[go: up one dir, main page]

JPS5857066B2 - linear motor - Google Patents

linear motor

Info

Publication number
JPS5857066B2
JPS5857066B2 JP54081427A JP8142779A JPS5857066B2 JP S5857066 B2 JPS5857066 B2 JP S5857066B2 JP 54081427 A JP54081427 A JP 54081427A JP 8142779 A JP8142779 A JP 8142779A JP S5857066 B2 JPS5857066 B2 JP S5857066B2
Authority
JP
Japan
Prior art keywords
armature
field
coil
core
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54081427A
Other languages
Japanese (ja)
Other versions
JPS566666A (en
Inventor
正見 岩崎
隆 高末
正基 小田
一三 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP54081427A priority Critical patent/JPS5857066B2/en
Publication of JPS566666A publication Critical patent/JPS566666A/en
Publication of JPS5857066B2 publication Critical patent/JPS5857066B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)

Description

【発明の詳細な説明】 この発明は電磁力によって浮上および駆動を行なうリニ
アモータに関し、特に移動子としての界磁を固定子とし
ての電機子に対して上記浮上および、駆動するに加えて
、界磁を電機子の山内に常に保持案内する力をも電磁力
によって得ようとする改良されたりニアモータに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a linear motor that is levitated and driven by electromagnetic force. The present invention relates to an improved near motor that uses electromagnetic force to obtain the force that constantly holds and guides the magnet within the armature.

リニアモークシステムには大別して同期式リニアモータ
と非同期式リニアモータの三方式がある。
There are three main types of linear moke systems: synchronous linear motors and asynchronous linear motors.

同期式リニアモータは、回転電動機の同期形回転電動機
に対応するもので、直流磁界を発生させる界磁が、電機
子コイルの発生する移動磁界に同期して移動することに
より推力を得る方式のものであり、この場合輸送システ
ム向けに提案されているものの殆んどは地上側固定子と
して移動磁界を発生する電機子コイルを配設し、それに
対して車輛側移動子として界磁を対置する地上−次式の
ものである。
A synchronous linear motor corresponds to a synchronous rotary motor, and it generates thrust by moving the field that generates a DC magnetic field in synchronization with the moving magnetic field generated by the armature coil. In this case, most of the proposals for transportation systems include an armature coil that generates a moving magnetic field as a ground-side stator, and a ground-side coil that generates a moving magnetic field as a vehicle-side stator. −It is of the following formula.

非同期式リニアモータは、一次側電機子コイルで移動磁
界を発生させ、二次側の導体内に生じる渦電流との間に
発生する力で推進力を得るものでこれを輸送システムに
用いる場合は殆んど一次側(電機子)が車載され、二次
側導体が地上側に敷設される。
An asynchronous linear motor generates a moving magnetic field in the primary armature coil, and obtains propulsive force by the force generated between it and the eddy current generated in the secondary conductor.When using this in a transportation system, In most cases, the primary side (armature) is mounted on the vehicle, and the secondary side conductor is laid on the ground side.

この方式はいわゆるリニアインダクションモータとして
知られている。
This system is known as a so-called linear induction motor.

このリニアシンクロナスモータは比較的遅い速度領域で
の用途に適しでおり、高速度領域での用途には一次側と
二次側の双方に電力を必要とするが、前記の同期式リニ
アモータのほうが適している。
This linear synchronous motor is suitable for applications in a relatively slow speed range, and requires power on both the primary and secondary sides for applications in a high speed range, but the synchronous linear motor described above is better. Are suitable.

またリニアインダクションモータの場合は固定子に対し
て移動子を浮上支持することおよびアライメントのため
の案内をすることをリニアモータ自体で行なうのはむず
かしく、別の支持・案内手段が必要となる。
Furthermore, in the case of a linear induction motor, it is difficult for the linear motor itself to float and support the mover relative to the stator and guide it for alignment, and separate support and guide means are required.

従来からリニアインダクションモータで用いられている
支持・案内手段は、リニアモータとは別系統の電磁シス
テムによる磁気吸引力利用のもの、空気等の流体噴射に
よるもの、ゴムタイヤなどの車輪によるものなどが知ら
れている。
Supporting and guiding means conventionally used in linear induction motors include those using magnetic attraction using an electromagnetic system separate from the linear motor, those using fluid injection such as air, and those using wheels such as rubber tires. It is being

一方、同期式リニアモータを大別すると、サイクロコン
バータまたはインバータによるリニアシンクロナスモー
タとサイリスクフリップフロップインバータによる直流
リニアモータとに分けることができ、現在ではこれら両
者ともに電機子を地上側固定子とする地上−次式として
開発が進められている。
On the other hand, synchronous linear motors can be roughly divided into linear synchronous motors using a cycloconverter or inverter, and DC linear motors using a cycloconverter and a cyclo-flip-flop inverter.Currently, both of these use an armature as a ground-side stator. Development is progressing as a ground-based system.

リニアシンクロナスモータでは、移動子としての二次側
界磁を超電導電磁石とし、固定子としての一次側電機子
コイルには交流電力を供給してその周波数制御により速
度制御を行なっている。
In a linear synchronous motor, the secondary field as a mover is a superconducting electromagnet, and the primary armature coil as a stator is supplied with alternating current power and its speed is controlled by frequency control.

またこのリニアシンクロナスモータでは、移動子の推進
力と案内力とを同一の移動子側超電導電磁石界磁と固定
子側電機子コイルとの組合せで発生せしめ、浮上刃をこ
れとは別の移動子側超電導電磁石と固定子側誘導コイル
との組合せで発生させている。
In addition, in this linear synchronous motor, the propulsive force and guiding force of the mover are generated by a combination of the same superconducting electromagnetic field on the mover side and the armature coil on the stator side, and the floating blade is generated on a separate mover. It is generated by a combination of a superconducting electromagnet on the side and an induction coil on the stator side.

一方、直流リニアモータでは移動子側に常電導直流電磁
石を搭載して二次側とし、固定子側には空心の電機子コ
イル偶数相の多相化配列で敷設して、電機子コイルの各
相に直流定電流電力をサイリスクフリップフロップイン
パークによって転流して供給することにより移動磁界を
発生させ、これと鎖交する上記電磁石からの磁束によっ
て移動子にフレミング力による推進力と浮上刃とを与え
ている。
On the other hand, in a DC linear motor, a normal-conducting DC electromagnet is mounted on the mover side to serve as the secondary side, and an air-core armature coil is installed in an even-numbered multi-phase array on the stator side. A moving magnetic field is generated by commutating and supplying DC constant current power to the phase using a Cyrisk flip-flop impark, and the magnetic flux from the electromagnet interlinked with this generates a propulsive force due to the Fleming force and a floating blade on the moving element. giving.

すなわち移動子の移動方向と直角な電機子コイル辺の生
じる磁界によって転流周波数に応じた速度での推進を行
ない、移動方向と平行な電機子コイル辺の生じる磁界に
よって移動子の浮上を行なっており、この場合、移動子
側に別の電磁石を搭載すれば上記電機子コイルを共用し
て案内力を得ることができる。
In other words, the magnetic field generated by the side of the armature coil perpendicular to the direction of movement of the mover propels the mover at a speed corresponding to the commutation frequency, and the magnetic field generated by the side of the armature coil parallel to the direction of movement causes the mover to levitate. In this case, if another electromagnet is mounted on the moving element side, the armature coil can be used in common to obtain the guiding force.

さらに近年になってリニアシンクロナスモータの改良と
して移動子側電磁石を常電導直流電磁石とし、固定子側
には鉄心付の電機子コイルを用いて、この鉄心により推
進力と同時に磁気吸引による浮上刃を発生させるように
したものが提案された力\ この場合でも移動子のアラ
イメントのための案内力は別系統のものによらざるを得
ない。
Furthermore, in recent years, improvements to linear synchronous motors have been made in which the electromagnet on the mover side is a normal-conducting DC electromagnet, and the armature coil with an iron core is used on the stator side. The force proposed to be generated is \ Even in this case, the guiding force for aligning the mover must be of a different system.

以上のように現在までに知られているリニアモータでは
、1つのりニアモータ系でそれに必要とされる推進駆動
力、浮上刃、案内力の全機能を共に単−電磁気系で得て
いるものはなく、各々を別個の系か或いはそのうち二つ
を1つQ、ノ系で得て残りを別の系で得るかしなければ
ならず、移動子側および固定子側の設備構成が多くなっ
て簡略化は望めない。
As mentioned above, among the linear motors known to date, there is no single linear motor system that provides all the necessary functions of propulsion, driving force, floating blades, and guiding force using a single electromagnetic system. , each must be obtained in a separate system, or two of them must be obtained in one system and the rest in another system, which increases the number of equipment configurations on the mover side and the stator side and simplifies the process. I can't hope for it to change.

この発明は一対の界磁と電機子との組合せによって上述
の推進駆動力と浮上刃および案内力の全てを電磁力とし
て得ることのできるリニアモータを提供することを目的
としている。
An object of the present invention is to provide a linear motor that can obtain all of the above-mentioned propulsive driving force, floating blade, and guiding force as electromagnetic force by combining a pair of field magnets and an armature.

すなわちこの発明のりニアモータにおいては、移動子と
しての界磁力&その移動方向に沿う複数条の平行な磁極
を有する界磁鉄心と、該磁極が条斑に単極磁極となるよ
うに該界磁鉄心に巻装されて直流励磁される界磁コイル
を備え、また固定子としての電機子が、上記界磁鉄心と
同様の横断面形状を有すると共に複数の磁極列を上記界
磁の磁極の条と各々平行に対面するように長さ方向に沿
つて複数列平行に配設してなる電機子鉄心と、各磁極列
が磁極列毎に単極磁極となるように且つ順に励磁切換さ
れることにより該単極磁極が電機子鉄心長さ方向に移動
するように電機子鉄心に巻装されて断続的に直流励磁さ
れる複数相のコイル列からなる電機子コイルとを備え、
上記界磁と電機子とをそれらの磁極面同志が平行間隙を
介して対面するように配置して、上記移動方向の駆動力
と、上記電機子の磁極面に直角な吸引力と、上記駆動力
および吸引力の双方に直角で界磁を電機子の山内に保持
案内する力とを、共に上記電機子コイルと界磁コイルの
励磁によって界磁に作用させるようにしてなるものであ
る。
That is, in the linear motor of the present invention, there is a field core having a field force as a moving element and a plurality of parallel magnetic poles along the direction of movement of the field force, and a field core having a plurality of parallel magnetic poles along the field force and the direction of movement of the field force, and a field core having a plurality of parallel magnetic poles along the magnetic field force and the direction of movement thereof, and The armature as a stator has a cross-sectional shape similar to that of the field core, and a plurality of magnetic pole rows are connected to the magnetic pole rows of the field. The armature core has a plurality of rows arranged in parallel along the length direction so that they face each other in parallel, and the excitation is switched in order so that each magnetic pole row becomes a single pole. an armature coil consisting of a multi-phase coil array that is wound around an armature core and is intermittently excited with direct current so that the unipolar magnetic pole moves in the length direction of the armature core;
The field and the armature are arranged so that their magnetic pole faces face each other with a parallel gap, and the driving force in the moving direction, the attractive force perpendicular to the magnetic pole face of the armature, and the driving force are generated. Both the force and the force for holding and guiding the field within the armature at right angles to the attraction force are applied to the field by excitation of the armature coil and the field coil.

上記の吸引力は、電機子と界磁との間の空隙内のマクス
ウェル応力により生じ、また界磁を常に電機子山内に納
めようとする力は、磁極面に直角な方向の磁場と電機子
コイル間のフレミング力とじて生じる。
The above-mentioned attractive force is caused by Maxwell stress in the air gap between the armature and the field, and the force that tries to keep the field within the armature is caused by the magnetic field in the direction perpendicular to the pole face and the armature This occurs as a Fleming force between the coils.

このリニアモータを浮上式鉄道などの輸送システムに用
いるときは、電機子磁極面を下向きにして界磁磁極面を
上向きに水平対面配置することにより、上記マクスウェ
ル応力による吸引力は界磁にかかる荷重に対抗する移動
子浮上刃となり、また上記フレミング力による力は移動
子の移動方向に直角な方向での水平移動に対して界磁の
移動を阻止する案内力となる。
When this linear motor is used in a transportation system such as a floating railway, by arranging it horizontally with the armature magnetic pole surface facing downward and the field magnetic pole surface facing upward, the attraction force due to the Maxwell stress can be reduced by the load applied to the field. The force generated by the Fleming force acts as a guiding force that prevents the field from moving horizontally in a direction perpendicular to the direction of movement of the slider.

この発明を実施例図面と共に詳述すれば、第1図はこの
発明のりニアモータの基本的な実施例構成と作動原理を
示す斜視説明図で、固定子としての電機子10は、電機
子鉄心15に4相のコイル列lL12,13.14を2
列構成とした電機子コイル16を巻装していて、電機子
コイルの各相コイル列への電流切換器17を原理構成回
路と共にボしである。
To explain this invention in detail together with the drawings of the embodiment, FIG. 1 is a perspective explanatory view showing the basic embodiment structure and operating principle of the linear motor of the invention, in which the armature 10 as a stator is connected to the armature core 15. 4-phase coil array lL12, 13.14 to 2
The armature coil 16 is wound in a row configuration, and a current switch 17 for each phase coil row of the armature coil is included together with the basic circuit.

電機子鉄心15はE字状断面形状のいわゆる外鉄鉄心で
あり、基本的形状は第2図に示した通りである。
The armature core 15 is a so-called outer core having an E-shaped cross section, and its basic shape is as shown in FIG.

この電機子鉄心15は、その長さ方向に延在する複数の
平行な磁極列15a、15b。
This armature core 15 has a plurality of parallel magnetic pole rows 15a and 15b extending in its length direction.

15cが下向きに突出するように成形してあり、中央の
磁極列15bには所定間隔、この場合コイル列11〜1
4の各コイルのコイル長の半分の間隔でスロット18が
設けられ、磁極列15bの両側の溝19a、19bと上
記スロット18の間に第1図に示すように電機子コイル
16の各コイル列11〜14が装着され、コイル通電時
に各磁極列15a、15b、15cが、例えば15a。
15c is formed to protrude downward, and the central magnetic pole row 15b has coil rows 11 to 1 arranged at predetermined intervals.
Slots 18 are provided at intervals of half the coil length of each coil of armature coil 16 as shown in FIG. 11 to 14 are attached, and when the coil is energized, each magnetic pole array 15a, 15b, 15c is, for example, 15a.

15cがN極、15bがS極のように常に単極磁極とな
るようにコイル巻き方向と通電方向が定められる。
The coil winding direction and the current direction are determined so that the magnetic pole 15c is a north pole and the magnetic pole 15b is a south pole, so that the magnetic pole always becomes a unipolar magnetic pole.

すなわち電機子コイル16は第1図のようにコイル長の
半分のピンチで各コイル列をずらしてコイル列11と1
3、コイル列12と14を各々互いのコイルピッチ間に
嵌め込んで一列ずつにし、これを溝19a、19bとス
ロット18に二列重ねて装着して磁極列15bを囲む4
相コイルとし、同相コイルは直列接続して電流切換器1
7と図示のように接続することにより各相コイル列に同
じ向きの電流が間欠的に順番に流れるようにして単極磁
界が相順に長さ方向に移動を繰返すようにする。
In other words, the armature coil 16 is arranged by shifting each coil row by half the length of the coil as shown in FIG.
3. The coil rows 12 and 14 are each fitted between the coil pitches of each other to form one row, and these are mounted in two rows overlapping in the grooves 19a, 19b and the slot 18 to surround the magnetic pole row 15b.
The in-phase coils are connected in series and current switching device 1 is used.
By connecting 7 as shown in the figure, current in the same direction intermittently flows through each phase coil array in order, so that the unipolar magnetic field repeats movement in the length direction in phase order.

一方移動子としての界磁20は前記コイル長の半分より
長い長さをもつE字状断面形状の界磁鉄心21と、これ
に巻装された界磁コイル22とを備え、該鉄心21は電
機子鉄心15の断面形状と同様に形成されていて互いに
磁極面を向い合わせるようになされている。
On the other hand, the field 20 as a mover includes a field core 21 having an E-shaped cross section and a length longer than half of the coil length, and a field coil 22 wound around the field core 21. The cross-sectional shape of the armature core 15 is the same as that of the armature core 15, and the magnetic pole faces thereof face each other.

界磁鉄心21は電機子長さ方向に沿うその移動方向に延
在した複数の平行な磁極条21a、21b、21cをも
ち、該磁極条21aは電機子鉄心15の磁極列15aと
対面し、21bは15bと、また21cは15cと各各
対面する。
The field core 21 has a plurality of parallel magnetic pole strips 21a, 21b, and 21c extending in its movement direction along the armature length direction, and the magnetic pole strips 21a face the magnetic pole row 15a of the armature core 15, 21b faces 15b, and 21c faces 15c.

磁極列間の溝23には中央の磁極列21bを囲むように
上記界磁コイル22が装着され、この界磁コイル22に
界磁制御装置24を介して直流電流を供給することによ
り対面する電機子の各磁極と吸引し合うように例えば磁
極列21a、21cがS極、21bがN極の単極磁極と
なるように励磁される。
The field coil 22 is installed in the groove 23 between the magnetic pole rows so as to surround the central magnetic pole row 21b, and by supplying DC current to the field coil 22 via the field control device 24, the armatures facing each other are controlled. The magnetic pole arrays 21a and 21c are excited to become unipolar magnetic poles, for example, S poles and N poles, so that they are attracted to each magnetic pole.

上記のような構成のこの発明のりニアモータは例えば第
3図a、b、cに示すような高架鉄道などの輸送システ
ムの、駆動システムとして応用され、この場合、電機子
を地上側固定子にして走行路支持桁31に下向きに架設
し、それと対面するように界磁を車体32の界磁台枠3
0に取付け、各々の異極の磁極同志が所定の平行間隙を
介して対面するように制御する。
The linear motor of the present invention having the above-mentioned configuration is applied as a drive system for a transportation system such as an elevated railway as shown in FIGS. 3a, b, and c. The field is installed downward on the running road support girder 31, and the field frame 3 of the vehicle body 32 is installed so as to face it.
0, and the magnetic poles of different polarities are controlled so that they face each other with a predetermined parallel gap in between.

尚、第3図aで33は補助支持タイヤ34を車体32に
支持する空気はね、35は給電用の剛体トロリー、36
は界磁台枠30の先端に取付けられて支持桁31に対し
て車体32が限界量以上に大きく横振れするのを防ぐ補
助案内タイヤであり、前記の補助支持タイヤ34と補助
案内タイヤ36はあくまでもリニアモータで制御する不
要な支持力(浮上刃)と案内力とを障害発生時などに補
助するために設けられている。
In FIG. 3a, 33 is an air spring that supports the auxiliary support tire 34 on the vehicle body 32, 35 is a rigid trolley for power supply, and 36 is a
is an auxiliary guide tire that is attached to the tip of the field frame 30 to prevent the vehicle body 32 from swinging more than the limit amount with respect to the support girder 31, and the auxiliary support tires 34 and 36 are It is provided solely to assist with unnecessary supporting force (floating blade) and guiding force controlled by the linear motor in the event of a failure.

第3図中に示すように一車輛の両側にこの発明のりニア
モータが一対配置され、界磁20は一車輛につき第3図
す、cのように4基装備されている。
As shown in FIG. 3, a pair of linear motors of the present invention are arranged on both sides of one vehicle, and each vehicle is equipped with four field magnets 20 as shown in FIG. 3, c.

電機子は例えは300mのような適当なき電区間毎に直
列接続した各相コイル列を適当な電流切換器により順に
励磁するようにすればよい。
The armature may be configured such that each phase coil array connected in series is sequentially excited by a suitable current switch for each suitable feeding section such as 300 m.

このようにして上記インバータによる転流により電機子
に発生する移動磁界に応じて第1図中に記したように駆
動力、案内力、浮上刃を発生し、例えば車輛を500k
m/h程度の高速で浮上走行させることができる。
In this way, a driving force, a guiding force, and a floating blade are generated as shown in FIG. 1 according to the moving magnetic field generated in the armature by the commutation by the inverter, and for example, the vehicle is driven at 500 km.
It can be floated at high speeds of about m/h.

この発明のりニアモータにおける上述の駆動力、案内力
、浮上刃の作用原理を述べれは、第4図に示すように電
機子のコイル11と12および界磁のコイル22に図中
記号の如き向きの電流が流れたとき、コイルlL12の
後縁辺(第4図でコイル11又は12の左方の紙面表裏
方向に向う辺)に界磁磁束が鎖交して界磁20に矢印A
方向の駆動力が生じる。
The principle of operation of the above-mentioned driving force, guiding force, and floating blade in the linear motor of this invention will be described.As shown in FIG. When a current flows, the field magnetic flux interlinks with the trailing edge of the coil 1L12 (the left side of the coil 11 or 12 in FIG.
A driving force in the direction is generated.

すなわち電機子長手方向に対して直角な電機子コイルの
辺に界磁の磁界が作用してフレミング力が発生しその反
力として界磁が駆動力を得るものである。
That is, the magnetic field of the field acts on the side of the armature coil perpendicular to the longitudinal direction of the armature, a Fleming force is generated, and the field obtains a driving force as a reaction force.

案内力は第6図のように電機子と界磁との対面位置が中
心から左右にすれたときに電機子長手方向に沿う電機子
コイル平行辺に界磁の磁界が作用して生じるフレミング
力(矢印C)により生じ、第5図のように電機子と界磁
とが中心を合わせて対面しているときは互いに向い合う
案内力として釣合っている。
The guiding force is the Fleming force that is generated when the armature and field face each other from the center to the left and right as shown in Figure 6, and the magnetic field of the field acts on the parallel sides of the armature coil along the armature's longitudinal direction. (arrow C), and when the armature and the field face each other with their centers aligned as shown in FIG. 5, they are balanced as guiding forces facing each other.

この場合、電機子の磁極巾と界磁の磁極巾とを異ならせ
ることにより案内性を変えることができる。
In this case, the guiding property can be changed by making the magnetic pole width of the armature and the magnetic pole width of the field different.

浮上刃は、前述したように電機子および界磁がともに単
極磁界を作り出しているので、第5図のようにマスクウ
ェル応力(矢印B)として発生する。
The floating blade is generated as mask well stress (arrow B) as shown in FIG. 5 because the armature and the field together create a unipolar magnetic field as described above.

この浮上刃は、電機子と界磁との対面間隙を一定に保持
する必要があるため、第1図に示すように界磁電流を制
御して上記間隙を制御する必要があるが、案内力につい
ては、特別異常な外力に対応するために適当なストッパ
、例えば第3図の補助案内タイヤ36のような補助手段
を設ける他は案内力制御のための電流コントロールは不
要であり、従ってモータとして上記浮上刃の制御と駆動
力の転流周波数の制御とを行なえばよい。
This floating blade needs to maintain a constant face-to-face gap between the armature and the field, so it is necessary to control the gap by controlling the field current as shown in Figure 1. For the motor, current control for controlling the guiding force is not necessary, other than providing an appropriate stopper or auxiliary means such as the auxiliary guide tire 36 in FIG. What is necessary is to control the floating blade and control the commutation frequency of the driving force.

この発明のりニアモータでは、電機子および界磁を適当
に設計することにより浮上空隙最大30關程度、左右案
内巾最大50 mrr@度、および駆動速度500km
/h程度のものを得ることができる。
By appropriately designing the armature and field, the linear motor of this invention can achieve a maximum floating air gap of about 30 degrees, a maximum left and right guide width of 50 mrr@degrees, and a driving speed of 500 km.
/h can be obtained.

電機子コイルの構成は例えば第7図に示すような重ね巻
き、又は第8図に示すような波巻きが採用でき、いずれ
も多相のコイル列が各々所定寸法でラップするようにし
て各々コイルに同じ向きの電流が相順に流れるようにす
ればよい。
The configuration of the armature coil can be, for example, lap winding as shown in Fig. 7 or wave winding as shown in Fig. 8. In either case, each coil is wound in such a manner that the multi-phase coil arrays are wrapped with a predetermined dimension. It is only necessary to allow currents in the same direction to flow in phase order.

例えば、第7図および第8図で、開閉器41,42,4
3゜44を、4L42、次いで42,43、次いで43
.44そして44,41の頓番で順次繰返し導通させる
ことにより、コイル11 、12 、13゜14の順で
磁界を移動させることができる。
For example, in FIGS. 7 and 8, switches 41, 42, 4
3°44, 4L42, then 42, 43, then 43
.. By repeatedly conducting the coils 44, 44, and 41 in sequence, the magnetic field can be moved in the order of the coils 11, 12, 13, and 14.

以上の説明では、電機子鉄心と界磁鉄心が共にE字状断
面形状のものについて述べたが、これ以外にも例えば第
9図a−dに示すように各々同様寸法のU字状断面形状
の電機子鉄心15′と界磁鉄心21′とを用いて構成し
てもよく、この場合、電機子鉄心15′の両側の磁極列
15’a 、 15’cには交互にコイル長ピッチでス
ロット18’a 、 1 s’bを設け、このスロット
間に各磁極列毎に交互に電機子コイル列lL12,13
.14をずらして巻装する。
In the above explanation, both the armature core and the field core have an E-shaped cross-section, but they can also have a U-shaped cross-section with similar dimensions, for example, as shown in FIGS. 9a-d. The armature core 15' and the field core 21' may be constructed using the armature core 15' and the field core 21'. In this case, the magnetic pole rows 15'a and 15'c on both sides of the armature core 15' are provided with alternating coil length pitches. Slots 18'a and 1 s'b are provided between which armature coil rows 1L12 and 13 are alternately inserted for each magnetic pole row.
.. 14 and wind it.

また界磁鉄心21′にも両磁極条21’a。21′bに
各々別の界磁コイル22’a 、 22’bを巻装し、
両コイル22’a 、 22’bに互いに向きの異なる
電流を流して両磁極条が極性の異なる単極磁極例えば2
1′aがN、21’bがSとなるようにする。
Also, both magnetic pole strips 21'a are provided on the field core 21'. Separate field coils 22'a and 22'b are wound around 21'b,
Currents in different directions are passed through both coils 22'a and 22'b, so that both magnetic pole strips become monopole magnetic poles with different polarities, for example, 2
Let 1'a be N and 21'b be S.

電機子ではコイル11.13によって磁極列15′aが
S極、コイル12.14によって磁極列15′bがN極
の単極移動磁界を生じるようにし、コイル11,12、
次いで12.13、次いで13.14、そして14,1
1の順で励磁されるように制御される。
In the armature, a unipolar moving magnetic field is generated in which the magnetic pole array 15'a is the south pole by the coil 11.13 and the magnetic pole array 15'b is the north pole by the coil 12.14, and the coils 11, 12,
then 12.13, then 13.14, then 14,1
It is controlled to be excited in the order of 1.

この第9図の例では、特に電機子鉄心の1つの磁極列に
設けるスロットのピッチが前述のE字状断面形状の電機
子鉄心の場合に比べて倍の寸法、すなわちコイル長ピッ
チとなり、それだけ磁気回路中の抵抗を少なくできて効
率の向上が計れるものである。
In the example shown in FIG. 9, the pitch of the slots provided in one magnetic pole row of the armature core is twice as large as that of the armature core with an E-shaped cross section, that is, the pitch of the coil length, and The resistance in the magnetic circuit can be reduced and efficiency can be improved.

尚またこの発明のりニアモータの応用例として挙げた第
3図の例では、案内力を第6図の矢印Cの案内力で得て
いるか、例えば電機子と界磁とを縦にして対面配置し、
このような縦配置のりニアモータを車体の両側に向い合
せ又は背中合せで配設し、以って第4,5.6図中の矢
印Bの浮上刃を案内力に利用してもよい。
Furthermore, in the example shown in Fig. 3, which is given as an application example of the linear motor of the present invention, the guiding force is obtained by the guiding force indicated by arrow C in Fig. 6, or, for example, the armature and the field are placed vertically facing each other. ,
Such vertically arranged linear motors may be arranged on both sides of the vehicle body facing each other or back to back, and the floating blades indicated by arrows B in FIGS. 4 and 5.6 may be used for the guiding force.

以上に述べた如くこの発明のりニアモータによれは、一
組の電機子と界磁の組合せで駆動力の他に案内力と浮上
刃とを同時に発生させることができ、界磁と電機子とが
吸着しないように界磁制御しつつ電機子コイルの転流制
御で駆動速度を制御するだけで安定した駆動が可能であ
る。
As described above, according to the linear motor of the present invention, in addition to the driving force, the guiding force and the floating blade can be simultaneously generated by the combination of the armature and the field, and the field and the armature are Stable driving is possible by simply controlling the driving speed by controlling the commutation of the armature coil while controlling the field to prevent adsorption.

また鉄心として外鉄形のものを用いることによって鉄心
の背の磁路部分の厚さを薄くできるから軽量の長ピツチ
界磁を用いることが可能となり、界磁と電機子の双方が
互いに吸引力をもつため、浮上空隙を最大30m鍜度に
まで大きくできるものである。
In addition, by using an outer iron core as the core, the thickness of the magnetic path at the back of the core can be made thinner, making it possible to use a lightweight long-pitch field, and both the field and the armature exert an attractive force on each other. Because of this, the floating air gap can be increased to a maximum of 30 m.

また界磁の左右案内がコイルの長さ方向に平行な辺に働
く電磁力によって行なえるので、その最大案内中を50
mm程度と大きくできるため、補助案内用タイヤとして
滑走シューや硬質タイヤよりやわらかく荷重に対する変
形量の大きい空気ゴムタイヤを用いることができ、この
ため輸送システムに用いた際に滑走シューや硬質タイヤ
による補助案内手段よりその走行騒音や抵抗を著るしく
低減できるものであ。
In addition, since the left and right guidance of the field can be performed by electromagnetic force acting on the sides parallel to the length direction of the coil, the maximum guidance time is 50
Since it can be made as large as approximately 1.0 mm, pneumatic rubber tires can be used as auxiliary guidance tires because they are softer than sliding shoes or hard tires and have a larger deformation amount under load. This means that running noise and resistance can be significantly reduced.

さらにまた鉄心が外鉄形の場合、その周外側に放冷用の
フィンなどを装備しやすくなり、電機子および界磁の空
冷が極めて容易となるものである。
Furthermore, when the iron core is of the outer iron type, it becomes easy to equip cooling fins etc. on the outside of the periphery, and air cooling of the armature and field becomes extremely easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のりニアモータの一実施例に係る基本
構成と作動原理を示す斜視説明図、第2図は第1図の例
の電機子鉄心の斜視図、第3図a。 bおよびCはこの発明のりニアモータの一応用例を示す
正面図、平面図および側面図、第4図は駆動力と浮上刃
の発生原理を示す側面説明図、第5図は平衡した案内力
と浮上刃の発生原理を示す正面説明図、第6図は界磁が
左方へずれた際にそれを戻すように発生する案内力の原
理説明図、第7図は電機子コイルの巻き方の一例を示す
説明図、第8図は電機子コイルの巻き方の別の例を示す
説明図、第9図a ) b l Cl dはこの発明の
りニアモータ別の実施例を示すものでaは横断面図、b
はa図のb−b線矢視図、Cはb図のc−c線矢視図d
はb図のd−d線矢視図である。 10:電機子、lL12,13,14:電機子コイルを
構成する各相コイル、15:電機子鉄心、15a、15
b、15c:磁極列、16:電機子コイル、18ニスロ
ツト、19a、19b:溝、20:界磁、21:界磁鉄
心、21a。 21b、21c:磁極条、22:界磁コイル、23:溝
、24:界磁制御装置、30:界磁台枠、31:走行路
支持桁、32:車体、33:空気ばね、34:補助支持
タイヤ、35:剛体トロリー、36:補助案内タイヤ、
41.42,43,44:開閉器。
FIG. 1 is a perspective explanatory view showing the basic structure and operating principle of an embodiment of the linear motor of the present invention, FIG. 2 is a perspective view of the armature core of the example shown in FIG. 1, and FIG. 3a. b and C are front, plan and side views showing an application example of the linear motor of the present invention, Fig. 4 is a side view showing the principle of generation of driving force and floating blade, and Fig. 5 is a diagram showing balanced guiding force and levitation. A front view showing the principle of generation of the blade, Figure 6 is a diagram explaining the principle of the guiding force that is generated to return the field when it shifts to the left, and Figure 7 is an example of how to wind the armature coil. Fig. 8 is an explanatory drawing showing another example of how the armature coil is wound; Fig. 9 a) b l Cl d shows another embodiment of the linear motor of the present invention; Figure, b
is a view taken along the line b-b of figure a, and C is a view taken along the line c-c of figure b.
is a view taken along line dd in figure b. 10: Armature, 1L12, 13, 14: Each phase coil constituting the armature coil, 15: Armature core, 15a, 15
b, 15c: magnetic pole array, 16: armature coil, 18 slot, 19a, 19b: groove, 20: field, 21: field iron core, 21a. 21b, 21c: magnetic pole strip, 22: field coil, 23: groove, 24: field control device, 30: field frame, 31: running road support girder, 32: vehicle body, 33: air spring, 34: auxiliary support tire , 35: rigid trolley, 36: auxiliary guide tire,
41.42,43,44: Switches.

Claims (1)

【特許請求の範囲】 1 移動子としての界磁が、その移動方向に沿う複数条
の平行な磁極を有する界磁鉄心と、該磁極が条斑に単極
磁極となるように該界磁鉄心に巻装されて直流励磁され
る界磁コイルとを備え、固定子としての電機子が、上記
界磁鉄心と同様の横断面形状を有すると共に複数の磁極
列を上記界磁の磁極の条と各々平行に対面するように長
さ方向に沿って複数列平行に配設してなる電機子鉄心と
、各磁極列が磁極列毎に単極磁極となるように且つ頓に
励磁切換されることにより該単極磁極が電機子鉄心長さ
方向に移動するようにそれぞれ長さ方向に列をなす複数
相のコイル列を長さ方向に関して所定のピッチ分ずつず
らして且つ高さ方向に関して積層して電機子鉄心に巻装
してなる電機子コイルとを備え、上記界磁と電機子とを
それらの磁極面同志が平行間隙を介して対面するように
配置して、上記移動方向の駆動力と、上記電機子の磁極
面に直角な吸引力と、上記駆動力および吸引力の双方に
直角で界磁を電機子の山内に保持案内する力とを、共に
上記電機子コイルと界磁コイルの励磁によって界磁に作
用させるようにしたことを特徴とするりニアモータ。 2 界磁鉄心および電機子鉄心が互いに向い合うE字状
横断面形状を有し、中央の磁極の条又は列に各々界磁コ
イル又は電機子コイルを巻装してなる特許請求の範囲第
1項に記載のりニアモータ。 3 界磁鉄心および電機子鉄心が互いに向い合うU字状
横断面形状を有し、両側の各磁極の条又は列に各々界磁
コイル又は電機子コイルを巻装してなる特許請求の範囲
第1項に記載のりニアモータ。 4 電機子コイルの各相コイル列が重ね巻きコイルから
なる特許請求の範囲第1項に記載のりニアモータ。 5 電機子コイルの各相コイル列が波巻きコイルからな
る特許請求の範囲第1項に記載のりニアモータ。 6 電機子コイルが2の整数倍の相数のコイル列からな
り、互いに半ピツチずつ相をずらして配設してなる電機
子コイル列のうち相の最も近い二組のコイル列毎に順次
転流するように転流回路から各コイル列に順番に励磁電
流を流すようにしてなる特許請求の範囲第1項に記載の
りニアモータ。
[Scope of Claims] 1. A field core having a plurality of parallel magnetic poles along the direction of movement of the field magnet as a mover, and a field core having a plurality of parallel magnetic poles along the direction of movement of the field magnet, and a field core such that the magnetic poles become monopole magnetic poles in stripes. The armature as a stator has a cross-sectional shape similar to that of the field core, and a plurality of magnetic pole rows are connected to the magnetic pole rows of the field. An armature core having a plurality of rows arranged parallel to each other along the length direction so that each pole row faces each other in parallel, and the excitation of each pole row being switched at random so that each pole row becomes a single pole. The coil rows of multiple phases arranged in the length direction are shifted by a predetermined pitch in the length direction and are stacked in the height direction so that the single pole magnetic pole moves in the length direction of the armature core. an armature coil wound around an armature core, the field and the armature are arranged so that their magnetic pole faces face each other with a parallel gap therebetween, and the driving force in the moving direction is , an attractive force perpendicular to the magnetic pole surface of the armature, and a force for holding and guiding the field within the armature at right angles to both the driving force and the attractive force are applied to both the armature coil and the field coil. A linear motor characterized in that the magnetic field is caused to act on the magnetic field by excitation. 2. Claim 1 in which the field core and the armature core have an E-shaped cross-sectional shape facing each other, and a field coil or an armature coil is wound around each central magnetic pole strip or row. Linear motors listed in section. 3. The field core and the armature core have a U-shaped cross-sectional shape facing each other, and a field coil or an armature coil is wound around each magnetic pole strip or row on both sides. Linear motor described in item 1. 4. The linear motor according to claim 1, in which each phase coil row of the armature coil is a lap-wound coil. 5. The linear motor according to claim 1, wherein each phase coil row of the armature coil is a wave-wound coil. 6 The armature coils are composed of coil rows with a phase number that is an integral multiple of 2, and the armature coil rows are arranged so that the phases are shifted by half a pitch from each other. 2. The linear motor according to claim 1, wherein the excitation current is sequentially passed from the commutation circuit to each coil array so that the excitation current flows through each coil array.
JP54081427A 1979-06-29 1979-06-29 linear motor Expired JPS5857066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54081427A JPS5857066B2 (en) 1979-06-29 1979-06-29 linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54081427A JPS5857066B2 (en) 1979-06-29 1979-06-29 linear motor

Publications (2)

Publication Number Publication Date
JPS566666A JPS566666A (en) 1981-01-23
JPS5857066B2 true JPS5857066B2 (en) 1983-12-17

Family

ID=13746062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54081427A Expired JPS5857066B2 (en) 1979-06-29 1979-06-29 linear motor

Country Status (1)

Country Link
JP (1) JPS5857066B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149367A (en) * 1984-08-17 1986-03-11 Matsushita Electric Works Ltd Variable color discahrge lamp
JPS6193969U (en) * 1984-11-24 1986-06-17
JPS6193968U (en) * 1984-11-24 1986-06-17
JPS6193970U (en) * 1984-11-24 1986-06-17

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124179B1 (en) 2003-04-09 2012-03-27 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
TWI609409B (en) 2003-10-28 2017-12-21 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TW201809801A (en) 2003-11-20 2018-03-16 日商尼康股份有限公司 Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method
TWI437618B (en) 2004-02-06 2014-05-11 尼康股份有限公司 Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
WO2006068233A1 (en) * 2004-12-24 2006-06-29 Nikon Corporation Magnetic guiding apparatus, stage apparatus, exposure apparatus and device manufacturing method
EP2660853B1 (en) 2005-05-12 2017-07-05 Nikon Corporation Projection optical system, exposure apparatus and exposure method
US7830046B2 (en) 2007-03-16 2010-11-09 Nikon Corporation Damper for a stage assembly
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149367A (en) * 1984-08-17 1986-03-11 Matsushita Electric Works Ltd Variable color discahrge lamp
JPS6193969U (en) * 1984-11-24 1986-06-17
JPS6193968U (en) * 1984-11-24 1986-06-17
JPS6193970U (en) * 1984-11-24 1986-06-17

Also Published As

Publication number Publication date
JPS566666A (en) 1981-01-23

Similar Documents

Publication Publication Date Title
US6044770A (en) Integrated high speed MAGLEV system
US3706922A (en) Linear comb-shaped synchronous motor
US6357359B1 (en) Integrated high speed maglev system utilizing an active lift
JP5956993B2 (en) Linear motor
US3585423A (en) Linear induction motor
JPH0734646B2 (en) Linear motor
JPS5857066B2 (en) linear motor
US5497038A (en) Linear motor propulsion drive coil
US3895585A (en) Two-sided linear induction motor especially for suspended vehicles
JP3771543B2 (en) Linear motor drive device
CN112769311B (en) Linear motor and transportation system using the same
US3644762A (en) Linear induction motor stator
US3913493A (en) System for propelling train by linear synchronous motor
JPH01177805A (en) Attraction type magnetic levitation vehicle
CN113765259B (en) A permanent magnet electric suspension linear drive device
US3628072A (en) Linear induction motor
WO2001065671A1 (en) Linear motor
JP2001211630A (en) Linear slider
KR100242538B1 (en) A slat conveyor propelled by linear synchronous motor
CN111130300B (en) A high temperature superconducting linear synchronous motor
USRE28161E (en) Linear induction motor
CN111106732B (en) Linear motor and primary winding thereof
SU801197A1 (en) Induction line motor
JP4253823B1 (en) Magnetic levitation propulsion device
JPS5833788B2 (en) linear induction motor