JPS5855111B2 - High hardness sintered body for tools and its manufacturing method - Google Patents
High hardness sintered body for tools and its manufacturing methodInfo
- Publication number
- JPS5855111B2 JPS5855111B2 JP54037984A JP3798479A JPS5855111B2 JP S5855111 B2 JPS5855111 B2 JP S5855111B2 JP 54037984 A JP54037984 A JP 54037984A JP 3798479 A JP3798479 A JP 3798479A JP S5855111 B2 JPS5855111 B2 JP S5855111B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- binder
- boron nitride
- phase
- cbn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000011230 binding agent Substances 0.000 claims description 60
- 239000000843 powder Substances 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 21
- 229910052582 BN Inorganic materials 0.000 claims description 20
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 20
- 229910008328 ZrNx Inorganic materials 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 10
- 229910000765 intermetallic Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 3
- 239000010419 fine particle Substances 0.000 claims 2
- 238000000465 moulding Methods 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 229910010421 TiNx Inorganic materials 0.000 description 19
- 239000012071 phase Substances 0.000 description 17
- 238000005245 sintering Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 12
- 239000010936 titanium Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- 238000010587 phase diagram Methods 0.000 description 5
- 229910052984 zinc sulfide Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000011195 cermet Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- -1 iron group metals Chemical class 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 3
- 229910052789 astatine Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
【発明の詳細な説明】
立方晶型窒化硼素(Cubic BN以下CBNと略す
)はダイヤモンドに次ぐ高硬度の物質であり、超高圧高
温下で合成される。DETAILED DESCRIPTION OF THE INVENTION Cubic boron nitride (hereinafter abbreviated as CBN) is a substance with the second highest hardness after diamond, and is synthesized under ultra-high pressure and high temperature.
現在既に研削用砥粒として使用されており、また切削用
途にはCBNを金属Coなどで結合した焼結体が一部に
使用されている。Currently, it is already being used as abrasive grains for grinding, and sintered bodies made of CBN bonded with metal Co or the like are also used in some cutting applications.
このCBNを金属で結合した焼結体は切削工具として使
用した場合、結合金属相の高温での軟化による耐摩耗性
の低下や、被削材金属が溶着し易い為に工具が損傷する
といった欠点がある。When this sintered body of CBN bonded with metal is used as a cutting tool, there are disadvantages such as a decrease in wear resistance due to the softening of the bonded metal phase at high temperatures, and damage to the tool because the work material metal is easily welded. There is.
本発明は、このような金属で結合した焼結体でなく、高
強度で耐熱性に優れた硬質金属化合物を結合相とした切
削工具等の工具用途に適した新らしいCBN焼結体に関
するものである。The present invention relates to a new CBN sintered body suitable for tool applications such as cutting tools, which uses a hard metal compound as a binder phase with high strength and excellent heat resistance, rather than a sintered body bonded with such metals. It is.
CBNは前記した如く、高硬度であり、耐熱性、耐摩耗
性に優れた物質である。As mentioned above, CBN is a material that has high hardness and excellent heat resistance and wear resistance.
このCBNのみを焼結する試みは種々なされているが、
これには例えば特公昭39−8948に記されている如
く、約70Kb以上、1900℃以上の超高圧、高温下
で焼結する必要がある。Various attempts have been made to sinter only this CBN, but
For this purpose, as described in Japanese Patent Publication No. 39-8948, it is necessary to perform sintering at an extremely high pressure and high temperature of about 70 Kb or more and 1900° C. or more.
現状の超高圧・高温装置ではこのような高圧・高温条件
を発生させることはできるが、工業的規模に装置を大型
化した場合、高圧高温発生部の耐用回数が制約され、実
用的でない。Current ultra-high pressure and high temperature equipment can generate such high pressure and high temperature conditions, but if the equipment is scaled up on an industrial scale, the number of service life of the high pressure and high temperature generation part will be limited, making it impractical.
またCBNのみの焼結体は硬度は高いが、工具として使
用した場合の靭性が劣る。Furthermore, although a sintered body made only of CBN has high hardness, it has poor toughness when used as a tool.
発明者等はCBNの結合材として窒化チタン(TiN)
又は窒化ジルコニウム(ZrN)とAtを含む化合物を
主体としたものを用い、更に適切な製造条件を見出すこ
とによって、従来にない耐摩性、靭性を有するCBNの
含有量が体積で80%を越える高硬度の焼結体を得るこ
とができた。The inventors used titanium nitride (TiN) as a bonding material for CBN.
Alternatively, by using a compound mainly containing zirconium nitride (ZrN) and At, and finding more appropriate manufacturing conditions, we can create a product with a CBN content of more than 80% by volume, which has unprecedented wear resistance and toughness. A sintered body with high hardness could be obtained.
また高圧相型窒化硼素の別の形態であるウルツ鉱型窒化
硼素についても同様の検討を行ない、CBNを用いた場
合と類似した結果を得た。Further, similar studies were conducted on wurtzite boron nitride, which is another form of high-pressure phase boron nitride, and results similar to those obtained using CBN were obtained.
以下、CBNを硬質耐摩耗成分として使用した焼結体に
ついて詳細を述べるが、ウルツ鉱型もしくはCBNとウ
ルツ鉱型窒化硼素の混合物を用いた場合も同様のことが
言える。A sintered body using CBN as a hard wear-resistant component will be described in detail below, but the same can be said when using a wurtzite type or a mixture of CBN and wurtzite type boron nitride.
本発明の目的とするところは、CBNの含有量の多い高
硬度の工具用焼結体を得ることである。An object of the present invention is to obtain a highly hard sintered body for tools with a high CBN content.
これによりCBHの特徴を最大限に生かして例えばWC
C超超硬合金如く高硬度の材料を切削加工する工具材や
、また線引きダイス等へ応用することができる。This allows us to take full advantage of the characteristics of CBH and, for example,
It can be applied to tool materials for cutting highly hard materials such as C cemented carbide, wire drawing dies, etc.
CBNのみからなる焼結体は前記した如く製造上の困難
さと、焼結体そのものの強度不足といった欠点を有して
いる。As described above, a sintered body made only of CBN has drawbacks such as difficulty in manufacturing and insufficient strength of the sintered body itself.
この為にCBNに適当な結合材を加えることによってこ
のような欠点を改良することが考えられる。For this reason, it is possible to improve these drawbacks by adding a suitable binder to CBN.
公知の方法の一つは金属結合材を用いる方法であり、市
販のCBNを金属Coなどで結合した焼結体がその例で
ある。One of the known methods is a method using a metal bonding material, and an example is a commercially available sintered body of CBN bonded with metal Co or the like.
またCBHに金属以外の化合物例えばAt203やB4
C等を混合してこれを焼結する試みもなされている。Also, CBH contains compounds other than metals, such as At203 and B4.
Attempts have also been made to mix C and the like and sinter the mixture.
前者の方法は焼結時にCoなとの金属結合材が溶融する
温度で行なうもので、高圧下における液相焼結である。The former method is a liquid phase sintering under high pressure, in which sintering is carried out at a temperature at which a metal bonding material such as Co is melted.
後者の場合は結合材は溶解せず固相状態で焼結される。In the latter case, the binder is not dissolved but sintered in a solid state.
発明者等は先に周期律表第4a、5a、6a族金属の炭
化物、窒化物、硼化物、硅化物を結合材としてこれ等の
結合材化合物が焼結体組織中で連続した結合相をなすC
BNを体積%で40〜80%含有した高硬度工具用焼結
体を発明し、特許出願している0持開昭53−7781
1)。The inventors previously discovered that using carbides, nitrides, borides, and silicides of metals from groups 4a, 5a, and 6a of the periodic table as binders, these binder compounds form a continuous binder phase in the structure of the sintered body. Eggplant C
Invented a sintered body for high hardness tools containing 40 to 80% by volume of BN, and filed a patent application in 1977-7781.
1).
この場合も固相状態で焼結するものであるが、結合材含
有量が比較的に多いためにCBNのみの焼結に比較して
緻密な焼結体を得るに必要な圧力、温度条件が緩和され
る。In this case as well, sintering is performed in a solid state, but because the binder content is relatively high, the pressure and temperature conditions required to obtain a dense sintered body are required compared to sintering only CBN. eased.
発明者等は更にCBHの含有量を多くしたものについて
検討を行なった。The inventors further investigated products with a higher content of CBH.
CBNの含有量が体積%で80%を越えるとCBNと前
記の周期律表第4a、5a、6a族金属の化合物粉末を
充分均一に混合して超高圧、高温下で焼結しても高強度
の焼結体は得られなかった。If the content of CBN exceeds 80% by volume, even if the CBN and the compound powder of metals from groups 4a, 5a, and 6a of the periodic table are sufficiently uniformly mixed and sintered under ultra-high pressure and high temperature, high A strong sintered body was not obtained.
この焼結体の破面を調べてみるとCBN粒子間及びCB
Nと結合材化合物粒子間で破壊していることが多く、C
BN粒子相互又はCBNと結合材結晶粒子間の結合強度
が低いと考えられる。When examining the fracture surface of this sintered body, it was found that between CBN particles and CB
It is often destroyed between N and binder compound particles, and C
It is considered that the bonding strength between the BN particles or between the CBN and the binder crystal particles is low.
CBHの含有量が多い場合はこのように焼結性が低下し
、高強度の焼結体が得られない。When the content of CBH is large, the sinterability deteriorates as described above, and a high-strength sintered body cannot be obtained.
これを改善する為に更に広範囲の実1験を行なった結果
、結合材としてT iNx 、 ZrNxのXの値があ
る値以下の粉末にAtを一定量以上含む粉末を用いた場
合、CBHの含有量が80%を越える組成であっても高
強度の焼結体が得られることを見出した。In order to improve this, we conducted a further wide range of experiments and found that when a powder containing more than a certain amount of At is used as a binder for TiNx or ZrNx whose X value is below a certain value, the content of CBH increases. It has been found that a high-strength sintered body can be obtained even when the amount exceeds 80%.
TiNx又はZrNxは例えば第1図に見られる如<
NaC4型構造を有する相がTi−N、ZrNの広い組
成範囲において存在する。TiNx or ZrNx is, for example, as shown in FIG.
A phase having a NaC4 type structure exists in a wide composition range of Ti--N and ZrN.
このXの値が1以下の場合、即ち相対的にNの原子空孔
濃度の高いものを用いることにより焼結性が改善され、
また結合材としてTiNx、ZrNxのみを用いた場合
よりも、これにAtの化合物を加えた場合は更に焼結性
が改善されることが確認された。When the value of
It was also confirmed that the sinterability was further improved when an At compound was added to the binder than when only TiNx or ZrNx was used as the binder.
結合材原料として使用するTiNx、ZrNxのXの値
の好ましい範囲は0.9以下である。The preferable range of the value of X of TiNx and ZrNx used as the binder raw material is 0.9 or less.
またAtは結合材中にAt元素として5%以上存在する
と高強度の焼結体が得られる。Further, when At is present in the binder in an amount of 5% or more as an At element, a high-strength sintered body can be obtained.
焼結体中のCBN含有量を体積で85%とし、結合材原
料としてTiNxのXの値と添加A7の量を種々変えて
焼結体を試作し、切削工具としての性能を評価した結果
、特に高強度で工具としての性能が優れていたのはXの
値が05〜09でAt添加量が結合材中の重量で5〜3
0%の範囲のものであった。The CBN content in the sintered body was set to 85% by volume, and sintered bodies were prototyped by varying the value of X of TiNx as a binder raw material and the amount of added A7, and the performance as a cutting tool was evaluated. Particularly high strength and excellent tool performance were achieved when the value of X was 05 to 09 and the amount of At added was 5 to 3 by weight in the binder.
It was in the range of 0%.
本発明の焼結体では高圧相型窒化硼素は焼結体中の体積
%で80%を越え95%以下である。In the sintered body of the present invention, high-pressure phase boron nitride is present in a volume percentage of more than 80% and less than 95% in the sintered body.
この組成範四内では充分緻密な焼結体ではCBNの含有
量が多いほど焼結体の硬度は高い。Within this composition range 4, in a sufficiently dense sintered body, the higher the CBN content, the higher the hardness of the sintered body.
95%を越えると焼結体の工具として必要な靭性の低下
が見られる。If it exceeds 95%, a decrease in the toughness required for the sintered body as a tool is observed.
また80%以下の含有量では焼結体の結合相が組織中で
連続した相をなし硬度が低下する。Further, if the content is less than 80%, the binder phase of the sintered body forms a continuous phase in the structure, resulting in a decrease in hardness.
本発明による結合材を用いた場合、何故高圧相型窒化硼
素の焼結性が改善されるか考察してみる。Let us consider why the sinterability of high-pressure phase boron nitride is improved when the binder according to the present invention is used.
TiNxを例にとるとTiNxのみの焼結体の常温にお
ける硬度はXの値が約0.7の場合、最大となる。Taking TiNx as an example, the hardness of a sintered body containing only TiNx at room temperature is maximum when the value of X is about 0.7.
しかし、高温下ではXの値が低いものほど硬度低下の度
合が大きい。However, at high temperatures, the lower the value of X, the greater the degree of decrease in hardness.
CBNとT iNxを混合して超高圧高温下で焼結する
場合、CBN結晶は変形し難いがTiNx粒子は容易に
変形を起し得る。When CBN and TiNx are mixed and sintered under ultra-high pressure and high temperature, CBN crystals are difficult to deform, but TiNx particles can be easily deformed.
前述した理由でこの場合窒素原子の欠陥濃度の高いXの
値が低いTiNxはと変形し易く、CBN結晶粒子間に
侵入して緻密化が進行し易い。For the reasons mentioned above, in this case, TiNx with a high concentration of nitrogen atoms and a low value of X is easily deformed, and easily penetrates between CBN crystal grains, resulting in densification.
しかしこれのみではCBN粒子間の結合強度が充分では
ない。However, this alone does not provide sufficient bonding strength between CBN particles.
例えばW C−Co超硬合金の液相焼結の如く硬質粒子
の結合相への溶解と再析出現象かあれば結合相と硬質粒
子、又は硬質粒子相互の結合強度の高いものが得られよ
う。For example, in liquid phase sintering of W C-Co cemented carbide, if hard particles are dissolved in a binder phase and reprecipitated, a product with high bonding strength between the binder phase and hard particles or between the hard particles can be obtained. .
本発明焼結体では結合材中にAA化合物を存在させるこ
とによって、これと類似した現象が生じることを見出し
たものである。In the sintered body of the present invention, it has been found that a phenomenon similar to this occurs when an AA compound is present in the binder.
結合材としてTiNxにAt化合物を添加していくと、
その量が増すに従って焼結性が改善され、低温で焼結し
ても高硬度の焼結体が得られる。When an At compound is added to TiNx as a binder,
As the amount increases, sinterability improves, and a sintered body with high hardness can be obtained even when sintered at a low temperature.
焼結体をダイヤモンド砥石で研摩して、更にラップ仕上
げして観察するとCBN粒子の脱落が添加At量が結合
材中の重量で5%以上の場合は殆んど見られない。When the sintered body is ground with a diamond grindstone and further lapping is observed, no CBN particles are observed to fall off when the amount of added At is 5% or more by weight in the binder.
また焼結体の破面を観察するとCBNの粒子は殆んどが
粒内破壊している。Furthermore, when observing the fracture surface of the sintered body, most of the CBN particles were intragranularly fractured.
Fe、Co。N1とAtの合金が、CBN合成時の溶媒
となり得ることは既に知られている。Fe, Co. It is already known that an alloy of N1 and At can serve as a solvent during CBN synthesis.
本発明ではこのような鉄族金属とAtの合金や、又At
を単独で結合材として用いるものではない。In the present invention, alloys of such iron group metals and At, or At
It is not intended to be used alone as a binding material.
本発明ではAtは結合材の主成分であるTiNx、Zr
Nxとの反応によって生じたTi又はZrとAtの金属
間化合物又はT i 2AtNやA7NやAtNの如く
化合物の形で焼結前の粉末中に存在せしめるものである
。In the present invention, At is the main component of the binder, TiNx, Zr.
It is present in the powder before sintering in the form of an intermetallic compound of Ti or Zr and At produced by the reaction with Nx, or a compound such as T i 2AtN, A7N, or AtN.
このようなAt化合物は融点が高く、本発明の焼結体で
はこれ等が焼結時に液相を生じなくともCBN粒子との
反応性に富み、これと固相状態で反応してCBN粒子間
及びCBNと結合材粒子間に強固な結合状態が得られる
ものと考えられる。Such At compounds have a high melting point, and in the sintered body of the present invention, they are highly reactive with CBN particles even if they do not form a liquid phase during sintering, and react with them in a solid phase to form bonds between CBN particles. It is also believed that a strong bonding state can be obtained between the CBN and the binder particles.
Atと結合材の主成分であるTiNx、ZrNxとの反
応によって生じる化合物にはTiNx又はZrNx中の
過剰なTi又はZrとAl、間の金属間化合物がある。Compounds produced by the reaction between At and TiNx and ZrNx, which are the main components of the binder, include excessive Ti in TiNx or ZrNx, or intermetallic compounds between Zr and Al.
これにはA7の添カロ量、Xの値(即ち過剰のTi 、
Zrの割合)及び焼結条件によって各種の組成比の化合
物が存在し得る。This includes the amount of calories added in A7, the value of X (i.e. excess Ti,
Compounds with various composition ratios may exist depending on the Zr ratio) and sintering conditions.
第3,4図は各々kt−T i 、kt−Z rの状態
図を示しており、存在する金属間化合物はAtTi3.
AtTi2.AtTi 、A4Ti 。Figures 3 and 4 show the phase diagrams of kt-T i and kt-Z r, respectively, and the intermetallic compounds present are AtTi3.
AtTi2. AtTi, A4Ti.
A/!、23Tig 、 A43Ti 、AtZr3.
A7Zr2.At3Zr5 。A/! , 23Tig, A43Ti, AtZr3.
A7Zr2. At3Zr5.
At2 Z r 3 、 At3 Z r4 、 At
Zr 、 Al−3Zr 2 、 A72 Zr 。At2 Z r 3 , At3 Z r4 , At
Zr, Al-3Zr2, A72Zr.
A4Zr等である。A4Zr etc.
また、これ等に更に窒素を含むTi2AtN、Zr2A
tNも存在し得る。In addition, Ti2AtN, Zr2A, which further contains nitrogen,
tN may also exist.
また焼結時の窒化硼素とこれ等金属間化合物の反応によ
ってT IB 2 、 ktNが生成する。Further, T IB 2 and ktN are generated by the reaction between boron nitride and these intermetallic compounds during sintering.
これ等が本発明の焼結体の結合材中に存在するTiN、
ZrN以外の耐熱性化合物である。These are TiN present in the binder of the sintered body of the present invention,
It is a heat-resistant compound other than ZrN.
実験によると、本発明の焼結体においては焼結時に結合
材の主成分であるT iNx 、 ZrNxとこれ等の
At化合物の反応が生じることにより結合材の化合物粒
子が微細化されることが確認されている。According to experiments, in the sintered body of the present invention, the compound particles of the binder are made finer due to the reaction between TiNx, ZrNx, which are the main components of the binder, and these At compounds during sintering. Confirmed.
結合材が1μ以下の微細結晶からなることで本発明焼結
体は高強度のものが得られるのである。The sintered body of the present invention has high strength because the binder is composed of fine crystals of 1 μm or less.
Atを添加する方法は種々考えられる。Various methods can be considered for adding At.
焼結前のCBNとの混合粉末中にktを純A7として添
加する方法は最も簡単であるが、Atの1μ以下の微粉
末は得難く、粗い粒子では焼結体の組織が不均一になり
易い。The simplest method is to add Kt as pure A7 to the mixed powder with CBN before sintering, but it is difficult to obtain At fine powder of 1μ or less, and coarse particles will result in an uneven structure of the sintered body. easy.
最も好ましい結合材のTiNxとZrNxの過剰なTi
、Zrと予め金属A7を反応せしめておき、T i −
A7 、 Z r−Alの金属間化合物を形成させて、
これを粉砕使用する方法である。Excess Ti in the most preferred binders TiNx and ZrNx
, Zr and metal A7 are reacted in advance, and Ti −
A7, forming an intermetallic compound of Zr-Al,
This method uses pulverization.
1この場合は結合材T iNx 、 Z rNxとA7
の金属間化合物からなる極めて微細な1μ以下の結合材
粉末が容易に得られる。1 In this case, the bonding materials T iNx , Z rNx and A7
An extremely fine binder powder of 1 μm or less, consisting of an intermetallic compound, can be easily obtained.
この他予め金属Ti又はZrと金属A7を反応せしめて
合成したTi−A7.Zr l’−1金属間化合物(例
えばAtAt3. T + kl 、 T +2A/1
. 。In addition, Ti-A7 is synthesized by reacting metal Ti or Zr with metal A7 in advance. Zr l'-1 intermetallic compounds (e.g. AtAt3. T + kl, T +2A/1
.. .
ZrA73 、 ZrAA等)の粉砕し易い粉末を用い
ても良い。Easily pulverized powders such as ZrA73, ZrAA, etc.) may also be used.
また別の形のA7化合物であるA7N。T 12AtN
、 Z r2 AtN等の窒素を含む化合物の形で加
えても良い。Another form of A7 compound is A7N. T 12AtN
, Z r2 AtN or the like may be added in the form of a nitrogen-containing compound.
本発明の焼結体の結合材成分としてはTiNx。The binder component of the sintered body of the present invention is TiNx.
ZrNxの他に周期律表第4a 、5a 、6a族金属
の窒化物、炭化物、炭窒化物、硼化物等を部分的にこれ
にカロえても良い。In addition to ZrNx, nitrides, carbides, carbonitrides, borides, etc. of metals from groups 4a, 5a, and 6a of the periodic table may be partially added thereto.
本発明で用いるCBN結晶の粒度は焼結体の工具として
の性能からみて10μ以下とする必要がある。The grain size of the CBN crystal used in the present invention needs to be 10 μm or less in view of the performance of the sintered body as a tool.
結晶粒子が粗いと焼結体の強度が低下し、また特に切削
工具として使用する場合は結晶粒子の細いものが良い加
工面が得られる。If the crystal grains are coarse, the strength of the sintered body will decrease, and especially when used as a cutting tool, a finer crystal grain will give a better machined surface.
本発明のもう一つの特徴である結合相の粒度は1μ以下
の極めて微細な結晶粒子からなる。Another feature of the present invention is that the particle size of the binder phase consists of extremely fine crystal grains of 1 μm or less.
このことになり焼結体はCBNの含有量が多いが、結合
相が均一にCBN粒子間に分散した組織となり高強度の
焼結体が得られる。As a result, although the sintered body has a high content of CBN, it has a structure in which the binder phase is uniformly dispersed between the CBN particles, and a high-strength sintered body can be obtained.
焼結体の製造に当ってはダイヤモンド合成に用いられる
超高温装置を使用して圧力20Kb以上、温度900℃
以上で行なう。In manufacturing the sintered body, we use ultra-high temperature equipment used for diamond synthesis, at a pressure of 20 Kb or more and a temperature of 900°C.
That's all for now.
特に好ましい焼結圧力、温度条件は圧力30Kb〜70
Kb、温度1100℃〜1500℃である。Particularly preferable sintering pressure and temperature conditions are 30 Kb to 70 Kb.
Kb, and the temperature is 1100°C to 1500°C.
この圧力、温度条件の上限はいずれも工業的規模の超高
圧、高温装置の実用的な運転条件の範囲内である。The upper limits of these pressure and temperature conditions are all within the range of practical operating conditions for industrial scale ultra-high pressure, high temperature equipment.
更に圧力、温度条件は第2図に示した高圧相型窒化硼素
の安定域内で行なう必要がある。Further, the pressure and temperature conditions must be within the stable range of high-pressure phase type boron nitride shown in FIG.
以下、実施例により更に具体的に説明する。Hereinafter, a more specific explanation will be given with reference to Examples.
実施例 l
平均粒度3μのCBN粒子を体積%で90%と結合材粉
末からなる混合粉末を作成した。Example 1 A mixed powder consisting of 90% by volume CBN particles having an average particle size of 3 μm and binder powder was prepared.
結合材粉末はT I No、82粉末とA7粉末を重量
%で各々80%、20%の割合に混合したものを真空炉
中で1000℃、30分間加熱后粉砕して平均粒度0.
3μの微粉末としたものである。The binder powder was prepared by mixing T I No. 82 powder and A7 powder at a weight percentage of 80% and 20%, respectively, and heating it in a vacuum furnace at 1000°C for 30 minutes and then pulverizing it to an average particle size of 0.
It is made into a fine powder of 3 μm.
この結合材粉末をX線回折によって調べたところTiN
以外にT 12AtN 、 T 1A73 、 T i
At等のTiNとAtの反応によって生じた化合物が検
出され、金属Atは検出されなかった。When this binder powder was examined by X-ray diffraction, it was found that TiN
In addition to T 12AtN , T 1A73 , T i
Compounds such as At generated by the reaction between TiN and At were detected, but metallic At was not detected.
これはT iN6 B 2のNに対して相対的に過剰な
Tiが加えたA7と反対して生じたものである。This occurred in opposition to the addition of A7 in excess of Ti relative to N in T iN6 B 2 .
CBNと結合材の混合粉末を型押成型層ガードル型の超
高圧高温装置を用いて圧力50 kbまで加圧し、次い
で温度1250℃まで加熱し、20分間保持した。A mixed powder of CBN and a binder was pressurized to a pressure of 50 kb using a molded layer girdle type ultra-high pressure and high temperature device, then heated to a temperature of 1250° C. and held for 20 minutes.
取出した焼結体をダイヤモンド砥石を用いて研削加工し
て、更にダイヤモンドペーストを用いて研摩した。The taken out sintered body was ground using a diamond grindstone and further polished using diamond paste.
光学顕微鏡で観察したところ気孔もなく、緻密な焼結体
であった。When observed under an optical microscope, it was found to be a dense sintered body with no pores.
ビッカース硬度計を用いて荷重5klIで硬度を測定し
た結果的4,800の値を示した。The hardness was measured using a Vickers hardness tester at a load of 5 klI, and the result showed a value of 4,800.
この焼結体を用いて切削加工用のチップを作成した。A chip for cutting was created using this sintered body.
被削材としてはビッカース硬度約1,200のWC−1
5%Coの超硬合金製の塑性加工用のパンチを選び、切
削速度18m/分、切込み0.2胴、送り0.1 rr
rm/回転で20分間切削した。The work material is WC-1 with a Vickers hardness of approximately 1,200.
A plastic working punch made of 5% Co cemented carbide was selected, cutting speed 18 m/min, depth of cut 0.2 mm, feed rate 0.1 rr.
Cutting was performed for 20 minutes at rm/revolution.
比較の為市販の体積%で約90%のCBNをCOを主成
分とする金属で結合した焼結体で作成したチップを用い
て同一条件でテストした。For comparison, a test was conducted under the same conditions using a chip made of a commercially available sintered body in which approximately 90% CBN by volume was bonded with a metal containing CO as the main component.
切削后のチップの摩耗を観察したところ、本発明の焼結
体の逃げ面最大摩耗巾は0.12wrnであったのに対
し、市販のCBNをCoを主体とする金属で結合した焼
結体は0.23mmであった。When we observed the wear of the tip after cutting, we found that the maximum flank wear width of the sintered body of the present invention was 0.12 wrn, whereas that of the commercially available sintered body made of CBN bonded with a metal mainly composed of Co. was 0.23 mm.
本発明の焼結体をX線回折によって調べたところCBN
、TiNの回折ピークの他に微量のTiB2とAtNが
検出された。When the sintered body of the present invention was examined by X-ray diffraction, CBN was found.
, trace amounts of TiB2 and AtN were detected in addition to the TiN diffraction peak.
これは焼結前の結合材粉末中のT 1−kl系の金属間
化合物及びT I 2 ktNがCBNと反応すること
により分解して生じたものと考えられる。This is considered to be caused by decomposition of the T 1-kl-based intermetallic compound and T I 2 ktN in the binder powder before sintering as they react with CBN.
実施例 2 第1表に示した結合材粉末を作成した。Example 2 The binder powder shown in Table 1 was prepared.
窒素含有量の異なるTiNx粉末は金属チタンの微粉末
を純粋な窒素気流中で加熱して窒化させ、加熱温度を変
えることにより、結合窒素量をコントロールして作成し
たものである。TiNx powders with different nitrogen contents are produced by heating fine powder of titanium metal in a pure nitrogen stream to nitride it, and controlling the amount of bound nitrogen by changing the heating temperature.
第1表の組成の結合材粉末を実施例1と同様にして加熱
処理を施し、粉砕した。The binder powder having the composition shown in Table 1 was heat treated and pulverized in the same manner as in Example 1.
この結合材粉末と平均粒度3μのCBN粉末とを混合し
て第2表の組成の混合粉末を作成した。This binder powder and CBN powder having an average particle size of 3 μm were mixed to prepare a mixed powder having the composition shown in Table 2.
実施例1と同様にして超高圧高温装置を用いて圧力50
kb、温度1150℃で20分間保したもの(条件l)
、及び圧力50kb、温度1400℃で20分間保持し
た(条件2)2種類の焼結体を作成した。In the same manner as in Example 1, a pressure of 50
kb, kept at a temperature of 1150°C for 20 minutes (condition 1)
, and held at a pressure of 50 kb and a temperature of 1400° C. for 20 minutes (condition 2). Two types of sintered bodies were created.
各々の硬度の測定結果は第2表に示した通りである。The measurement results of each hardness are shown in Table 2.
A、B、Cの焼結体で比較するとCBN含有量が80体
積%ではビッカース硬度3.500以下であり、又97
%と多くなると硬度は低下している。Comparing the sintered bodies of A, B, and C, when the CBN content is 80% by volume, the Vickers hardness is 3.500 or less, and 97%.
%, the hardness decreases.
この場合は焼結体中の結合材含有量が不足しており、こ
のような圧力、温度条件では完全に緻密な焼結体が得ら
れない為である。In this case, the binder content in the sintered body is insufficient, and a completely dense sintered body cannot be obtained under such pressure and temperature conditions.
結合材中のAt含有量の異なるり、E、Fを比較すると
、この範囲内ではA7含有量の多いものほど硬度は高く
、又低温で高硬度の焼結体が得られている。Comparing E and F with different At contents in the binder, within this range, the higher the A7 content, the higher the hardness, and a sintered body with high hardness was obtained at a low temperature.
一般に結合材原料粉末TiNxのXの値が低く、At含
有量の多いものほど焼結性が良く、低い温度で焼結して
も高硬度のものが得られる傾向にある。Generally, the lower the value of X of the binder material powder TiNx and the higher the At content, the better the sinterability is, and even when sintered at a low temperature, a product with high hardness tends to be obtained.
なお、焼結体GをX線回析によって調べたところ、結合
相はTiNの他にA−AT 13 、 T s 21t
N。In addition, when the sintered body G was examined by X-ray diffraction, the binder phase included A-AT 13 and T s 21t in addition to TiN.
N.
T iB 2 、 A tNが検出された。T iB 2 and A tN were detected.
実施例 3 第1表の組成の結合材粉末を作成した。Example 3 A binder powder having the composition shown in Table 1 was prepared.
実施例1と同様に加熱処理を施し、平均粒度3μのCB
N粉末とこの結合材粉末を体積%で85%、15%とな
るように配合、混合した。CB with an average particle size of 3μ was heat-treated in the same manner as in Example 1.
N powder and this binder powder were blended and mixed so that the volume percentages were 85% and 15%.
焼結条件は実施例1と同様にして超高圧高温下で焼結し
た。The sintering conditions were the same as in Example 1, and sintering was performed under ultra-high pressure and high temperature.
焼結体の硬度はいずれもビッカース硬度4.000以上
のものが得られた。All of the sintered bodies had a Vickers hardness of 4.000 or more.
実施例 4
粒度lμ以下の衝撃波法によって合成されたウルツ鉱型
窒化硼素粉末を用い、実施例1で使用した結合材粉末と
をウルツ鉱型窒化硼素粉末85体積%、結合材粉末15
体積%の割合に混合した。Example 4 Using wurtzite boron nitride powder synthesized by the shock wave method with a particle size of 1μ or less, the binder powder used in Example 1 was mixed with wurtzite boron nitride powder 85% by volume and binder powder 15% by volume.
They were mixed in a proportion of % by volume.
焼結は超高圧、高温装置を用いて、実施例1と同一の条
件で行なった。Sintering was carried out under the same conditions as in Example 1 using an ultra-high pressure, high temperature device.
焼結体の硬度はビッカース硬度5,000であった。The hardness of the sintered body was 5,000 on the Vickers scale.
実施例 5
実施例1のCBNと結合材粉末の混合粉末を(MO9W
、)、Co、9−5 重量%Co−5重量%Ni−0,
5重量%Feの組成からなる( Mo W ) C基す
−メットの直径10TML、厚さ3間の円板上に置き、
これを実施例1と同様にして超高圧、高温装置を用いて
圧力45kb、温度1200℃で焼結した。Example 5 The mixed powder of CBN and binder powder of Example 1 (MO9W
), Co, 9-5 wt% Co-5 wt% Ni-0,
A (Mo W ) C-based metal having a composition of 5 wt% Fe was placed on a disk with a diameter of 10 TML and a thickness of 3 mm,
This was sintered in the same manner as in Example 1 using an ultra-high pressure, high temperature device at a pressure of 45 kb and a temperature of 1200°C.
CBNを90体積%含有する硬質焼結体の厚さ1m+n
の層がサーメット円板に接合した複合焼結体が得られた
。Thickness of hard sintered body containing 90% by volume of CBN: 1m+n
A composite sintered body was obtained in which the layers were bonded to a cermet disk.
この複合焼結体を切断して断面の接合部をX線マイクロ
アナライザーを用いて観察したところ、(MoW)C基
す−メット部から硬質焼結体部へのサーメットの結合金
属であるCo、Niの浸入は殆んど見られなかった。When this composite sintered body was cut and the joint portion of the cross section was observed using an X-ray microanalyzer, it was found that (MoW)C is a bonding metal of the cermet from the Met part to the hard sintered body part. Almost no Ni intrusion was observed.
接合界面においては硬質焼結体部のTiがサーメットの
(MOW)Cに一部固溶して(Mo W Ti ) C
の化合物を形成していた。At the bonding interface, Ti in the hard sintered body is partially dissolved in (MOW)C of the cermet, resulting in (Mo W Ti )C.
It formed a compound of
この焼結体をWCC超超硬合金スローアウェイチップの
一角にロウ付けし、切削チップを作成した。This sintered body was brazed to one corner of a WCC cemented carbide indexable tip to create a cutting tip.
比較の為にCBN含有量が体積%で60%、残部結合相
が10重量%のAtとTiNよりなる焼結体(ビッカー
ス硬度3,000)で同一形状のチップを作成した。For comparison, a chip of the same shape was made of a sintered body (Vickers hardness: 3,000) made of At and TiN with a CBN content of 60% by volume and the remainder of the binder phase being 10% by weight.
この2種のチップでショア硬度Hs83のチルドロール
を切削試験した。A chilled roll having a Shore hardness of Hs83 was tested for cutting using these two types of chips.
切削速度50m/分、切込み1mm、送り0.5mm/
回転で、1時間切耐層チップの逃げ面摩耗中を測定した
ところ、本発明のCBNを90体積%含有する焼結体で
は摩耗中が0.15mmであったのに対して、CBN含
有量60%の比較材質では摩耗中が0.3mに達してい
た。Cutting speed 50m/min, depth of cut 1mm, feed 0.5mm/
When the flank wear of the 1-hour cutting-resistant chip was measured during rotation, the wear was 0.15 mm for the sintered body containing 90% by volume of CBN of the present invention, whereas the CBN content was 0.15 mm. In the case of the 60% comparative material, the length during wear reached 0.3 m.
第1図は本発明焼結体の製法の特徴を説明する為のもの
で、Ti−N系の状態図である。
第2図は本発明焼結体の製造条件を説明する為のもので
高圧相型窒化硼素の圧力一温度相図上における熱力学的
な安定領域を示したものである。
第3図は本発明焼結体の結合材となるAl−Tiの状態
図、第4図は同様Zr−Atの状態図である。FIG. 1 is a phase diagram of a Ti--N system for explaining the characteristics of the method for manufacturing the sintered body of the present invention. FIG. 2 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the thermodynamically stable region on the pressure-temperature phase diagram of high-pressure phase type boron nitride. FIG. 3 is a phase diagram of Al--Ti, which is the binder of the sintered body of the present invention, and FIG. 4 is a phase diagram of Zr--At.
Claims (1)
で80%を越え95%以下含有し、残部の結合相がTi
N又はZrN及びAA−Ti、又はAt−Zrの金属間
化合物及び更にAt、高圧相型窒化硼素、TiN又はZ
rNとの反応により形成される耐熱性化合物からなり、
結合相中のAtの含有量が重量で50%を越え、且つ結
合相の結晶粒子の大部分か1μ以下の微細粒子よりなる
ことを特徴とする工具用高硬度焼結体。 2 高圧相型窒化硼素が立方晶型窒化硼素であることを
特徴とする特許請求の範囲1項記載の工具用高硬度焼結
体。 3 平均粒度が10μ以下の高圧相型窒化硼素粉末と結
合材としてMNzの形で表わしたときにXの値が0.9
以下のT iNx 、 ZrNx粉末とAt又はAtを
含む合金又は化合物粉末とを混合し、これを粉末状もし
くは型押成型後、超高圧・高温装置を用いて圧力20K
b以上、温度900℃以上て焼結せしめることを特徴と
する高圧相型窒化硼素の含有量が焼結体中の体積%で8
0%を越え95%以下であり、残部の結合相がTiN又
はZrN及びkl−Ti、又はA/1.−Zrの金属間
化合物及び更にAt、高圧相型窒化硼素、TiN又はZ
rNとの反応により形成される耐熱性化合物からなり、
結合相中のAAの含有量が重量で5%を越え、且つ結合
相の結晶粒子の大部分が1μ以下の微細粒子よりなる工
具用高硬度焼結体の製造方法。 4 高圧相型窒化硼素粉末として立方晶型窒化硼素粉末
を用いることを特徴とする特許請求の範囲3項記載の高
硬度工具用焼結体の製造方法。[Claims] 1 Volume % of high-pressure phase type boron nitride with an average particle size of 10μ or less
It contains more than 80% and less than 95% of Ti, and the remaining binder phase is Ti.
Intermetallic compounds of N or ZrN and AA-Ti or At-Zr and also At, high-pressure phase boron nitride, TiN or Z
Consists of a heat-resistant compound formed by reaction with rN,
A high hardness sintered body for tools, characterized in that the content of At in the binder phase exceeds 50% by weight, and most of the crystal grains of the binder phase consist of fine particles of 1 μm or less. 2. The high-hardness sintered body for tools according to claim 1, wherein the high-pressure phase boron nitride is cubic boron nitride. 3 High-pressure phase type boron nitride powder with an average particle size of 10μ or less and a binder with a value of
The following T iNx and ZrNx powders are mixed with At or an alloy or compound powder containing At, and after molding into a powder form or molding, the mixture is heated at a pressure of 20K using an ultra-high pressure/high temperature device.
The content of high-pressure phase boron nitride, which is characterized by being sintered at a temperature of 900° C. or higher, is 8% by volume in the sintered body.
more than 0% and less than 95%, and the remaining bonding phase is TiN or ZrN and kl-Ti, or A/1. - Zr intermetallic compounds and also At, high pressure phase boron nitride, TiN or Z
Consists of a heat-resistant compound formed by reaction with rN,
A method for producing a high hardness sintered body for tools, in which the content of AA in the binder phase exceeds 5% by weight, and most of the crystal grains in the binder phase are fine particles of 1 μm or less. 4. The method for manufacturing a sintered body for a high-hardness tool according to claim 3, characterized in that cubic boron nitride powder is used as the high-pressure phase boron nitride powder.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54037984A JPS5855111B2 (en) | 1979-03-29 | 1979-03-29 | High hardness sintered body for tools and its manufacturing method |
ZA00801780A ZA801780B (en) | 1979-03-29 | 1980-03-26 | A sintered compact for use in a tool |
FR8006942A FR2455632B1 (en) | 1979-03-29 | 1980-03-28 | SINTERED BLOCK, ESPECIALLY FOR MACHINING TOOLS |
SE8002425A SE451730B (en) | 1979-03-29 | 1980-03-28 | SINTRAD PRESS BODY FOR WORKING TOOLS |
GB8010616A GB2048956B (en) | 1979-03-29 | 1980-03-28 | Sintered compact for a machining tool |
DE3012199A DE3012199C2 (en) | 1979-03-29 | 1980-03-28 | Boron nitride sintered body having a matrix of MC? X?, MN? X? and / or M (CN)? x? and Al and its uses |
US06/136,459 US4343651A (en) | 1979-03-29 | 1980-03-31 | Sintered compact for use in a tool |
SE8501951A SE464871B (en) | 1979-03-29 | 1985-04-22 | COMPOSED PRESSURE FOR PROCESSING TOOLS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54037984A JPS5855111B2 (en) | 1979-03-29 | 1979-03-29 | High hardness sintered body for tools and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55130866A JPS55130866A (en) | 1980-10-11 |
JPS5855111B2 true JPS5855111B2 (en) | 1983-12-08 |
Family
ID=12512822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54037984A Expired JPS5855111B2 (en) | 1979-03-29 | 1979-03-29 | High hardness sintered body for tools and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5855111B2 (en) |
ZA (1) | ZA801780B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS605666B2 (en) * | 1982-03-23 | 1985-02-13 | 三菱マテリアル株式会社 | Ultra-high pressure sintered material for cutting tools |
CN101084169B (en) * | 2004-10-29 | 2010-05-12 | 六号元素(产品)(控股)公司 | Cubic boron nitride compact |
-
1979
- 1979-03-29 JP JP54037984A patent/JPS5855111B2/en not_active Expired
-
1980
- 1980-03-26 ZA ZA00801780A patent/ZA801780B/en unknown
Also Published As
Publication number | Publication date |
---|---|
JPS55130866A (en) | 1980-10-11 |
ZA801780B (en) | 1981-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4343651A (en) | Sintered compact for use in a tool | |
EP1313887B1 (en) | Method of producing an abrasive product containing cubic boron nitride | |
EP1309732B1 (en) | Method of producing an abrasive product containing diamond | |
CN101341268A (en) | Cubic boron nitride compact | |
US5569862A (en) | High-pressure phase boron nitride sintered body for cutting tools and method of producing the same | |
US4788166A (en) | High-hardness sintered article and method for manufacture thereof | |
JPS6184303A (en) | Manufacture of composite sintered body | |
JPS5855111B2 (en) | High hardness sintered body for tools and its manufacturing method | |
CA2424163A1 (en) | Abrasive and wear resistant material | |
JPS6369760A (en) | Sintered body for high hardness tools and its manufacturing method | |
JPS6246510B2 (en) | ||
JPS6137221B2 (en) | ||
JPS627259B2 (en) | ||
JPS6251911B2 (en) | ||
KR860002131B1 (en) | High hardness sintered body for tool and its manufacturing method | |
JPS6241306B2 (en) | ||
JPH0377151B2 (en) | ||
JPH0138841B2 (en) | ||
JPS6247940B2 (en) | ||
JPS62984B2 (en) | ||
JPS62228403A (en) | High hardness sintered body for tool and its production | |
JPS6242989B2 (en) | ||
JPS62983B2 (en) | ||
JPS62247008A (en) | High-hardness sintered body for tool and its production | |
JPH03131573A (en) | Sintered boron nitrode base having high-density phase and composite sintered material produced by using the same |