[go: up one dir, main page]

JPS5861458A - Oxygen detector and oxygen concentration measuring device - Google Patents

Oxygen detector and oxygen concentration measuring device

Info

Publication number
JPS5861458A
JPS5861458A JP56160069A JP16006981A JPS5861458A JP S5861458 A JPS5861458 A JP S5861458A JP 56160069 A JP56160069 A JP 56160069A JP 16006981 A JP16006981 A JP 16006981A JP S5861458 A JPS5861458 A JP S5861458A
Authority
JP
Japan
Prior art keywords
oxygen
temperature
electrode
output
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56160069A
Other languages
Japanese (ja)
Inventor
Kenzo Sugawara
菅原 謙蔵
Tsutomu Ohashi
力 大橋
Yasuo Kodera
八洲夫 小寺
Ichiro Kanao
一郎 金尾
Minoru Ohashi
実 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Yeast Co Ltd
Original Assignee
Oriental Yeast Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Yeast Co Ltd filed Critical Oriental Yeast Co Ltd
Priority to JP56160069A priority Critical patent/JPS5861458A/en
Publication of JPS5861458A publication Critical patent/JPS5861458A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To offer the oxygen concentration measuring apparatus, by correcting an output from an oxygen detector using no temperature compensation element by an electric signal given from a temperature measuring element and outputting the oxygen concentration calibrated by the temperature of the object to be measured. CONSTITUTION:A notch is made on a side edge of an electrode supporting body 3 of an oxygen detector having an oxygen permeable diaphragm 4 and the tip end of a temperature measuring element B penetrating the body 3 is exposed to the notch. Each amplifier 13 and 14 is connected to an oxygen electrode A and the element B and is switched to either side by a switching circuit 15. A sample holding circuit 16 an A/D converter 17 and a microprocessor 18 are connected next to the circuit 15 and the output of the electrode A of the output from the element B at each temperature is taken in the microprocessor 18 and saturated quantity of dissolved oxygen in a sample is operated and is outputted.

Description

【発明の詳細な説明】 本発明は酸素測定用隔膜電極を検出部に用いた酸素検出
器及び酸素濃度測定装置の改良に関するものである。従
来、酸素濃度測定用の電極として酸素透過性の隔膜と、
該隔膜と電極本体のカソード間に電解液を介在させるご
とく配置したカソードとアノードを有する電極本体と、
該電極本体を浸漬している電解液と、前記電極本体と電
解液を前記隔膜を含めたハウジング内に配置した構造の
電極が用いられている。一般にこの構造の電極は隔膜電
極と呼ばれている。隔膜電極はその利用の発展に伴い実
用上の問題点を有することが明らかになった。第1の問
題点は酸素還元電流の温度変化率が大きく、そのために
温度変化の著るしい測定対象物には酸素の定量性がそこ
なわれることである。第1図の曲線aで示されているよ
うに酸素透過性の隔膜の酸素透過率は7℃の温度上昇に
伴(・、約5%増加する。これに対して第1図の曲線す
で示されているように飽和溶存酸素量の変化は/’Cの
温度上昇に対して一約、2%減少する。このような温度
変動に関する弱点を克服するため、サーミスタを用いて
温度補償する方法がBr1gg5 (J。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an oxygen detector and an oxygen concentration measuring device using a diaphragm electrode for oxygen measurement as a detection section. Conventionally, oxygen permeable diaphragms and oxygen permeable diaphragms were used as electrodes for measuring oxygen concentration.
an electrode body having a cathode and an anode arranged such that an electrolyte is interposed between the diaphragm and the cathode of the electrode body;
An electrode is used in which the electrode body is immersed in an electrolytic solution, and the electrode body and electrolytic solution are arranged in a housing including the diaphragm. Generally, an electrode with this structure is called a diaphragm electrode. As the use of diaphragm electrodes progresses, it has become clear that they have practical problems. The first problem is that the temperature change rate of the oxygen reduction current is large, which impairs the quantitative ability of oxygen in a measurement target subject to significant temperature changes. As shown by curve a in Figure 1, the oxygen permeability of the oxygen permeable diaphragm increases by approximately 5% as the temperature rises by 7°C. As shown, the change in the amount of saturated dissolved oxygen decreases by about 2% as the temperature rises to /'C.In order to overcome this weakness regarding temperature fluctuations, a method of temperature compensation using a thermistor has been proposed. is Br1gg5 (J.

Sci、 LnStrum、ll八へ9辞)らにより提
案され、最近の特許公開公報(特開昭33−36733
)においても、この技術思想に由来する改良が提案され
ている。この種の温度補償装置は較正を行なうために温
度測定素子を用いることと、温度補償のために電極の温
度による出力特性とは逆の非直線性の温度負性抵抗素子
であるサーミスタを電極の増幅器のフィードバック抵抗
とし増幅度が変化するように用いている。しかしこのよ
うな装置では、検出部に温度測定素子と酸素電極とサー
ミスタを用いるために検出部を小型化しにくい欠点があ
った。
Sci.
), improvements derived from this technical idea have also been proposed. This type of temperature compensation device uses a temperature measurement element for calibration, and a thermistor, which is a nonlinear temperature negative resistance element whose output characteristics are opposite to the temperature of the electrode, is used for temperature compensation. It is used as a feedback resistor in an amplifier to change the amplification degree. However, such a device has a drawback that it is difficult to miniaturize the detection section because the detection section uses a temperature measuring element, an oxygen electrode, and a thermistor.

しかもサーミスタで補償する有効温度範囲がせ(・ぜい
70℃で、これ以上の巾広い温度変化に対処するために
は、いくつかの温度補償素子や抵抗を用意しなければな
らないという不便があった。しかもこれら温度範囲にそ
くしたサーミスタや抵抗を用いるために、予め調整が必
要とされ大変な労力と時間を要した。又一度調整しても
電極の故障等で交換する場合、再度調整しなければなら
ない点など互換性に乏しく、又温度補償素子の劣化によ
る故障が多い等の欠点があった。第コの問題点としては
隔膜、電極は酸素分圧依存性があり、酸素分圧は溶存酸
素濃度に比例するが、しかし溶存酸素濃度は食塩水にお
いてNaCl  の濃度が増すにつれて減少する。この
場合、茶液の酸素分圧はθ2 / atmで一定とみな
されるものであり、隔膜、電極で得られる酸素還元電流
も同じ値となってしまう欠点があった。
Moreover, the effective temperature range that can be compensated by the thermistor is limited to 70°C (70°C at most), and in order to cope with wider temperature changes, there is the inconvenience of having to prepare several temperature compensation elements and resistors. Moreover, in order to use thermistors and resistors that are suitable for these temperature ranges, adjustment was required in advance, which required a lot of effort and time.Furthermore, even if the electrodes were adjusted once, if they were to be replaced due to failure, etc., they would have to be adjusted again. There were disadvantages such as poor compatibility, such as the fact that the temperature compensation element had to be removed, and failures often occurred due to deterioration of the temperature compensating element. It is proportional to the dissolved oxygen concentration, but the dissolved oxygen concentration decreases as the concentration of NaCl increases in the saline solution.In this case, the oxygen partial pressure of the tea liquor is assumed to be constant at θ2/atm, and the diaphragm, electrode The disadvantage was that the oxygen reduction currents obtained in both methods were the same.

本発明は、このような問題点を解決するために提案され
たもので、温度補償素子を用いない温度測定素子つき酸
素検出器と、温度補償素子を用いず温度測定素子と酸素
電極の電気信号から被測定対象物の温度較正された酸素
濃度を出力する酸素濃度測定装置を提供することを目的
とする。
The present invention was proposed in order to solve these problems. An object of the present invention is to provide an oxygen concentration measuring device that outputs the temperature-calibrated oxygen concentration of an object to be measured.

その特徴とするところは酸素透過性の隔膜と、該隔膜と
電極本体のカソード間に電解液を介在させるごとく配置
したカソードとアノードを有する電極本体と、該電極本
体を浸漬している電解液と、前記電極本体と電解液を前
記隔膜を含めた)1ウジング内に配置した酸素電極にお
いて、前記ノ1ウジング又はその延在せる部分に温度測
定素子設けたことを特徴とする酸素検出器。
Its features include an oxygen-permeable diaphragm, an electrode body having a cathode and an anode arranged so that an electrolyte is interposed between the diaphragm and the cathode of the electrode body, and an electrolyte in which the electrode body is immersed. An oxygen detector characterized in that, in an oxygen electrode in which the electrode main body and the electrolytic solution are arranged in one housing (including the diaphragm), a temperature measuring element is provided in the housing or an extending portion thereof.

器と、該検出器からの信号を増幅する増幅器と、該増幅
器により増幅されたアナログ信号をデジタル信号に変換
するA/D変換器と、前記デジタル信号を演算処理する
マイクロプロセッサと、該マイクロプロセッサの出力を
表示する表示装置とを備工、前記マイクロプロセッサの
メモリには、予め定数が格納され、該定数をもとに、前
記入力されたデジタル信号に従って被測定対象物の温度
較正された酸素濃度を演算出力する酸素濃度測定装置に
ある。
an amplifier that amplifies the signal from the detector, an A/D converter that converts the analog signal amplified by the amplifier into a digital signal, a microprocessor that processes the digital signal, and the microprocessor. A constant is stored in the memory of the microprocessor in advance, and based on the constant, the oxygen temperature of the object to be measured is calibrated according to the input digital signal. It is found in an oxygen concentration measuring device that calculates and outputs the concentration.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

本発明に用いる酸素検出器の酸素電極は隔膜電極型で、
ポーラログラフ方式、加電圧不要のガルバニ電池式、先
端に検出部を有するクラーク型および側面に大きな検出
面を有するマツケレス型(MaCkereth型)の何
れにも用い得る。第1図の曲線aは温度に対する隔膜電
極の酸素還元電流相対値を、曲線すは温度に対する飽和
溶存酸素相it値を各々示している。第Ω図は隔膜電極
の一実施例を示す断面図である。qは酸素透過性の隔膜
で、隔膜保持具/と0リンゲタにより挾持されて℃・る
The oxygen electrode of the oxygen detector used in the present invention is a diaphragm electrode type,
It can be used in any of the polarographic type, the galvanic cell type that does not require an applied voltage, the Clark type with a detection section at the tip, and the MaCkereth type with a large detection surface on the side. Curve a in FIG. 1 shows the relative value of oxygen reduction current of the diaphragm electrode with respect to temperature, and curve a shows the value of saturated dissolved oxygen phase it with respect to temperature. Figure Ω is a sectional view showing one embodiment of the diaphragm electrode. q is an oxygen-permeable diaphragm, which is held between a diaphragm holder and an O ringeter.

隔膜ケの一面は測定対象物としての被検液(液体ばかり
でなく気体でも良い)に接触するように外側に露出され
ている。隔膜ケの他の一面し!、電解液ワを介在させて
カソード7とアノードgを有する電極本体//のカソー
ド7にほぼ接触する女口く配置されている。電極本体/
/のアノ−Ygとカソード7を含む周囲を電解液ワで満
たして℃・る。
One surface of the diaphragm is exposed to the outside so as to come into contact with the test liquid (not only liquid but also gas) as the object to be measured. Another side of the diaphragm! , an electrode body having a cathode 7 and an anode g with an electrolytic solution interposed therebetween. Electrode body/
The surrounding area including the anode Yg and the cathode 7 is filled with an electrolytic solution and heated to .degree.

従って電解液9は隔膜ケ、隔膜保持具/、内部に電極本
体//を挿入して℃・る筒状の電解液槽コと電極本体/
/が嵌挿されて、(・る電極支持イ本3カ・らなるハウ
ジング内に満たされている。熱膜保持具/は電解液槽ス
の一端部に螺嵌され、電極支持体3は電解液槽スの他の
一端部に嵌合されている。
Therefore, the electrolytic solution 9 is formed by inserting the diaphragm, the diaphragm holder/, and the electrode body// into the cylindrical electrolyte tank and the electrode body//.
/ is inserted into the housing, which consists of three electrode supports. The hot film holder / is screwed into one end of the electrolyte tank, and the electrode support It is fitted to the other end of the electrolyte tank.

0リングSは電解液槽ユの一端面と隔膜支持体3の上に
ある隔膜ケの間に挟持されている。電極支持体感の側縁
に欠切があり、欠切に電極支持体3を貫設せる温度測定
素子乙の先端が露出して設けられている。電極本体//
と温度測定素子乙の配線は電極リード線10により外部
に導ひかれている。上記せるように酸素検出器は温度測
定素子とその他の部材から構成される酸素電極からなる
The O-ring S is held between one end of the electrolyte tank and the diaphragm on the diaphragm support 3. There is a cutout on the side edge of the electrode support body, and the tip of the temperature measuring element B, which is inserted through the electrode support body 3, is exposed in the cutout. Electrode body //
The wiring of the temperature measuring element B and the temperature measuring element B are led to the outside by an electrode lead wire 10. As mentioned above, the oxygen detector consists of an oxygen electrode composed of a temperature measuring element and other members.

第3図は第2図に示されている酸素検出器を用いて、被
測定対象物の酸素濃度を測定するための酸素濃度測定装
置の一実施例を示している。被測定対象物に投入される
酸素検出器/2は酸素電極Aと温度測定素子Bで構成さ
れている。酸素電極Aと温度測定素子Bには各々増幅器
/3./llが接続され、それらはスイッチング回路/
Sにより、どちらか一方に切り換えられる。スイッチン
グ回路15の次段にはサンプルホールド回路/乙が、更
にサンプルホールド回路の次段にはアナログ−ディジタ
ル変換器(以後A/D変換器と呼ぶ)/7が接続されて
いる。A/D変換器/7の次段にはマ・イクロプロセッ
サ7gが接続され、スイッチング回路/S、サンプルホ
ールド回路/乙とA/D変換器/gを制御している。マ
イクロプロセッサ/gの後段に表示装置/9が接続され
ている。
FIG. 3 shows an embodiment of an oxygen concentration measuring device for measuring the oxygen concentration of an object to be measured using the oxygen detector shown in FIG. The oxygen detector/2 inserted into the object to be measured is composed of an oxygen electrode A and a temperature measuring element B. Oxygen electrode A and temperature measuring element B each have an amplifier/3. /ll are connected and they are the switching circuit /ll.
S can be used to switch to either one. A sample and hold circuit /B is connected to the next stage of the switching circuit 15, and an analog-to-digital converter (hereinafter referred to as an A/D converter) /7 is connected to the next stage of the sample and hold circuit. A microprocessor 7g is connected to the next stage of the A/D converter /7, and controls the switching circuit /S, sample and hold circuit /B, and A/D converter /g. A display device/9 is connected after the microprocessor/g.

次に、第1図〜第3図を参照して本発明の動作説明をす
る。まづ初めに、酸素検出器/2を無酸素液(無水硫酸
ソーダ水溶液)に入れる。酸素検出器/2の出力はほと
んど零になるはづであるが、僅かに出力する酸素検出器
もある。この出力を残余電流ちと呼ぶが、この電流は無
酸素液の温度にほとんど影響されない、はぼ一定値の電
流である。
Next, the operation of the present invention will be explained with reference to FIGS. 1 to 3. First, place the oxygen detector/2 into an oxygen-free liquid (anhydrous sodium sulfate aqueous solution). The output of oxygen detector/2 should be almost zero, but some oxygen detectors output a small amount. This output is called the residual current, and this current is almost unaffected by the temperature of the oxygen-free liquid and has a nearly constant value.

残余電流は酸素電極用増幅器/3からA/D変換器/7
を経た後、マイクロプロセッサ/gのメモリに格納され
る。次に、水に空気を吹込んで空気飽和水を作成し、そ
の中に酸素検出器/2を投入する。この時、被測定対象
物の温度管理を十分行ない、温度検出素子Bかもの出力
先の各温度に対する酸素電極Bの出力Itをマイクロプ
ロセッサ/gに取り込む。温度tの時の飽和酸素水の電
極の出力Itの関係は次の近似式で与えられる。
The residual current is generated from the oxygen electrode amplifier/3 to the A/D converter/7.
After that, it is stored in the memory of the microprocessor/g. Next, air is blown into the water to create air-saturated water, and the oxygen detector/2 is placed in it. At this time, the temperature of the object to be measured is sufficiently controlled, and the output It of the oxygen electrode B for each temperature of the output destination of the temperature detection element B is taken into the microprocessor/g. The relationship between the output It of the electrode of saturated oxygen water at the temperature t is given by the following approximate expression.

rt二a、  t” 十す、  t2+C,を十d、 
 ・・・・・・・・・・・・・・・  +11ここで、
It;、L’C素電極の出力、t;測定時の飽和酸素水
の温)<ハ・(1)式はソフトウェアでマイクロプロセ
ッサ/gにより演算できるようにしておき、上記酸素検
出器からの出力を(1)式にあてはめて演算して、dl
の値を出せば、(1)式より温度tの時の飽和酸素水の
酸素電極の出力Itが演算できる。
rt2a, t" 10s, t2+C, 10d,
・・・・・・・・・・・・・・・ +11 Here,
It;, output of L'C elementary electrode, t: temperature of saturated oxygen water at the time of measurement) Apply the output to equation (1) and calculate dl
By obtaining the value of , the output It of the oxygen electrode of the saturated oxygen water at the temperature t can be calculated from equation (1).

ここで、a4.bl、C,は酸素電極の構造により定ま
る定数(あらかじめ固定された値)で、d、は例えば温
度0度の時の酸素電極の出力値((1)式より逆算して
求めた値)で、これら定数aI * bI t c、 
t dlの値をマイクロプロセッサのメモリに格納して
おく。なお、温度tに対する酸素電極の出力Itの関係
は第1図の曲線aで示される。次に被検液の酸素濃度を
測定する場合、被検液中に酸素検出器12を投入し、温
度測定素子からの出力(被検液の温度) tmを(1)
式に代入して演算し、その値、即ち酸素電極を温度tm
の酸素飽和水中にお℃・た時の出力Itsを出してメモ
リに格納する。又酸素電極Aからの出力Itmもメモリ
に格納する。次に次式で与えられる温度tKおける飽和
溶存酸素量DO8をtmを用いて演算する。
Here, a4. bl, C, are constants (values fixed in advance) determined by the structure of the oxygen electrode, and d is, for example, the output value of the oxygen electrode at a temperature of 0 degrees (value calculated by back calculation from equation (1)). , these constants aI * bI t c,
The value of t dl is stored in the microprocessor memory. The relationship between the output It of the oxygen electrode and the temperature t is shown by curve a in FIG. Next, when measuring the oxygen concentration of the test liquid, put the oxygen detector 12 into the test liquid and calculate the output from the temperature measurement element (temperature of the test liquid) tm by (1)
Substitute it into the formula and calculate the value, that is, the oxygen electrode at the temperature tm
Its output when the temperature is in oxygen-saturated water at ℃ is output and stored in memory. The output Itm from the oxygen electrode A is also stored in the memory. Next, the saturated dissolved oxygen amount DO8 at the temperature tK given by the following equation is calculated using tm.

DO9−/lI/乙/−θ39’13t+〇、0077
/1lt2−θρ0θ0乙グ乙t3・・・(2)ここで
 DO8;温度tにおける飽和溶存酸素量t ;被検液
の温度 以上fl)、(2)式より温度tmの時のIt とDO
8の値rtsとDO8m を演算し、各々メモリに格納
し、酸素電極Aからの出力Itmもメモリに格納する。
DO9-/lI/Otsu/-θ39'13t+〇, 0077
/1lt2-θρ0θ0 tt3... (2) where DO8; saturated dissolved oxygen amount t at temperature t; fl above the temperature of the test liquid), It and DO at temperature tm from equation (2)
The values rts and DO8m of 8 are calculated and stored in the memory, and the output Itm from the oxygen electrode A is also stored in the memory.

これらメモリに格納されたxts 、 DOsm、 I
tm、 Zoをアドレスを指定して各々メモリから取り
出し、次式にあてはめて被検液の溶存酸素量DOmをマ
イクロプロセッサ/gにより演算して、その結果を表示
装置/qに表示する。
xts, DOsm, I stored in these memories
tm and Zo are each retrieved from the memory by specifying an address, and the dissolved oxygen amount DOm of the test liquid is calculated by the microprocessor/g by applying the following equation, and the result is displayed on the display device/q.

但し、被検液中に塩類が含まれる場合は、(2)式のD
O8を用いて、飽和溶存酸素量DO8S  はDO8亘
os−8(0ρ00/33巧oooooケ’7Tt+0
勇π’mv>・・・・・・・・・  (4) ここで DO8S  ;塩素イオンs (ppm)を含
有する時の飽和溶存酸素量 t  ;被検液の温度 (4)式にtmを代入してDO8S  を演算した値を
DO8Smとすると、(3)式にDO8m  の代りに
DO8Smを代入すれば塩類を含んだ被検液の飽和溶存
酸素量DO8S が演算して出力される。本実施例では
、酸素電極Aと温度測定素子が第2図のように一体とな
った検出器を用いたが、これのみに限定されることなく
分離されていても良い。
However, if the test solution contains salts, D in equation (2)
Using O8, the saturated dissolved oxygen amount DO8S is calculated as
yongπ'mv>・・・・・・・・・ (4) Here, DO8S; saturated dissolved oxygen amount t when containing chlorine ions s (ppm); temperature of the test liquid; tm in equation (4). Assuming that the value obtained by substituting and calculating DO8S is DO8Sm, by substituting DO8Sm in place of DO8m in equation (3), the saturated dissolved oxygen amount DO8S of the test liquid containing salts will be calculated and output. In this embodiment, a detector in which the oxygen electrode A and the temperature measuring element are integrated as shown in FIG. 2 is used, but the detector is not limited to this and may be separated.

本発明は以上述べてきたように、溶存酸素濃度の測定に
際し温度補償素子を用いて温度補償幅の狭い温度補償を
必要とすることな(、又幅広くするために、温度補償素
子の調整等の労力を必要とすることがなく、又温度補償
素子の劣化による再調整等の必要がなく、温度補償素子
を用いずに温度測定素子にて幅広(温度較正できるよう
にした効果を有1.、しかも酸素検出器は温度測定素子
と酸素電極のみで構成されているので小型化、簡単化す
ることができる効果を有するものである。
As described above, the present invention eliminates the need for temperature compensation with a narrow temperature compensation range using a temperature compensation element when measuring dissolved oxygen concentration. There is no need for labor, there is no need for readjustment due to deterioration of the temperature compensation element, and there is an effect of being able to perform a wide range of temperature calibration using the temperature measurement element without using a temperature compensation element. Moreover, since the oxygen detector is composed only of a temperature measuring element and an oxygen electrode, it has the advantage of being able to be made smaller and simpler.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度に対する隔膜電極の酸素還元電流相対値及
び飽和溶存酸素相対値の曲線図、第2図は本発明の酸素
検出器を示す断面図、第3図は本発明の酸素濃度測定装
置を示す図面である。 q;酸素透過性の隔膜 乙;温度測定素子 7;カソード g;アノード 9;電解液 //;電極本体 123、グ ;ハウジング /2;酸素検出器 /3./’l ;増幅器 /7;帥変換器 7g:マイクロプロセッサ A;酸素電極 B;温度測定素子 特許出願人   オリエンタル酵母工業株式会♀上代 
 理  人   若    林        店、渇
 /Il (”C) 第  1  図
Fig. 1 is a curve diagram of the relative oxygen reduction current value and saturated dissolved oxygen relative value of the diaphragm electrode with respect to temperature, Fig. 2 is a sectional view showing the oxygen detector of the present invention, and Fig. 3 is the oxygen concentration measuring device of the present invention. FIG. q; Oxygen permeable diaphragm B; Temperature measuring element 7; Cathode g; Anode 9; Electrolyte //; Electrode body 123, G; Housing/2; Oxygen detector/3. /'l;Amplifier/7; Converter 7g: Microprocessor A; Oxygen electrode B; Temperature measurement element Patent applicant: Oriental Yeast Industry Co., Ltd.
Rinto Wakabayashi Store, Thirst /Il (”C) Figure 1

Claims (1)

【特許請求の範囲】[Claims] il+  酸素透過性の隔膜と、該隔膜と電極本体のカ
ッ−ド間に電解液を介在させるごとく配置したカソード
とアノードを有する電極本体と、該電極本体を浸漬して
いる電解液と、前記電極本体と電解液を前記隔膜を含め
たハウジング内に配(2)  温度測定素子と酸素電極
とからなる酸素検出器と、該検出器からの信号を増幅す
る増幅器と、該増幅器により増幅されたアナログ信号を
デジタル信号に変換するA/D変換器と、前記デジタル
信号を演算処理するマイクロプロセッサと、該マイクロ
プロセッサの出力を表示する表示装置とを備え、前記マ
イクロプロセッサのメモリには、予め定数が格納され、
該定数をもとに、前記入力されたデジタル信号に従って
被測定対象物の温度較正された酸素濃度を演算し出力す
ることを特徴とする酸素濃度測定装置。
il+ An electrode body having an oxygen permeable diaphragm, a cathode and an anode disposed such that an electrolyte is interposed between the diaphragm and the electrode body, an electrolyte in which the electrode body is immersed, and the electrode The main body and the electrolyte are arranged in a housing including the diaphragm (2); an oxygen detector consisting of a temperature measuring element and an oxygen electrode; an amplifier that amplifies the signal from the detector; and an analog sensor amplified by the amplifier. The microprocessor includes an A/D converter that converts a signal into a digital signal, a microprocessor that processes the digital signal, and a display device that displays the output of the microprocessor. stored,
An oxygen concentration measuring device characterized in that, based on the constant, the temperature-calibrated oxygen concentration of the object to be measured is calculated and output according to the input digital signal.
JP56160069A 1981-10-09 1981-10-09 Oxygen detector and oxygen concentration measuring device Pending JPS5861458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160069A JPS5861458A (en) 1981-10-09 1981-10-09 Oxygen detector and oxygen concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160069A JPS5861458A (en) 1981-10-09 1981-10-09 Oxygen detector and oxygen concentration measuring device

Publications (1)

Publication Number Publication Date
JPS5861458A true JPS5861458A (en) 1983-04-12

Family

ID=15707212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160069A Pending JPS5861458A (en) 1981-10-09 1981-10-09 Oxygen detector and oxygen concentration measuring device

Country Status (1)

Country Link
JP (1) JPS5861458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105466996A (en) * 2015-12-30 2016-04-06 南京信息工程大学 Oxygen current measuring circuit, dissolved oxygen measuring apparatus and oxygen current measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114492A (en) * 1973-02-28 1974-10-31
JPS5197492A (en) * 1975-01-20 1976-08-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114492A (en) * 1973-02-28 1974-10-31
JPS5197492A (en) * 1975-01-20 1976-08-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105466996A (en) * 2015-12-30 2016-04-06 南京信息工程大学 Oxygen current measuring circuit, dissolved oxygen measuring apparatus and oxygen current measuring method

Similar Documents

Publication Publication Date Title
US3718568A (en) Electrochemical sensor instrumentation
US3454485A (en) Oxygen sensor with scavenger means
US6176988B1 (en) Membrane electrode for measuring the glucose concentration in fluids
JPH057657B2 (en)
EP0231609A2 (en) Pure water conductivity sensor
JPS6071943A (en) Ion measuring device building in and keeping standardized solution
CN104422720B (en) Measuring device
CN109477811B (en) Chlorine, Oxidation Reduction Potential (ORP) and pH measurement probe
US4152233A (en) Apparatus for electrochemical gas detection and measurement
US4269684A (en) Apparatus for oxygen partial pressure measurement
US4301807A (en) Apparatus and method for temperature compensated transcutaneous carbon dioxide measurement
US5872454A (en) Calibration procedure that improves accuracy of electrolytic conductivity measurement systems
US3663409A (en) Pressure compensation of membranetype sensors
JPS5861458A (en) Oxygen detector and oxygen concentration measuring device
US4511845A (en) Salinometer
JP4673747B2 (en) Water quality meter
US3694734A (en) Sensor instrumentation
JPH052185B2 (en)
US9052282B2 (en) Water analysis measurement arrangement
JPH03172755A (en) Oxygen detector
US20060032743A1 (en) Electrochemical measurement apparatus
JPS58196451A (en) Oxygen concentration measuring apparatus
EP0080753A1 (en) Measuring device and method
JP4322555B2 (en) Residual chlorine concentration measuring method and residual chlorine concentration measuring device
JP2850481B2 (en) Residual chlorine meter