[go: up one dir, main page]

JPS586075B2 - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JPS586075B2
JPS586075B2 JP13828980A JP13828980A JPS586075B2 JP S586075 B2 JPS586075 B2 JP S586075B2 JP 13828980 A JP13828980 A JP 13828980A JP 13828980 A JP13828980 A JP 13828980A JP S586075 B2 JPS586075 B2 JP S586075B2
Authority
JP
Japan
Prior art keywords
spiral
fluid
scroll
scroll member
pocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13828980A
Other languages
Japanese (ja)
Other versions
JPS5762988A (en
Inventor
寺内清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP13828980A priority Critical patent/JPS586075B2/en
Priority to AU75761/81A priority patent/AU546511B2/en
Priority to DE8181107856T priority patent/DE3169565D1/en
Priority to EP19810107856 priority patent/EP0049495B1/en
Priority to CA000387317A priority patent/CA1222987A/en
Publication of JPS5762988A publication Critical patent/JPS5762988A/en
Publication of JPS586075B2 publication Critical patent/JPS586075B2/en
Priority to US06/595,645 priority patent/US4490099A/en
Priority to SG26687A priority patent/SG26687G/en
Priority to MY8700531A priority patent/MY8700531A/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0246Details concerning the involute wraps or their base, e.g. geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Rotary Pumps (AREA)

Description

【発明の詳細な説明】 本発明は容積式流体圧縮装置、特に側板の一面上にうず
巻体を形成した一対のスクロール部材を両うず巻体が互
に角度をずらせてかみ合うよう重ね合せ一方のスクロー
ル部材の相対的な円軌道運動によって両うず巻体間に形
成される密閉されたの中心へ移動させ、流体の圧縮作用
を行なうスクロール型圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive displacement fluid compression device, in particular a pair of scroll members each having a spiral body formed on one surface of a side plate, which are stacked one on top of the other so that both spiral bodies mesh with each other at different angles. The present invention relates to a scroll type compressor that compresses fluid by moving a scroll member to the center of a sealed space formed between both spiral bodies through relative circular orbital movement.

このようなスクロール型圧縮機の動作原理は古くから公
知であり第1図を参照して説明する。
The operating principle of such a scroll compressor has been known for a long time and will be explained with reference to FIG.

二つのうず巻体1,2を角度をずらせて両うず巻体1,
2の間にうず巻体の相互接触部から相互接触部にわたる
限定された流体ポケット3を形成するよう互にかみ合い
状態に配置し、一方のうず巻体1を他方のうず巻体2に
対して一方のうず巻体1の中心O′が他方のうず巻体2
の中心Oの周りを半径O−O’をもって公転するように
うず巻体1の自転を禁止しながら動かすと、流体ポケッ
ト3はその容積を徐々に減少しつつ中央部へ移動する。
The two spiral winding bodies 1 and 2 are arranged at different angles to form a spiral winding body 1,
2 are interdigitated to form a confined fluid pocket 3 from mutual contact of the spirals 1 to 2, one spiral 1 relative to the other spiral 2. The center O' of one spiral body 1 is the center of the other spiral body 2.
When the spiral body 1 is moved while inhibiting rotation so as to revolve around the center O with a radius O-O', the fluid pocket 3 gradually decreases in volume and moves toward the center.

即ち、第1図aの状態からうず巻体1の公転角が90°
を示す第1図b,180°を示す第1図c、270°を
示す第1図dに示される如く、一方のうず巻体1を移動
させるとうず巻体の径方向外周で珍成された流体ポケッ
ト3の容積は中央に移動するkしたがって徐々に減少し
て行く。
That is, the revolution angle of the spiral body 1 is 90° from the state shown in Fig. 1a.
As shown in FIG. 1 b showing 180°, FIG. 1 c showing 180°, and FIG. The volume of the fluid pocket 3 gradually decreases as it moves toward the center.

360°回転した第1図aでは両ポケットは中央部に移
り互に接続し、更に90°ずつ移動した第1図b,c,
dに示すように、流体ポケット3は狭まり、第1図dで
ほとんど零となる。
In Figure 1 a, which has been rotated 360 degrees, both pockets have moved to the center and are connected to each other, and in Figures 1 b, c, which have been further moved by 90 degrees.
As shown in Figure 1d, the fluid pocket 3 narrows and becomes almost zero in Figure 1d.

この間第1図bで開き始めた外側の流体ポケットが第1
図c,dからaに移る過程で新たな流体を取り込んで流
体ポケットを作る。
During this time, the outer fluid pocket that began to open in Figure 1b becomes the first
In the process of moving from Figures c and d to Figure a, new fluid is taken in to create a fluid pocket.

従って、うず巻体1,2の軸方向両端にシールした円板
状の側板を設け一方の側板の中央部に第1図中4で示す
如き吐出孔を設けておけば、径方向外周で取り込まれた
流体が圧縮され、吐出孔4から吐出されることとなる。
Therefore, if sealed disk-shaped side plates are provided at both ends of the spiral bodies 1 and 2 in the axial direction, and a discharge hole as shown by 4 in FIG. The fluid is compressed and discharged from the discharge hole 4.

即ち、このようなスクロール型圧縮機においては両うず
巻体間に形成される流体ポケットの移動による容積の減
少によって流体圧縮が行なわれている。
That is, in such a scroll type compressor, fluid compression is performed by reducing the volume due to movement of a fluid pocket formed between both spiral bodies.

この流体ポケットは両うず巻体の線接触及びうず巻体の
先端面と他方の側板の表面との接触によって両うず巻体
間に形成され、しかもこれら接触部は一方のスクロール
部材の円軌道運動によつて摺動しながら移動し、流体ポ
ケット内の流体を圧縮している。
This fluid pocket is formed between both spirals by the line contact between the spirals and the contact between the tip surface of the spiral and the surface of the other side plate, and these contact areas are caused by the circular orbit movement of one scroll member. The fluid inside the fluid pocket is compressed by sliding movement.

ここで、第2図をも参照して圧縮サイクルについて説明
すると、第2図はクランク角に対する流体ポケット内の
圧力状態を示すもので一つの圧縮サイクルがクランク回
転で2回転で終了する場合を例示している。
Here, the compression cycle will be explained with reference to Fig. 2. Fig. 2 shows the pressure state in the fluid pocket with respect to the crank angle, and illustrates the case where one compression cycle ends in two revolutions of the crank. are doing.

圧縮サイクルはまず、うず巻体の最外端が対向するうず
巻体の壁面に接触し、吸入が終了した時点(第2図中k
点)で始まり、クランク角が2πとなる点(1点)まで
は流体ポケット内の容積を減少しつつ内部圧力が徐々竺
上昇する。
The compression cycle begins when the outermost end of the spiral body comes into contact with the wall surface of the opposite spiral body, and the suction ends (k in Fig. 2).
The internal pressure gradually increases while the volume inside the fluid pocket decreases until the crank angle reaches 2π (point 1).

しかし1点の直後(m点)でここまで圧縮されてきた二
つの流体ポケットが吐出室に連通ずる中央室に連通し一
つのポケットとなる。
However, immediately after point 1 (point m), the two fluid pockets that have been compressed up to this point communicate with the central chamber that communicates with the discharge chamber, forming one pocket.

こめ瞬間吐出孔に弁装置が設けられていない場合にはポ
ケット内の圧力は吐出圧力と一致するまで急激に上昇す
ることとなるが、弁装置が設けられている場合には、中
央室内の高圧流体とポケット内の圧縮流体が混合されて
若干の圧力上昇となり、吐出圧力に達する点(n点)ま
でうず巻体の運動によって圧縮され、吐出圧に達すると
弁装置が動作して中央室内の高圧流体を吐出室内に流出
させることとなる。
If the instantaneous discharge hole is not equipped with a valve device, the pressure inside the pocket will rise rapidly until it matches the discharge pressure, but if a valve device is installed, the high pressure in the central chamber will increase rapidly. The fluid and the compressed fluid in the pocket are mixed, resulting in a slight pressure rise, and are compressed by the movement of the spiral body until the discharge pressure is reached (point n). When the discharge pressure is reached, the valve device operates and the pressure in the central chamber increases. High pressure fluid will flow into the discharge chamber.

従って中央室は吐出室と連通したのちは一定の圧力を維
持しつつo点に至る。
Therefore, after the central chamber communicates with the discharge chamber, it reaches point o while maintaining a constant pressure.

このようにクランク角4πで一つの圧縮サイクルが完了
するとともに一つの圧縮サイクルの途中(第2図の例示
ではクランク角2πの時)で別の圧縮サイクルk’−1
’−m′−・・・)が始まり順次サイクルが継続される
ことにより圧縮動作を行なうこととなるが、うず巻体間
の線接触は複数対で行なわれるためすべての接触を完全
に行なうことは難しい。
In this way, one compression cycle is completed at a crank angle of 4π, and in the middle of one compression cycle (in the example shown in FIG. 2, at a crank angle of 2π), another compression cycle k'-1 is completed.
'-m'-...) starts and the cycle continues sequentially to perform the compression operation, but since the line contact between the spiral bodies is made in multiple pairs, all contacts must be made completely. is difficult.

もしこれらの接触点において間隙を生ずると圧縮動作中
に圧縮流体の漏れが生じ体積効率即ち冷凍能力め低下を
招くこととなる。
If a gap is created at these contact points, compressed fluid will leak during the compression operation, resulting in a decrease in volumetric efficiency, ie, refrigerating capacity.

この流体漏れは特に接触点前後の圧力差の大きいところ
で問題となる。
This fluid leakage becomes a problem especially where there is a large pressure difference before and after the contact point.

また中央室の高圧部から次の室への流体漏れが増大する
と第2図中破線で示すように流体ポケット内が圧力上昇
し圧縮動作の消費馬力即ち圧縮動作に要するトルクが増
大するため中央室付近でのシール性番向上させる必要か
あった。
In addition, when fluid leakage from the high-pressure part of the central chamber to the next chamber increases, the pressure inside the fluid pocket increases as shown by the broken line in Figure 2, and the horsepower consumption for the compression operation, that is, the torque required for the compression operation, increases. There was a need to improve sealing performance in the vicinity.

ところで、うず巻体の曲線は通常ピッチ(第3図中a1
−a2,a2−anあるいはb1−b2,b2−b。
By the way, the curve of the spiral body is normally pitched (a1 in Fig. 3).
-a2, a2-an or b1-b2, b2-b.

間の距離)が一定となる円の伸開線を用い二つのうず巻
体ヲa1〜anおよびb1〜bn点で線接触させている
がうず巻体の部材を組合せ、スイングリングあるいは偏
心プッシュ等の従動クランクにより一方のスクロール部
材に相対的な円軌道運動を与えると、スクロール部材の
所要旋回半径は誤差のなかで最も小さなピッチを有する
接触点により決定されてしまう。
The two spiral bodies are brought into line contact at points a1 to an and b1 to bn using a circular expansion line with a constant distance (distance between them). When a relative circular orbital motion is applied to one of the scroll members by the driven crank of the scroll member, the required turning radius of the scroll member is determined by the contact point having the smallest pitch among the errors.

換言すると最も小さなピッチを有するうず巻体の壁面は
対向する他方のうず巻体の壁面に接触するのみで他の全
ての接触すべき点では間隙を生ずることとなり、圧縮流
体の漏れが発生する。
In other words, the wall surface of the spiral wound body having the smallest pitch only contacts the wall surface of the opposite spiral wound body, and gaps are created at all other points where contact should be made, resulting in leakage of compressed fluid.

これを避けようとするとうず巻体の加工に極めて高い精
度が要求されることになる。
If this is to be avoided, extremely high precision will be required in the processing of the spiral wound body.

一方、限られた精度の範囲では、うず巻壁のどの点で軌
道半径が決定されるかについては部品の個々のバラック
によって異なるため、流体漏れの発生個所が中央室から
次の室までのものやより吸入面に近い側の室で発生する
ものもある。
On the other hand, within a range of limited accuracy, the point on the spiral wall at which the orbital radius is determined varies depending on the individual barracks of the part, so fluid leaks can occur from the central chamber to the next chamber. Some occur in chambers closer to the suction surface.

従って個々の圧縮機の性能(体積効率および成績係数)
のバラツキが非常に大きいものとなるので量産には不適
である。
Therefore the performance of the individual compressor (volume efficiency and coefficient of performance)
It is not suitable for mass production because the variation in the results is very large.

また上述のような誤差のないスクロール部材を組合せて
圧縮動作を行なわせる場合でさえも動作中に発熱を生じ
スクロール部材周辺の温度が上昇し、スクロール部材も
当然熱膨張することとなるが温度上昇がスクロール部材
全体に対して一様であれば、うず巻体間の線接触部は均
等に変化するため問題を生ずることはないが、実際の使
用状態にあっては、吐出部付近の温度上昇が外周部の温
度上昇に比してより大きくなるため熱膨張によりうず巻
にひずみが発生し、線接触部に間隙が生じることがあり
、またこの間隙は上記うず巻体壁面間の間隙と相まって
高圧流体ポケット内の流体漏れの原因となっていた。
Furthermore, even when the above-mentioned error-free scroll members are combined to perform a compression operation, heat is generated during operation, and the temperature around the scroll members increases, and the scroll members also naturally expand thermally, but the temperature rises. If it is uniform over the entire scroll member, there will be no problem because the line contact area between the spiral windings will change evenly, but in actual use, the temperature near the discharge part will rise. is larger than the temperature rise at the outer periphery, so distortion occurs in the spiral due to thermal expansion, and a gap may be created at the wire contact area, and this gap, combined with the gap between the walls of the spiral body, This caused fluid leakage within the high-pressure fluid pocket.

本発明は、このようなスクロール部材加工時に生ずるう
ず巻体の壁面加工誤差あるいは温度上昇に伴なう熱膨張
ひずみによる流体漏れが中央室付近で発生しないように
するため、意識的に流体漏れをその影響の少ない部分に
発生させ、これにより與品性能を安定させることを目的
とするものである。
The present invention intentionally prevents fluid leakage in order to prevent fluid leakage from occurring in the vicinity of the central chamber due to errors in wall surface machining of the spiral body or thermal expansion strain caused by temperature rise. The purpose is to generate it in areas that are less affected by it, thereby stabilizing the performance of the product.

以下に本発明を実施例を示す図面を参照して説明する。The present invention will be explained below with reference to the drawings showing embodiments.

第4図は本発明の実施例を示すスクロール型圧縮機の断
面図で、圧縮機はフロントエンドプレート11とこれに
設置されたカップ状部分12とから成る圧縮機ハウジン
グ10を有している。
FIG. 4 is a sectional view of a scroll type compressor showing an embodiment of the present invention, and the compressor has a compressor housing 10 consisting of a front end plate 11 and a cup-shaped portion 12 installed therein.

該ハウジング10の内部には固定スクロール部材13と
可動スクロール部材14とが配設されている。
A fixed scroll member 13 and a movable scroll member 14 are disposed inside the housing 10.

ここで、固定スクロール部材13は一般に側板131と
その一面上に形成したうず巻体132及び該うず巻体1
32とは反対側の側板131上に設けた脚部133とよ
り構成され、該脚部133をカップ状部分12の外方よ
り該カップ状部分12を貫通して螺合するボルト15に
よってカップ状部分12の底部121内壁上に固定して
いる。
Here, the fixed scroll member 13 generally includes a side plate 131, a spiral body 132 formed on one surface thereof, and a spiral body 132 formed on one side of the side plate 131.
32, and a leg portion 133 provided on the side plate 131 on the opposite side from the cup-shaped portion 12. The bottom 121 of the portion 12 is fixed on the inner wall.

またカップ状部分12内に固定された固定スクロール部
材13の側板131は、その外周面とカップ状部分12
の内壁間をシールすることにより該カップ状部分12の
内部空間を吐出室16と吸入室17とに仕切っている。
Furthermore, the side plate 131 of the fixed scroll member 13 fixed within the cup-shaped portion 12 is connected to the outer circumferential surface of the fixed scroll member 13 and the cup-shaped portion 12.
The internal space of the cup-shaped portion 12 is partitioned into a discharge chamber 16 and a suction chamber 17 by sealing between the inner walls of the cup-shaped portion 12 .

可動スクロール部材14は側板141とその一面上に形
成したうず巻体142より構成され、該うず巻体142
は固定スクロール部材13のうず巻体132に対し、第
1図で説明したような作用を行なえるように組合されて
いる。
The movable scroll member 14 is composed of a side plate 141 and a spiral body 142 formed on one side of the side plate 141.
are combined with the spiral body 132 of the fixed scroll member 13 so as to be able to perform the action as explained in FIG.

そして可動スクロール部材14はフロントエンドプレー
ト11に回転自在となるよう貫通、支承されている主軸
18の回転にしたがって自転することなく第1図で説明
したように円軌道上を公転運動する如く主軸18に接合
されている。
The movable scroll member 14 does not rotate in accordance with the rotation of the main shaft 18 which is rotatably supported by the front end plate 11, but rotates on a circular orbit as explained in FIG. is joined to.

ここで可動スクロール部材14の自転を禁止しつつ公転
運動させる機構については、種々の公知機構にて実施さ
れ得るため詳細な説明は省略する。
Here, a detailed description of the mechanism for causing the movable scroll member 14 to revolve while inhibiting its rotation will be omitted since it can be implemented by various known mechanisms.

可動スクロール部材14が駆動されると、カップ状部材
12上に形成した吸入ポート19からケーシング10内
の吸入室17に流入された流体は両うず巻体132,1
42間に形成される流体ポケットに取り込まれ、可動ス
クロール部材14の運動に伴なって徐々に圧縮されつつ
中央部へ送られ、固定スクロール部材13の側板131
上に穿設した吐出口134から吐出室16へ圧送され、
さらに吐出ポート20からケーシング10外へ送り出さ
れる。
When the movable scroll member 14 is driven, the fluid flowing into the suction chamber 17 in the casing 10 from the suction port 19 formed on the cup-shaped member 12 flows into both spiral bodies 132,1.
42, and is gradually compressed and sent to the center as the movable scroll member 14 moves, and is fed to the side plate 131 of the fixed scroll member 13.
It is fed under pressure to the discharge chamber 16 from the discharge port 134 bored at the top,
Furthermore, it is sent out to the outside of the casing 10 from the discharge port 20.

ここで、両スクロール部材13.14のうず巻体132
,142は第5図に示す如く、内壁面はうず巻体の内端
Aより伸開角で2πもどした点Bまでの壁厚とB点より
うず巻体内壁面の最外端Dまでの壁厚を変化させB−D
部分をA−B部分に比して僅かa薄く形成し、また外壁
面は内端Aより上述のB点に接触する点Cまでの壁厚と
C点よりうず巻体外壁面の最外端Eまでの壁厚を変化さ
せ、C−E部分をA−C部分に比して僅かa薄く形成し
ている。
Here, the spiral body 132 of both scroll members 13,14
, 142, as shown in Fig. 5, the inner wall surface is the wall thickness from the inner end A of the spiral body to point B, which is returned by 2π at the expansion and opening angle, and the wall thickness from point B to the outermost end D of the inner wall surface of the spiral body. Change the thickness B-D
The outer wall surface is formed to be slightly a thinner than the A-B section, and the outer wall surface has a wall thickness from the inner end A to a point C that contacts the above-mentioned point B, and from the point C to the outermost end E of the spiral body outer wall surface. By changing the wall thickness up to the wall thickness, the C-E portion is formed to be slightly thinner than the A-C portion.

このため、うず巻体の内壁面のA一B部と外壁面のA−
C部が互に線接触するよう動作させるとB−D部とC−
E部の線接触部には2aの間隙が生ずることとなる。
For this reason, the A-B part of the inner wall surface of the spiral body and the A-B part of the outer wall surface.
When parts C are operated so that they are in line contact with each other, parts B-D and C-
A gap 2a will be created at the line contact portion of the E section.

一方、うず巻体の内端より伸開角で2πもとした点、即
ち高圧ポケットとなる部分におけるうず巻体間の線接触
は確実に行なわれる構成としている。
On the other hand, the structure is such that line contact between the spiral bodies is reliably made at a point 2π apart from the inner end of the spiral bodies at an expansion/opening angle, that is, at a portion that becomes a high-pressure pocket.

このような構成にて成る本発明は、両うず巻体132,
142の中央部付近の壁厚を他の部分より僅かa厚く形
成し、完全な線接触が得られるようにしてあるため、他
の部分の壁面加工に僅かな誤差△Eが生じたとしても、
△E<2aである限り中央部のシールには影響を与えず
、外周部の非接触部からの漏れについても圧力差が小さ
いため体積効率に与える影響は小さく抑えることができ
る。
The present invention having such a configuration has both spiral bodies 132,
The wall thickness near the center of 142 is made slightly thicker than other parts to ensure perfect line contact, so even if a slight error △E occurs in the wall surface machining of other parts,
As long as ΔE<2a, there is no effect on the seal at the center, and since the pressure difference is small for leakage from the non-contact portion at the outer periphery, the effect on volumetric efficiency can be suppressed to a small level.

また、圧縮機の駆動中に発生する温度上昇に伴なううす
巻きひずみも上記壁厚の違いaによって吸収される。
Further, the thin winding strain caused by the rise in temperature that occurs during operation of the compressor is also absorbed by the difference a in wall thickness.

以上のように本発明はスクロール部材を構成するうず巻
体の壁厚をうず巻体の中央部と外周部とで変化させ、外
周部の壁厚を僅か薄く形成することにより、高圧流体ポ
ケット部におけるうず巻体間の線接触を確実に行なわせ
ているので、スクロール部材の加工上生ずる誤差による
体積効率の低下を抑えることができるとともに、誤差の
バラツキによる性能のバラツキも小さく抑えることがで
きるものである。
As described above, the present invention changes the wall thickness of the spiral body constituting the scroll member between the central part and the outer peripheral part, and by forming the wall thickness of the outer peripheral part slightly thinner, the high-pressure fluid pocket is Since the line contact between the spiral winding bodies is ensured, it is possible to suppress the decrease in volumetric efficiency due to errors caused in the processing of the scroll member, and it is also possible to suppress variations in performance due to variations in errors to a small level. It is.

また圧縮機の駆動中に発生する温度上昇に伴なう熱膨張
変化の差異による流体漏れも抑えることができるもので
ある。
It is also possible to suppress fluid leakage due to differences in thermal expansion changes due to temperature rise that occurs during operation of the compressor.

さらにうず巻体間の線接触による摺動部が限られるため
摺動部の摩耗対策は局部的に行なえばよく容易に対策が
行なえるものである。
Further, since the sliding portion due to the line contact between the spiral winding bodies is limited, countermeasures against wear of the sliding portion can be easily taken by localized measures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dは本発明に係るスクロール型圧縮機の圧縮
原理を説明するための図で、a〜dは異なった角度位置
の状態を示す図、第2図はスクロール型圧縮機の圧縮サ
イクルを説明するための図、第3図は従来のうず巻体を
用いた場合の接触状態を示す説明図、第4図は本発明の
一実施例を示すスクロール型圧縮機の縦断面図、第5図
は本発明の一実施例のうず巻体を用いた場合の接触状態
を示す説明図である。 13.14・・・スクロール部材、131.141・・
・側板、132,142・・・うず巻体。
1A to 1D are diagrams for explaining the compression principle of the scroll type compressor according to the present invention. A diagram for explaining a cycle, FIG. 3 is an explanatory diagram showing a contact state when a conventional spiral wound body is used, and FIG. 4 is a longitudinal sectional view of a scroll compressor showing an embodiment of the present invention. FIG. 5 is an explanatory diagram showing a contact state when a spiral wound body according to an embodiment of the present invention is used. 13.14...Scroll member, 131.141...
- Side plate, 132, 142... spiral body.

Claims (1)

【特許請求の範囲】[Claims] 1 側板の一面上にうず巻体を形成した一対のスクロー
ル部材を両うず巻が互に角度をずらせてかみ合い、かつ
壁面が接触してうず巻体間に密閉された流体ポケットが
形成されるよう重ね合せ、一方のスクロール部材を自転
を防止しながら相対的な円軌道運動させることにより該
流体ポケットをうず巻体の中心方向へ容積の減少を伴な
わせながら移動させ、一方向性流体圧縮作用を行なわせ
るスクロール型圧縮機において、少なくともうず巻体の
内端より流体ポケットが吐出室に連通する高圧ポケット
部に連通する瞬間に両うず巻体の壁面が接触している部
分までの間のうず巻体壁厚を、それ以降うず巻体最外端
までのうず巻体壁厚より僅か厚くなるよう形成したこと
を特徴とするスクロール型圧縮機。
1. A pair of scroll members each having a spiral wound body formed on one side plate are fitted so that both spirals engage with each other at different angles, and the wall surfaces are in contact to form a sealed fluid pocket between the spiral bodies. By stacking one scroll member on the other and moving it in a relative circular orbit while preventing rotation, the fluid pocket is moved toward the center of the spiral body while its volume decreases, resulting in a unidirectional fluid compression effect. In a scroll compressor that performs A scroll type compressor characterized in that the wall thickness of the spiral coil is formed to be slightly thicker than the wall thickness of the spiral coil from then on to the outermost end of the spiral coil.
JP13828980A 1980-10-03 1980-10-03 Scroll compressor Expired JPS586075B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP13828980A JPS586075B2 (en) 1980-10-03 1980-10-03 Scroll compressor
AU75761/81A AU546511B2 (en) 1980-10-03 1981-09-29 Scroll pump
DE8181107856T DE3169565D1 (en) 1980-10-03 1981-10-02 Scroll type fluid displacement apparatus
EP19810107856 EP0049495B1 (en) 1980-10-03 1981-10-02 Scroll type fluid displacement apparatus
CA000387317A CA1222987A (en) 1980-10-03 1981-10-05 Scroll type fluid displacement apparatus
US06/595,645 US4490099A (en) 1980-10-03 1984-04-03 Scroll type fluid displacement apparatus with thickened center wrap portions
SG26687A SG26687G (en) 1980-10-03 1987-03-13 Scroll type fluid displacement apparatus
MY8700531A MY8700531A (en) 1980-10-03 1987-12-30 Scroll type fluid displacement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13828980A JPS586075B2 (en) 1980-10-03 1980-10-03 Scroll compressor

Publications (2)

Publication Number Publication Date
JPS5762988A JPS5762988A (en) 1982-04-16
JPS586075B2 true JPS586075B2 (en) 1983-02-02

Family

ID=15218407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13828980A Expired JPS586075B2 (en) 1980-10-03 1980-10-03 Scroll compressor

Country Status (7)

Country Link
EP (1) EP0049495B1 (en)
JP (1) JPS586075B2 (en)
AU (1) AU546511B2 (en)
CA (1) CA1222987A (en)
DE (1) DE3169565D1 (en)
MY (1) MY8700531A (en)
SG (1) SG26687G (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964488U (en) * 1982-10-22 1984-04-27 サンデン株式会社 Scroll type fluid device
GB2132276B (en) * 1982-12-23 1986-10-01 Copeland Corp Scroll-type rotary fluid-machine
JPS6098185A (en) * 1983-11-02 1985-06-01 Hitachi Ltd Scroll type fluid machine
JPS6098186A (en) * 1983-11-04 1985-06-01 Sanden Corp Scroll type compressor
JPH0212316Y2 (en) * 1985-10-11 1990-04-06
DE3788434T2 (en) * 1986-04-28 1994-06-09 Sanden Corp Spiral part for spiral displacement machine for fluids.
DE3719950A1 (en) * 1987-06-15 1989-01-05 Agintec Ag DISPLACEMENT MACHINE
JPS6463682A (en) * 1987-09-04 1989-03-09 Toshiba Corp Scroll compressor
DE3879887T2 (en) * 1987-11-23 1993-07-08 Copeland Corp SPIRAL MACHINE.
US4927341A (en) * 1987-11-23 1990-05-22 Copeland Corporation Scroll machine with relieved flank surface
US5221198A (en) * 1990-07-18 1993-06-22 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Scroll type compressor with intake port aligned with counterweight
US5342184A (en) * 1993-05-04 1994-08-30 Copeland Corporation Scroll machine sound attenuation
JP3882343B2 (en) 1998-06-12 2007-02-14 株式会社デンソー Scroll compressor
JP3991810B2 (en) * 2002-08-05 2007-10-17 株式会社豊田自動織機 Scroll compressor
GB0304285D0 (en) 2003-02-25 2003-04-02 Boc Group Plc Scroll compressor
KR102481368B1 (en) * 2016-04-26 2022-12-26 엘지전자 주식회사 Scroll compressor
CN113544383B (en) * 2019-03-19 2022-10-28 三菱电机株式会社 Scroll compressor having a discharge port for discharging refrigerant from a discharge chamber
JP6956131B2 (en) 2019-03-28 2021-10-27 株式会社豊田自動織機 Scroll compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR93048E (en) * 1966-10-06 1969-01-31 Vulliez Paul Columetric apparatus such as a pump or the like with a circular translational cycle.
US3874827A (en) * 1973-10-23 1975-04-01 Niels O Young Positive displacement scroll apparatus with axially radially compliant scroll member

Also Published As

Publication number Publication date
DE3169565D1 (en) 1985-05-02
JPS5762988A (en) 1982-04-16
SG26687G (en) 1987-07-10
AU546511B2 (en) 1985-09-05
MY8700531A (en) 1987-12-31
EP0049495B1 (en) 1985-03-27
EP0049495A1 (en) 1982-04-14
AU7576181A (en) 1982-04-08
CA1222987A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
JPS586075B2 (en) Scroll compressor
JPS5862395A (en) Scroll type compressor
US4490099A (en) Scroll type fluid displacement apparatus with thickened center wrap portions
US4141677A (en) Scroll-type two stage positive fluid-displacement apparatus with intercooler
JPS5968583A (en) Scroll type fluid device
JPS5830494A (en) Scroll type compressor
CN101294566A (en) Scroll Fluid Machinery
JPS5813184A (en) Scroll type compressor
US4464100A (en) Scroll fluid apparatus handling compressible fluid
JP2775152B2 (en) Volumetric transfer machine for compressed media
GB2143904A (en) Scroll-type rotary positive- displacement fluid machine
JP4423024B2 (en) Scroll compressor
JPS6134379A (en) Scroll type compressor
US6527531B2 (en) Scroll compressor having step portions for reducing leakage of fluid
JPS5819351Y2 (en) Scroll compressor
JPS5810586B2 (en) positive displacement fluid compression device
JPH0219685A (en) Fluid compressor
JPS61190183A (en) Rotary fluid machine
KR100313895B1 (en) scroll type compressor
GB2034409A (en) Rotary positive-displacement fluid-machines
JPH05106569A (en) Scroll type fluid machinery
JPS59108889A (en) scroll fluid machine
JPS60132085A (en) Scroll compressor
JPS6315442B2 (en)
JP2538877B2 (en) Scroll fluid machinery