空室12Vi排気口13に連結される
排気系装置(油回転ポンプ、油拡散ポンプ等で構成され
ているが、図示されていない)によってlXl0−7ト
ールまでの高真空に排気されることが可能になされてお
り、そして真空室12には電子ビーム蒸発源14(電源
回路等は図示されていない)邪魔板15、ループ状のガ
ス導入管16、電子発生装置17、基板ホルダー18、
及びそれに取り付けられた電極基板7−
19が設置されており、更に真空槽11の外方には、装
置を動作させるための電源20〜22とその回路、ルー
プ状ガス導入管16にバルブ24.25によって切換及
び流量調節づ能事こ接続された水素が充填されたボンベ
23が設置されている。Next, an explanation will be given based on FIG. 2 showing an example of an apparatus for carrying out the method of the present invention. In the apparatus shown in FIG. A connected exhaust system device (composed of an oil rotary pump, an oil diffusion pump, etc., but not shown) makes it possible to exhaust to a high vacuum of up to 1X10-7 Torr, and the vacuum The chamber 12 includes an electron beam evaporation source 14 (power circuit etc. are not shown), a baffle plate 15, a loop-shaped gas introduction pipe 16, an electron generator 17, a substrate holder 18,
and an electrode substrate 7-19 attached thereto, and further outside the vacuum chamber 11 are power supplies 20-22 and their circuits for operating the device, and valves 24. A cylinder 23 filled with hydrogen is connected to the cylinder 25 for switching and flow rate adjustment.
本発明にもとすいて薄膜半導体を製造するには、第2図
に示す様に電極基板19を基板ホルダー18に配置し、
電子ビーム蒸発源14のルツボ141に多結晶ゲルマニ
ウム、多結晶ゲルマニウムとヒ素又は多結晶ゲルマニウ
ムとガリウムを供給し、次いで排気口13から排気系装
置によって排気を行なって真空室によって排気を行なっ
て真空室12を1×1o1トール好ましくはI X 1
0−’トールよりも高度の高真空となし、真空度が安定
したところでガス導入管16:。In order to manufacture a thin film semiconductor according to the present invention, an electrode substrate 19 is placed on a substrate holder 18 as shown in FIG.
Polycrystalline germanium, polycrystalline germanium and arsenic, or polycrystalline germanium and gallium are supplied to the crucible 141 of the electron beam evaporation source 14, and then evacuated from the exhaust port 13 by an exhaust system device to be evacuated by the vacuum chamber. 12 to 1 x 1 o 1 tor preferably I x 1
Create a high vacuum higher than 0-'Torr, and when the degree of vacuum becomes stable, open the gas introduction tube 16:.
よりバルブ24 、26’を調節しながら水素ガスを分
圧が8X10 ’ )−ルからlX10’トールの範囲
になる様に導入する。While adjusting the valves 24 and 26', hydrogen gas is introduced so that the partial pressure is in the range of 8 x 10' Torr to 1 x 10' Torr.
又、加熱蒸発される物質の種類1こつぃては、8− 目的とする半導体の種類によって選択される。In addition, the first type of substance that is heated and evaporated is 8- It is selected depending on the type of target semiconductor.
ゲルマニウム対ヒ素又はガリウムの使用割合トしては、
1:10−@〜t:to−xの重置比率で用いるのが好
ましい0次いで電子ビーム蒸発源14を動作させてルツ
ボ141内の物質を蒸気化させ、該物質の原子状粒子と
導入された水素ガスを電子発生装置17からの高速電子
により衝突電離若しくけ解離せしめてイオン化させる。The ratio of germanium to arsenic or gallium used is:
It is preferable to use an overlapping ratio of 1:10-@ to t:to-x. Next, the electron beam evaporation source 14 is operated to vaporize the substance in the crucible 141, and the atomic particles of the substance and the atomic particles are introduced. The hydrogen gas is ionized by impact ionization or dissociation by high-speed electrons from the electron generator 17.
なお、電子発生装置117Viフイラメント171、メ
ツシュ状電極172及びガート電極173から構成され
ており、本実施例では電源211こより一600Vの直
流電位を与えられたフィラメント171に、電源20に
よりIOV、30Aの交流電流を通電し加熱せしめ熱電
子を発生させると共にメツシュ状電極172を接地する
ことにより上記熱電子を電界加速させて高速電子を発生
する様になされている。The electron generator 117Vi is composed of a filament 171, a mesh electrode 172, and a guard electrode 173. In this embodiment, the filament 171 is supplied with a DC potential of 600V from the power supply 211, and the power supply 20 applies an IOV of 30A to the filament 171. An alternating current is applied to generate heat to generate thermoelectrons, and by grounding the mesh electrode 172, the thermoelectrons are accelerated by an electric field to generate high-speed electrons.
前記によりイオン化された水素イオン及び蒸気化物質の
単原子イオンに対し、基板ホルダー18に電源22によ
り負の直流高電圧を印加す9−
ることで高エネルギーを付与し、電極基板19表面薔こ
入射せしめ、かくして薄膜半導体である非晶質のゲルマ
ニウム薄膜を形成させるのである。High energy is imparted to the ionized hydrogen ions and monoatomic ions of the vaporized substance by applying a negative DC high voltage 9- to the substrate holder 18 from the power supply 22, and the surface of the electrode substrate 19 is heated. Thus, an amorphous germanium thin film, which is a thin film semiconductor, is formed.
しかして本発明における高エネルギーとしては、運動エ
ネルギーが常温に於て10 eVから8KeVまでの範
囲のものが好適であり、この様な高エネルギーが付与さ
れた水素イオン及びゲルマニウムイオン等が基板19表
面に入射されることにより、半導体としての性能を有す
る非晶質のゲルマニウム薄膜が形成されるのである。However, as the high energy in the present invention, it is preferable to have a kinetic energy in the range of 10 eV to 8 KeV at room temperature, and hydrogen ions, germanium ions, etc. imparted with such high energy are applied to the surface of the substrate 19. An amorphous germanium thin film having the performance as a semiconductor is formed by being incident on the rays.
又、尚エネルギーを付与するために基板ボルダ−18に
印加される負の直流電圧は次式を満足するのがよい。Further, it is preferable that the negative DC voltage applied to the substrate boulder 18 to impart energy satisfies the following equation.
(LOI≦IVal≦1(LO−−TS4 (但し、vaハ印加される負の直流電圧(KV )。(LOI≦IVal≦1(LO--TS4 (However, va is the applied negative DC voltage (KV).
TSは基板温度(0K)である。)
本発明の薄膜半導体の製造方法は上述の通りノ方法であ
り、高真空の条件下でゲルマニウムイオン、水素ガスイ
オン等に高エネルギーを付10−
与して電極基板上書こ射突させることにより非晶質ゲル
マニウムからなる簿膜を形成させることにより、特番こ
光起電力素子としてすぐれた性質の半導体を高品質で簡
単にしかも連続的に得ることが出来、さらに大面積化も
容易なるものである。TS is the substrate temperature (0K). ) The method for manufacturing a thin film semiconductor of the present invention is as described above, and is performed by imparting high energy to germanium ions, hydrogen gas ions, etc. under high vacuum conditions and causing them to write onto an electrode substrate. By forming a film made of amorphous germanium, it is possible to easily and continuously obtain a high-quality semiconductor with excellent properties as a photovoltaic device, and it is also easy to increase the area. be.
第1図は、本発明方法で製造された薄膜半導体が用いら
れた光起電力素子の一例を示す断面図、第2図は本発明
方法を実施するための装置の一例を示す説明図である。
l・・・基材、2・・・基板端子電極、3・−・薄膜半
導体層、4・・・金属薄膜、5・・・対向端子電極、6
・・・反射防止膜、12・・・真空室、14・・・電子
ビーム蒸発源、16・・・ループ状ガス導入管、17・
・・電子発生装置、18・・・基板ホルダー、19・・
・電極基板、20〜22・・・電源、23・・・ボンベ
、24゜25・・・バルブ
特許比−人 積水化学工業株式会社
代表者藤沼基利
11−
才 j 店FIG. 1 is a sectional view showing an example of a photovoltaic device using a thin film semiconductor manufactured by the method of the present invention, and FIG. 2 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention. . l... Base material, 2... Substrate terminal electrode, 3... Thin film semiconductor layer, 4... Metal thin film, 5... Counter terminal electrode, 6
... Antireflection film, 12 ... Vacuum chamber, 14 ... Electron beam evaporation source, 16 ... Loop-shaped gas introduction tube, 17.
...Electron generator, 18...Substrate holder, 19...
・Electrode substrate, 20-22... Power supply, 23... Cylinder, 24° 25... Valve patent ratio - Person Sekisui Chemical Co., Ltd. Representative Motoshi Fujinuma 11 years old J Store
Claims (1)
内に、8X10−4トールからI X 10−’トール
の範囲の分圧を有する様に水素ガスを導入し、該導入さ
れた水素ガスと、ゲルマニウムとヒ素又はゲルマニウム
とガリウムとが加熱蒸発された蒸気化物質とに加速電子
を衝突させて電離若しくは解離させ、か(して生成した
水素ガスイオン及び蒸気化物質の単原子イオンに電界効
果番こより高エネルギーを付与して電極基材上に射突さ
せて薄膜ゲルマニウムを形成することを特徴とする簿膜
半導体の製造方法。 λ 水素ガスイオン及び蒸気化物質の単原子イオンに付
与される高エネルギーが10eVないし8KeVの範囲
である第1項記載の製造方法。 記載の製造方法。[Scope of Claims] Hydrogen gas is introduced into a vacuum vessel evacuated to a high vacuum of 110-') torr or less so as to have a partial pressure in the range of 8 x 10-4 torr to I x 10-' torr. Then, accelerated electrons collide with the introduced hydrogen gas and a vaporized substance in which germanium and arsenic or germanium and gallium are heated and evaporated to ionize or dissociate the hydrogen gas ions and vapor produced. λ hydrogen gas ion and vaporization 2. The manufacturing method according to item 1, wherein the high energy imparted to the monatomic ions of the substance is in the range of 10 eV to 8 KeV.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56161429A JPS5863129A (en) | 1981-10-09 | 1981-10-09 | Manufacture of thin film semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56161429A JPS5863129A (en) | 1981-10-09 | 1981-10-09 | Manufacture of thin film semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5863129A true JPS5863129A (en) | 1983-04-14 |
JPS6157695B2 JPS6157695B2 (en) | 1986-12-08 |
Family
ID=15734934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56161429A Granted JPS5863129A (en) | 1981-10-09 | 1981-10-09 | Manufacture of thin film semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5863129A (en) |
-
1981
- 1981-10-09 JP JP56161429A patent/JPS5863129A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6157695B2 (en) | 1986-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5510011A (en) | Method for forming a functional deposited film by bias sputtering process at a relatively low substrate temperature | |
US4416755A (en) | Apparatus and method for producing semiconducting films | |
US4336277A (en) | Transparent electrical conducting films by activated reactive evaporation | |
JP4523158B2 (en) | Method for depositing semiconductors by sputtering | |
US4637869A (en) | Dual ion beam deposition of amorphous semiconductor films | |
EP0571632B1 (en) | Process for forming a polycrystalline silicon thin film at low temperature | |
US4492736A (en) | Process for forming microcrystalline silicon material and product | |
JPH0143449B2 (en) | ||
WO1994019509A1 (en) | Film forming method and film forming apparatus | |
WO1996030925A1 (en) | Boron nitride cold cathode | |
US4698235A (en) | Siting a film onto a substrate including electron-beam evaporation | |
US4702965A (en) | Low vacuum silicon thin film solar cell and method of production | |
US4266984A (en) | Enhanced open circuit voltage in amorphous silicon photovoltaic devices | |
JPS5863129A (en) | Manufacture of thin film semiconductor | |
JP2000273617A (en) | Method for producing transparent conductive film | |
JPH1112731A (en) | Formation of high purity thin film | |
JPS5863128A (en) | Manufacture of thin film semiconductor | |
JPS6146046B2 (en) | ||
EP0177115B1 (en) | Dual ion beam deposition of amorphous semiconductor films | |
JP3102540B2 (en) | Method for forming low hydrogen content amorphous silicon semiconductor thin film | |
JPS639743B2 (en) | ||
JPH0131289B2 (en) | ||
JPS6326557B2 (en) | ||
JPH0536619A (en) | Semiconductor surface treatment method and equipment | |
JP2002069616A (en) | Method for producing anatase-type titanium oxide thin film |