[go: up one dir, main page]

JPS5863129A - Manufacture of thin film semiconductor - Google Patents

Manufacture of thin film semiconductor

Info

Publication number
JPS5863129A
JPS5863129A JP56161429A JP16142981A JPS5863129A JP S5863129 A JPS5863129 A JP S5863129A JP 56161429 A JP56161429 A JP 56161429A JP 16142981 A JP16142981 A JP 16142981A JP S5863129 A JPS5863129 A JP S5863129A
Authority
JP
Japan
Prior art keywords
thin film
germanium
hydrogen gas
ion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56161429A
Other languages
Japanese (ja)
Other versions
JPS6157695B2 (en
Inventor
Kazu Yamanaka
山中 計
Takeshi Aragai
新貝 健
Masahiro Hotta
堀田 正裕
Toshio Kamisaka
上坂 外志夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP56161429A priority Critical patent/JPS5863129A/en
Publication of JPS5863129A publication Critical patent/JPS5863129A/en
Publication of JPS6157695B2 publication Critical patent/JPS6157695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To simply and continuously obtain the semiconductor, as a photo electromotive force element, of high quality by a method wherein high energy is applied to a germanium ion, a hydrogen gas ion and the like under high vacuum condition, they are collided with the surface of an electrode substrate, and a thin film consisting of amorphous germanium is formed. CONSTITUTION:The electrode substrate 19 is arranged on a substrate holder 18, polycrystalline germanium and arsenic, or polycrystalline germanium and gallium are fed to the crucible 141 of an electron beam vaporing source 14, and air is evacuated from an exhaust port 13 using a device on an exhaust system. Then, the materials in the crucible 141 are evaporated by operating the electron beam vaporing source 14, the atomic type particles of said materials and the introduced hydrogen gas are brought into an ionized state by collision ionization or dissociation using the high speed electron sent from an electron generator 17. Negative DC high voltage is applied to the ionized hydrogen ion and the monoatomic ion of the substrate holder 18 from the power source 22.

Description

【発明の詳細な説明】 本発明はゲルマニウム薄膜半導体とくに光起電力素子用
薄膜半導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a germanium thin film semiconductor, particularly a thin film semiconductor for photovoltaic devices.

従来、ゲルマニウム光起電力素子用の半導体の製造方法
としては、ゲルマニウム溶融体から結晶成長させた単結
晶インゴットを輪切りにしたダルマニウムウェハ若しく
ハリボン結晶等を基板としてこの基板に不純物の拡散等
を施こす方法やGeHa lこ不純物を添加したガス中
のグロー放電により不純物制御された非晶質ゲルマニウ
ム半導体薄膜を形成させる方法等が知られている。しか
しながら、単結晶を基板とする前者の場合は単結晶を形
成させる段階及び光起電力素子を形成する段階薯こおい
て複雑な工程を必要とするため、得られる光電素子は非
常に高価なものになるという問題点があった。
Conventionally, the method for manufacturing semiconductors for germanium photovoltaic devices has been to use dalmanium wafers or halibon crystals, which are made by cutting a single crystal ingot grown from a germanium melt into rings, as a substrate, and to diffuse impurities into this substrate. There are known methods for forming an amorphous germanium semiconductor thin film with impurities controlled by glow discharge in a gas containing GeHa and impurities. However, in the former case where a single crystal is used as a substrate, complicated steps are required in the steps of forming the single crystal and forming the photovoltaic device, so the resulting photovoltaic device is very expensive. There was a problem with becoming.

一方、GeH,のグロー放電分解法で作成される非晶質
ゲルマニウムを用いる後者の方法は薄膜化が容易なため
、数ミクロンのものの作成が可能であり、原材料や電力
エネルギーが少なくて済み、且つ結晶質半導体では困難
であった連続性産や大面積化も可能であり、そして該非
晶質半導体の形成方法としては、グロー放電分解法が広
く採用されているほかにスパッタリング法が提案されて
いる。しかしながら、グロー放電分解法及びスパッタリ
ング法はともにGeH4又は水素もしくはアルゴンガス
の数トールから10−1ト一ル程度の比較的真空度の低
い低圧雰囲気中に於るプラズマを利用しているため、形
成されるゲルマニウム膜の膜質が悪くなったり、又、プ
ラズマ制御の困難性から生ずる物性上のバラツキや不均
一性が生じる等の難点を有し、廉価な光起電力素子を大
面積で連続生産するには、未だ解決しなければならない
問題点を多く残していた。
On the other hand, the latter method, which uses amorphous germanium produced by the glow discharge decomposition method of GeH, can easily be made into a thin film, so it is possible to create a film of several microns, requiring less raw materials and electrical energy. Continuous production and large-area production, which are difficult with crystalline semiconductors, are possible, and as methods for forming amorphous semiconductors, glow discharge decomposition is widely used, and sputtering has been proposed. . However, both the glow discharge decomposition method and the sputtering method utilize plasma of GeH4, hydrogen, or argon gas in a relatively low-pressure atmosphere of several Torr to 10-1 Torr. However, it is difficult to continuously produce inexpensive photovoltaic devices over a large area. There were still many problems that needed to be resolved.

本発明は上記グロー放電法及びスパッタリング法番こよ
る非晶質ゲルマニウム薄膜半導体の製造方法に於ける問
題点を解消して、とくに光起電力素子として品質のすぐ
れた非晶質ゲルマニウム薄膜半導体を連続的に生産出来
、しかも大面積化が可能な薄膜半導体の製造方法を提供
することを目的としてなされたものである。
The present invention solves the problems in the manufacturing method of amorphous germanium thin film semiconductors caused by the glow discharge method and sputtering method described above, and enables continuous production of amorphous germanium thin film semiconductors of excellent quality especially as photovoltaic devices. The purpose of this invention is to provide a method for manufacturing thin film semiconductors that can be produced in a large scale and can be made to have a large area.

すなわち本発明の要旨は、10−sトール以下の高真空
に排気された真空容器内に、8X10−4トールからl
Xl0−5)−ルの範囲の分圧を有する様に水素ガスを
導入し、該導入された水素ガスとゲルマニウムとヒ素又
はゲルマニウムとガリウムとが加熱蒸発された蒸気化物
質とに加速電子を衝突させて電離若しくは解離させ、か
くして生成した水素ガスイオン及び蒸気化物質の単原子
イオンに電界効果により高エネルギーを付与して電極基
板上番と射突させて薄膜ゲルマニウムを形成することを
特徴とする薄膜半導体の製造方法に存する。
That is, the gist of the present invention is that 8X10-4 Torr to l
Hydrogen gas is introduced so as to have a partial pressure in the range of The hydrogen gas ions and monatomic ions of the vaporized substance are ionized or dissociated, and high energy is imparted to the hydrogen gas ions and monoatomic ions of the vaporized substance by an electric field effect to cause them to collide with the upper electrode substrate to form a thin film of germanium. It consists in a method of manufacturing a thin film semiconductor.

以下図面を参照しながら本発明の薄膜半導体の製造方法
について説明する。
The method for manufacturing a thin film semiconductor of the present invention will be described below with reference to the drawings.

第1図は本発明方法で製造された薄膜半導体が用いられ
た光起電力素子の一例を示す断面図で該素子はショット
キーバリア型のものであり、図中lij基材であり、該
基材としては例えば、ポリ塩化ビニル、ポリフッ化ビニ
ル、酢酸セルロース、ポリエチレンテレフタレート、ポ
リエチレンテレフタレート、ポリエチレン、ポリプロピ
レン、ポリカーボネート、ポリイミド、ポリエーテルサ
ルフオン、ポリパラバン酸等の高分子材料、ガラス、磁
器、陶器等のセラミック材料或いはアルミニウム、ステ
ンレススチール等の金属材料などのフィルム状物又は薄
板状物から構成される。2は基板端子電極であり、該基
板端子電極2にその上に形成される薄膜半導体層3に対
してオーミックコンタクトが得られるような金属材料で
形成されており、該形成は通常金属蒸着の手法によって
行われる。
FIG. 1 is a cross-sectional view showing an example of a photovoltaic device using a thin film semiconductor manufactured by the method of the present invention. Materials include, for example, polymeric materials such as polyvinyl chloride, polyvinyl fluoride, cellulose acetate, polyethylene terephthalate, polyethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyimide, polyether sulfonate, polyparabanic acid, glass, porcelain, ceramics, etc. It is composed of a film-like or thin plate-like material such as a ceramic material or a metal material such as aluminum or stainless steel. Reference numeral 2 denotes a substrate terminal electrode, which is formed of a metal material that provides ohmic contact with the thin film semiconductor layer 3 formed on the substrate terminal electrode 2, and is usually formed by metal vapor deposition. carried out by

そして上記金属材料としては、その上に形成される薄膜
半導体層3がn型非晶質ゲルマニウムである場合はステ
ンレス等を含む金属材料が好ましい。上記基材1と基板
端子電極2とにより電極基板が形成される。薄膜半導体
層3は本5− 発明方法により形成される非晶質ゲルマニウムよりなる
層であり、該層tin型若しくはP型半導体となされる
か若しくに、真性半導体、n型半導体及びP型半導体の
王者の中の三者以上が適宜組合わされて積層されたもの
である。
When the thin film semiconductor layer 3 formed thereon is n-type amorphous germanium, the metal material is preferably a metal material including stainless steel or the like. An electrode substrate is formed by the base material 1 and the substrate terminal electrode 2. The thin film semiconductor layer 3 is a layer made of amorphous germanium formed by the method of the present invention, and the layer may be a tin-type or a p-type semiconductor, or may be an intrinsic semiconductor, an n-type semiconductor, or a p-type semiconductor. Three or more of the champions are appropriately combined and laminated.

薄膜半導体層3をn型のものとするには本発明方法にお
いて加熱蒸発させる物質としてゲルマニウムとヒ素を用
いればよく、又、P型のものとする番こはゲルマニウム
とガリウムとを用いればよく、又真性半導体とするには
ゲルマニウムのみを用いればよい。
To make the thin film semiconductor layer 3 n-type, germanium and arsenic may be used as the substances to be heated and evaporated in the method of the present invention, and germanium and gallium may be used to make the thin-film semiconductor layer 3 p-type. Moreover, only germanium may be used to make it an intrinsic semiconductor.

又、薄膜半導体層3の厚さは数千オングストロームから
数ミクロンのオーダーの範囲とするのが好ましい。
Further, the thickness of the thin film semiconductor layer 3 is preferably in the range of the order of several thousand angstroms to several microns.

次に第1図において4は薄膜半導体層3との間でショッ
トキーバリアを形成する金属4膜であり、該薄膜4#−
1100オングストロームから数ミクロンの範囲の厚さ
に蒸着されて形成されるのがよい。そして該薄膜4を構
成する金属材料としてはプラチナや金等が好適である。
Next, in FIG. 1, 4 is a metal 4 film that forms a Schottky barrier with the thin film semiconductor layer 3, and the thin film 4#-
It is preferably deposited to a thickness ranging from 1100 angstroms to several microns. The metal material constituting the thin film 4 is preferably platinum, gold, or the like.

金属6− 薄膜4上にはクシ形又は線状等の構造の電流収集用の対
向端子電極5が配置されており、又、6は必要に応じて
最上層に蒸着形成などによって設けられていてもよい反
射防止膜である。
Metal 6 - On the thin film 4, a counter terminal electrode 5 having a comb-shaped or linear structure for collecting current is arranged, and if necessary, the metal 6 is provided on the top layer by vapor deposition or the like. It is also a good anti-reflection film.

本発明で製造された薄膜半導体の光起電力素子への適用
例として第1図を示したが、これに限定されることはな
く他の形式の光起電力素子に適用することも可能である
Although FIG. 1 is shown as an example of application of the thin film semiconductor manufactured by the present invention to a photovoltaic device, the present invention is not limited thereto and can be applied to other types of photovoltaic devices. .

次に、本発明方法を実施するための装置の一例を示す第
2図にもとずいて説明するに、第2図に示される装置に
おいては、 真空槽ll内の真空室12Vi排気口13に連結される
排気系装置(油回転ポンプ、油拡散ポンプ等で構成され
ているが、図示されていない)によってlXl0−7ト
ールまでの高真空に排気されることが可能になされてお
り、そして真空室12には電子ビーム蒸発源14(電源
回路等は図示されていない)邪魔板15、ループ状のガ
ス導入管16、電子発生装置17、基板ホルダー18、
及びそれに取り付けられた電極基板7− 19が設置されており、更に真空槽11の外方には、装
置を動作させるための電源20〜22とその回路、ルー
プ状ガス導入管16にバルブ24.25によって切換及
び流量調節づ能事こ接続された水素が充填されたボンベ
23が設置されている。
Next, an explanation will be given based on FIG. 2 showing an example of an apparatus for carrying out the method of the present invention. In the apparatus shown in FIG. A connected exhaust system device (composed of an oil rotary pump, an oil diffusion pump, etc., but not shown) makes it possible to exhaust to a high vacuum of up to 1X10-7 Torr, and the vacuum The chamber 12 includes an electron beam evaporation source 14 (power circuit etc. are not shown), a baffle plate 15, a loop-shaped gas introduction pipe 16, an electron generator 17, a substrate holder 18,
and an electrode substrate 7-19 attached thereto, and further outside the vacuum chamber 11 are power supplies 20-22 and their circuits for operating the device, and valves 24. A cylinder 23 filled with hydrogen is connected to the cylinder 25 for switching and flow rate adjustment.

本発明にもとすいて薄膜半導体を製造するには、第2図
に示す様に電極基板19を基板ホルダー18に配置し、
電子ビーム蒸発源14のルツボ141に多結晶ゲルマニ
ウム、多結晶ゲルマニウムとヒ素又は多結晶ゲルマニウ
ムとガリウムを供給し、次いで排気口13から排気系装
置によって排気を行なって真空室によって排気を行なっ
て真空室12を1×1o1トール好ましくはI X 1
0−’トールよりも高度の高真空となし、真空度が安定
したところでガス導入管16:。
In order to manufacture a thin film semiconductor according to the present invention, an electrode substrate 19 is placed on a substrate holder 18 as shown in FIG.
Polycrystalline germanium, polycrystalline germanium and arsenic, or polycrystalline germanium and gallium are supplied to the crucible 141 of the electron beam evaporation source 14, and then evacuated from the exhaust port 13 by an exhaust system device to be evacuated by the vacuum chamber. 12 to 1 x 1 o 1 tor preferably I x 1
Create a high vacuum higher than 0-'Torr, and when the degree of vacuum becomes stable, open the gas introduction tube 16:.

よりバルブ24 、26’を調節しながら水素ガスを分
圧が8X10 ’ )−ルからlX10’トールの範囲
になる様に導入する。
While adjusting the valves 24 and 26', hydrogen gas is introduced so that the partial pressure is in the range of 8 x 10' Torr to 1 x 10' Torr.

又、加熱蒸発される物質の種類1こつぃては、8− 目的とする半導体の種類によって選択される。In addition, the first type of substance that is heated and evaporated is 8- It is selected depending on the type of target semiconductor.

ゲルマニウム対ヒ素又はガリウムの使用割合トしては、
1:10−@〜t:to−xの重置比率で用いるのが好
ましい0次いで電子ビーム蒸発源14を動作させてルツ
ボ141内の物質を蒸気化させ、該物質の原子状粒子と
導入された水素ガスを電子発生装置17からの高速電子
により衝突電離若しくけ解離せしめてイオン化させる。
The ratio of germanium to arsenic or gallium used is:
It is preferable to use an overlapping ratio of 1:10-@ to t:to-x. Next, the electron beam evaporation source 14 is operated to vaporize the substance in the crucible 141, and the atomic particles of the substance and the atomic particles are introduced. The hydrogen gas is ionized by impact ionization or dissociation by high-speed electrons from the electron generator 17.

なお、電子発生装置117Viフイラメント171、メ
ツシュ状電極172及びガート電極173から構成され
ており、本実施例では電源211こより一600Vの直
流電位を与えられたフィラメント171に、電源20に
よりIOV、30Aの交流電流を通電し加熱せしめ熱電
子を発生させると共にメツシュ状電極172を接地する
ことにより上記熱電子を電界加速させて高速電子を発生
する様になされている。
The electron generator 117Vi is composed of a filament 171, a mesh electrode 172, and a guard electrode 173. In this embodiment, the filament 171 is supplied with a DC potential of 600V from the power supply 211, and the power supply 20 applies an IOV of 30A to the filament 171. An alternating current is applied to generate heat to generate thermoelectrons, and by grounding the mesh electrode 172, the thermoelectrons are accelerated by an electric field to generate high-speed electrons.

前記によりイオン化された水素イオン及び蒸気化物質の
単原子イオンに対し、基板ホルダー18に電源22によ
り負の直流高電圧を印加す9− ることで高エネルギーを付与し、電極基板19表面薔こ
入射せしめ、かくして薄膜半導体である非晶質のゲルマ
ニウム薄膜を形成させるのである。
High energy is imparted to the ionized hydrogen ions and monoatomic ions of the vaporized substance by applying a negative DC high voltage 9- to the substrate holder 18 from the power supply 22, and the surface of the electrode substrate 19 is heated. Thus, an amorphous germanium thin film, which is a thin film semiconductor, is formed.

しかして本発明における高エネルギーとしては、運動エ
ネルギーが常温に於て10 eVから8KeVまでの範
囲のものが好適であり、この様な高エネルギーが付与さ
れた水素イオン及びゲルマニウムイオン等が基板19表
面に入射されることにより、半導体としての性能を有す
る非晶質のゲルマニウム薄膜が形成されるのである。
However, as the high energy in the present invention, it is preferable to have a kinetic energy in the range of 10 eV to 8 KeV at room temperature, and hydrogen ions, germanium ions, etc. imparted with such high energy are applied to the surface of the substrate 19. An amorphous germanium thin film having the performance as a semiconductor is formed by being incident on the rays.

又、尚エネルギーを付与するために基板ボルダ−18に
印加される負の直流電圧は次式を満足するのがよい。
Further, it is preferable that the negative DC voltage applied to the substrate boulder 18 to impart energy satisfies the following equation.

(LOI≦IVal≦1(LO−−TS4 (但し、vaハ印加される負の直流電圧(KV )。(LOI≦IVal≦1(LO--TS4 (However, va is the applied negative DC voltage (KV).

TSは基板温度(0K)である。) 本発明の薄膜半導体の製造方法は上述の通りノ方法であ
り、高真空の条件下でゲルマニウムイオン、水素ガスイ
オン等に高エネルギーを付10− 与して電極基板上書こ射突させることにより非晶質ゲル
マニウムからなる簿膜を形成させることにより、特番こ
光起電力素子としてすぐれた性質の半導体を高品質で簡
単にしかも連続的に得ることが出来、さらに大面積化も
容易なるものである。
TS is the substrate temperature (0K). ) The method for manufacturing a thin film semiconductor of the present invention is as described above, and is performed by imparting high energy to germanium ions, hydrogen gas ions, etc. under high vacuum conditions and causing them to write onto an electrode substrate. By forming a film made of amorphous germanium, it is possible to easily and continuously obtain a high-quality semiconductor with excellent properties as a photovoltaic device, and it is also easy to increase the area. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法で製造された薄膜半導体が用いら
れた光起電力素子の一例を示す断面図、第2図は本発明
方法を実施するための装置の一例を示す説明図である。 l・・・基材、2・・・基板端子電極、3・−・薄膜半
導体層、4・・・金属薄膜、5・・・対向端子電極、6
・・・反射防止膜、12・・・真空室、14・・・電子
ビーム蒸発源、16・・・ループ状ガス導入管、17・
・・電子発生装置、18・・・基板ホルダー、19・・
・電極基板、20〜22・・・電源、23・・・ボンベ
、24゜25・・・バルブ 特許比−人 積水化学工業株式会社 代表者藤沼基利 11− 才 j 店
FIG. 1 is a sectional view showing an example of a photovoltaic device using a thin film semiconductor manufactured by the method of the present invention, and FIG. 2 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention. . l... Base material, 2... Substrate terminal electrode, 3... Thin film semiconductor layer, 4... Metal thin film, 5... Counter terminal electrode, 6
... Antireflection film, 12 ... Vacuum chamber, 14 ... Electron beam evaporation source, 16 ... Loop-shaped gas introduction tube, 17.
...Electron generator, 18...Substrate holder, 19...
・Electrode substrate, 20-22... Power supply, 23... Cylinder, 24° 25... Valve patent ratio - Person Sekisui Chemical Co., Ltd. Representative Motoshi Fujinuma 11 years old J Store

Claims (1)

【特許請求の範囲】 110−’)−ル以下の高真空番こ排気された真空容器
内に、8X10−4トールからI X 10−’トール
の範囲の分圧を有する様に水素ガスを導入し、該導入さ
れた水素ガスと、ゲルマニウムとヒ素又はゲルマニウム
とガリウムとが加熱蒸発された蒸気化物質とに加速電子
を衝突させて電離若しくは解離させ、か(して生成した
水素ガスイオン及び蒸気化物質の単原子イオンに電界効
果番こより高エネルギーを付与して電極基材上に射突さ
せて薄膜ゲルマニウムを形成することを特徴とする簿膜
半導体の製造方法。 λ 水素ガスイオン及び蒸気化物質の単原子イオンに付
与される高エネルギーが10eVないし8KeVの範囲
である第1項記載の製造方法。 記載の製造方法。
[Scope of Claims] Hydrogen gas is introduced into a vacuum vessel evacuated to a high vacuum of 110-') torr or less so as to have a partial pressure in the range of 8 x 10-4 torr to I x 10-' torr. Then, accelerated electrons collide with the introduced hydrogen gas and a vaporized substance in which germanium and arsenic or germanium and gallium are heated and evaporated to ionize or dissociate the hydrogen gas ions and vapor produced. λ hydrogen gas ion and vaporization 2. The manufacturing method according to item 1, wherein the high energy imparted to the monatomic ions of the substance is in the range of 10 eV to 8 KeV.
JP56161429A 1981-10-09 1981-10-09 Manufacture of thin film semiconductor Granted JPS5863129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161429A JPS5863129A (en) 1981-10-09 1981-10-09 Manufacture of thin film semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161429A JPS5863129A (en) 1981-10-09 1981-10-09 Manufacture of thin film semiconductor

Publications (2)

Publication Number Publication Date
JPS5863129A true JPS5863129A (en) 1983-04-14
JPS6157695B2 JPS6157695B2 (en) 1986-12-08

Family

ID=15734934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161429A Granted JPS5863129A (en) 1981-10-09 1981-10-09 Manufacture of thin film semiconductor

Country Status (1)

Country Link
JP (1) JPS5863129A (en)

Also Published As

Publication number Publication date
JPS6157695B2 (en) 1986-12-08

Similar Documents

Publication Publication Date Title
US5510011A (en) Method for forming a functional deposited film by bias sputtering process at a relatively low substrate temperature
US4416755A (en) Apparatus and method for producing semiconducting films
US4336277A (en) Transparent electrical conducting films by activated reactive evaporation
JP4523158B2 (en) Method for depositing semiconductors by sputtering
US4637869A (en) Dual ion beam deposition of amorphous semiconductor films
EP0571632B1 (en) Process for forming a polycrystalline silicon thin film at low temperature
US4492736A (en) Process for forming microcrystalline silicon material and product
JPH0143449B2 (en)
WO1994019509A1 (en) Film forming method and film forming apparatus
WO1996030925A1 (en) Boron nitride cold cathode
US4698235A (en) Siting a film onto a substrate including electron-beam evaporation
US4702965A (en) Low vacuum silicon thin film solar cell and method of production
US4266984A (en) Enhanced open circuit voltage in amorphous silicon photovoltaic devices
JPS5863129A (en) Manufacture of thin film semiconductor
JP2000273617A (en) Method for producing transparent conductive film
JPH1112731A (en) Formation of high purity thin film
JPS5863128A (en) Manufacture of thin film semiconductor
JPS6146046B2 (en)
EP0177115B1 (en) Dual ion beam deposition of amorphous semiconductor films
JP3102540B2 (en) Method for forming low hydrogen content amorphous silicon semiconductor thin film
JPS639743B2 (en)
JPH0131289B2 (en)
JPS6326557B2 (en)
JPH0536619A (en) Semiconductor surface treatment method and equipment
JP2002069616A (en) Method for producing anatase-type titanium oxide thin film