JPS5855083A - Removing method for silicic acid in water - Google Patents
Removing method for silicic acid in waterInfo
- Publication number
- JPS5855083A JPS5855083A JP15293781A JP15293781A JPS5855083A JP S5855083 A JPS5855083 A JP S5855083A JP 15293781 A JP15293781 A JP 15293781A JP 15293781 A JP15293781 A JP 15293781A JP S5855083 A JPS5855083 A JP S5855083A
- Authority
- JP
- Japan
- Prior art keywords
- water
- acid
- silicic acid
- anion exchange
- exchange resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は弱塩基性陰イオン交換樹脂を特殊な条件化で用
いることにより珪酸を含有する水から選択的に珪酸を除
去する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively removing silicic acid from water containing silicic acid by using a weakly basic anion exchange resin under special conditions.
集積回路(工・C)や大規模集積回路(L、 S、 I
)を製造する電子工業においては、その製品の洗浄ニコ
ロイド状物質およびイオンの量をppb (parts
per billion 、 1o億分のl単位)オ
ーダまで減少させたいわゆる超純水を必要とする。この
ような超純水を製造する場合。Integrated circuits (Engineering/C) and large-scale integrated circuits (L, S, I
), the amount of cleaning nicroid-like substances and ions in their products is reduced to ppb
It requires so-called ultrapure water that has been reduced to the order of 100 millionths of a liter (per billion). When producing such ultrapure water.
近年において逆浸透膜法が用いられることが多い。すな
わち、凝集沈殿処理、活性炭p過などの適当な前処理を
した原水を逆浸透膜装置で処理して減塩し9次いでこの
減塩した原水を純水製造装置、精密p過装置、ポリシャ
ーなどで処理するのが一般的である。逆浸透膜装置は逆
浸透膜に原水を浸透圧以上の加圧下で供給し、塩類の大
半を逆浸透膜で阻止iて塩類を減少させた透過水を処理
水として得るとともに、塩類を濃縮した非透過水を排出
するものであるが、この処理中に原水に含まれているコ
ロイド状物質も逆浸透膜で阻止することができるので、
前記超純水の製造には好都合である。In recent years, reverse osmosis membrane method is often used. In other words, raw water that has been subjected to appropriate pretreatment such as coagulation-sedimentation treatment and activated carbon filtration is treated with a reverse osmosis membrane device to reduce the salt content.9Then, this salt-reduced raw water is sent to a water purification device, a precision filtration device, a polisher, etc. It is common to process The reverse osmosis membrane device supplies raw water to the reverse osmosis membrane under pressure higher than the osmotic pressure, and the reverse osmosis membrane blocks most of the salts to obtain permeated water with reduced salts as treated water, as well as concentrating the salts. Although non-permeable water is discharged, the colloidal substances contained in the raw water can also be blocked by the reverse osmosis membrane during this treatment.
This is convenient for producing the ultrapure water.
逆浸透膜装置は以上のような操作で原水を処理するので
あるから、原水の濃縮倍率を大きくすればする程、一定
の供給原水から多量の透過水を得ることができ、コスト
的に有利となる。しかし濃縮倍率をあまシ大きくすると
比較的溶解度の小さい珪酸が濃縮系、特に膜面付近で析
出し、その結果逆浸透膜を汚染し、その性能を低下させ
る。したがって珪酸含有量の多い原水を高収率下で逆浸
透膜装置で処理せんとする場合は、その前段で何らかの
除珪酸処理を行なう必要があるが、従来より行なわれて
いる珪酸の除去方法はいづれも満足するものでなく採用
し難い。たとえば従来法である水酸化マグネシウムや水
酸化アルミニウムなどのフロックに珪酸を吸着させて共
沈除去する凝集沈殿法は、珪酸1の除去率が小さく、か
つスラッジが多量に発生し、二次処理を必要とするので
好ましくなく、また従来のイオン交換法は珪酸のみを除
去することができず、他のイオンも併せて除去せねばな
らない。たとえば再生効率のよい弱塩基性陰イオン交換
樹脂を用いて水中の珪酸を除去する従来のイオン交換に
よる珪酸の除去方法に以下のような方法がある。すなわ
ち原水に弗化ナトリウムや弗化カルシウムなどの弗化物
を添加してH形の強酸性陽イオン交換樹脂とOH形の弱
塩基性陰イオン交換樹脂に通水する方法である。このよ
うにすると強酸性陽イオン交換樹脂の処理水中の珪酸は
珪弗化水素酸という強酸となるので9弱塩基性陰イオン
交換樹脂でも除去することが可能となる。この従来のイ
オン交換法は通常では弱塩基性陰イオン交換樹脂では除
去できない珪酸を、弗化物を添加することによシ弱塩基
性陰イオン交換樹脂で除去することができるので1強塩
基性陰イオン交換樹脂を用いる場合と比較して再生剤費
を低下させることができる。しかし当該イオン交換法は
基本的には脱塩であって、原水中の種々のカチオンや、
他のアニオンも併せて除去するので、処理コストが高く
。Since reverse osmosis membrane equipment processes raw water through the operations described above, the higher the concentration ratio of raw water, the more permeated water can be obtained from a fixed supply of raw water, which is advantageous in terms of cost. Become. However, if the concentration ratio is increased too much, silicic acid with relatively low solubility will precipitate in the concentration system, especially near the membrane surface, resulting in contamination of the reverse osmosis membrane and deterioration of its performance. Therefore, if raw water with a high silicic acid content is to be treated with a reverse osmosis membrane device at a high yield, it is necessary to perform some kind of silicic acid removal treatment in the previous stage, but the conventional method for removing silicic acid is None of them are satisfactory and are difficult to adopt. For example, the conventional coagulation-sedimentation method, in which silicic acid is adsorbed onto flocs such as magnesium hydroxide or aluminum hydroxide and removed by coprecipitation, has a low removal rate of silicic acid 1, generates a large amount of sludge, and requires secondary treatment. Furthermore, conventional ion exchange methods cannot remove only silicic acid and must also remove other ions. For example, the following methods are conventional methods for removing silicic acid by ion exchange, in which silicic acid is removed from water using a weakly basic anion exchange resin with good regeneration efficiency. That is, this is a method in which a fluoride such as sodium fluoride or calcium fluoride is added to raw water, and the water is passed through an H-type strongly acidic cation exchange resin and an OH-type weakly basic anion exchange resin. In this way, the silicic acid in the treated water of the strongly acidic cation exchange resin turns into a strong acid called hydrosilicic acid, which can be removed even with the weakly basic anion exchange resin. In this conventional ion exchange method, silicic acid, which cannot normally be removed with a weakly basic anion exchange resin, can be removed with a weakly basic anion exchange resin by adding fluoride. The regenerant cost can be reduced compared to the case of using an ion exchange resin. However, the ion exchange method is basically desalination, and various cations in raw water,
Since other anions are also removed, the processing cost is high.
さらに脱塩装置である逆浸透膜装置の前段に逆浸透膜装
置より処理コストの高いイオン交換による脱塩装置を設
置することは合理的でない。Furthermore, it is not reasonable to install a desalination device using ion exchange, which has a higher processing cost than a reverse osmosis membrane device, upstream of a reverse osmosis membrane device, which is a desalination device.
本発明は逆浸透膜装置の前処理として採用できるような
低コストで珪酸のみを選択的かつ効果的に除去する方法
を提供するもので。The present invention provides a method for selectively and effectively removing only silicic acid at a low cost that can be adopted as a pretreatment for reverse osmosis membrane equipment.
珪酸を含有する水に過剰の弗化水素酸が共存するような
条件下で弗化水素酸を断続的に添加し、 OH形の弱塩
基性陰イオン交換樹脂に通水することを特徴とする水中
の珪酸除去方法に関するものである。Hydrofluoric acid is intermittently added to water containing silicic acid under conditions such that excess hydrofluoric acid coexists, and the water is passed through an OH-type weakly basic anion exchange resin. This invention relates to a method for removing silicic acid from water.
以下に本発明の詳細な説明する。The present invention will be explained in detail below.
珪酸を含む工業用水等の原水に弗化水素酸を添加すると
、珪酸と弗化・水素酸が(1)式のように反応し、珪弗
化水素酸が生成する。When hydrofluoric acid is added to raw water such as industrial water containing silicic acid, the silicic acid and fluorinated/hydrogen acid react as shown in equation (1), producing hydrofluorosilicic acid.
S iQ2+ 6HF−+H281F6 + 2H20
”・・”””・・”・・・・”・(1)この反応は理論
的には珪酸1モルに対して弗化水素酸6モルを必要とす
るが、(1)式によって生成される珪弗化水素酸は前述
したごとく強酸なので、たとえば原水の珪酸に対して理
論値以上の弗化水素酸を連続的に添加してOH形弱塩基
性陰イオン交換樹脂に通水すれば(2)式に示したごと
く当該珪弗化水素酸を除去することができる。SiQ2+ 6HF-+H281F6 + 2H20
”・・”””・・”・・・・”・(1) This reaction theoretically requires 6 moles of hydrofluoric acid per 1 mole of silicic acid, but the reaction produced by equation (1) As mentioned above, hydrofluoric acid is a strong acid, so for example, if more than the theoretical value of hydrofluoric acid is continuously added to silicic acid in raw water and the water is passed through an OH-type weakly basic anion exchange resin ( 2) The hydrosilicofluoric acid can be removed as shown in the formula.
R=NHOH+H2SiF6→RヨNHH8iF6+H
20・・・・・・・・・(2)しかしながら工業用水等
の原水には珪酸の他に塩素イオン、硫酸イオン等の鉱酸
アニオンも存在しているので、このような系に弗化水素
酸を添加すると、水素イオンに相当する珪弗化水素酸お
よび塩酸、硫酸などの混酸が生成されることとなる。ま
たこれらの酸はいづれもが強酸であるから、これをOH
形弱塩基性陰イオン交換樹脂に通水した場合、珪弗化水
素酸のみを選択的に吸着させることができず、鉱酸アニ
オンも吸着されてしまう。したがって当該陰イオン交換
樹脂の交換基を珪酸の除去のみに有効に利用することが
できず。R=NHOH+H2SiF6→RyoNHH8iF6+H
20・・・・・・・・・(2) However, in raw water such as industrial water, in addition to silicic acid, mineral acid anions such as chloride ions and sulfate ions are also present, so hydrogen fluoride is added to such systems. When an acid is added, hydrosilicic acid, which corresponds to hydrogen ions, and mixed acids such as hydrochloric acid and sulfuric acid are produced. Also, since all of these acids are strong acids, they can be used as OH
When water is passed through a weakly basic anion exchange resin, only hydrofluorosilicic acid cannot be selectively adsorbed, and mineral acid anions are also adsorbed. Therefore, the exchange groups of the anion exchange resin cannot be effectively used only for the removal of silicic acid.
処理倍量が小さくなシ実用的でない。It is not practical because the processing capacity is small.
ところがこのような原水に過剰の弗化水素酸が共存する
ような条件下で弗化水素酸を断続的に添加しながらOH
形弱塩基性陰イオン交換樹脂に通水すると以下に説明す
るような機構により9弱塩基性陰イオン交換樹脂の珪酸
除去容量が飛躍的に増加することを知見した。However, under such conditions where an excess of hydrofluoric acid coexists in the raw water, OH
It has been found that when water is passed through the weakly basic anion exchange resin, the silicic acid removal capacity of the weakly basic anion exchange resin 9 increases dramatically due to the mechanism described below.
すなわち珪酸を含む工業用水等に(1)式の反応に必要
な弗化水素酸より過剰の弗化水素酸を添加し、この水を
OH形弱塩基性陰イオン交換樹脂に通水すると、(1)
式によって生成される珪弗化水素酸は(2)式によって
当該陰イオン交換樹脂に吸着されるとともに、過剰の弗
化水素酸は(3)式および(4)式にしたがって吸着さ
れる。That is, when an excess of hydrofluoric acid is added to industrial water containing silicic acid, etc. than the hydrofluoric acid required for the reaction of formula (1), and this water is passed through an OH type weakly basic anion exchange resin, ( 1)
The hydrofluorosilicic acid produced by the formula (2) is adsorbed on the anion exchange resin according to the formula (2), and excess hydrofluoric acid is adsorbed according to the formulas (3) and (4).
R=NHOH+HF→RミWHIP 十a、o・・・・
・・・・由・・・・・・・・・・・・・(3)RaNH
OH+ 2HF−+ Ra NHHF2 + H20・
−−−・・・曲(4)また原水中に共存する鉱酸アニオ
ンも、弗化水素酸を原水に添加した際、原水が酸性側の
間は当該陰イオン交換樹脂に吸着される。R=NHOH+HF→RmiWHIP 10 a, o...
・・・Reason・・・・・・・・・・・・(3) RaNH
OH+ 2HF-+ Ra NHHF2 + H20・
---...Song (4) When hydrofluoric acid is added to raw water, mineral acid anions coexisting in raw water are also adsorbed by the anion exchange resin while the raw water is on the acidic side.
しかし弗化水素酸の添加を中断すると、原水のpHが中
性に近づくにつれて吸着されなくなる。However, when the addition of hydrofluoric acid is interrupted, adsorption stops as the pH of the raw water approaches neutrality.
一方弗化水素酸の添加を中断している間に原水の珪酸は
(3)式および(4)式で生成されたR=NHF 、
RミNH)IF2(以下両者を便宜的に弗化水素酸形と
いう)と(5)式および(6)式にしたがつて反応し、
珪酸が除去される。On the other hand, while the addition of hydrofluoric acid was interrupted, the silicic acid in the raw water was converted to R=NHF, which was generated in equations (3) and (4).
RmiNH)IF2 (hereinafter both are conveniently referred to as hydrofluoric acid form) according to formulas (5) and (6),
Silicic acid is removed.
R(二NHF)6+ 5in2+ 3H20→R−Na
H81F6+R(iii;NHOH)5・・・・・・・
・・・・・・・・(5)R(ミNHHF2)3+SiO
2→RミNHH8iF、+R(二NHOH)2・・・・
・・・・・・・・・・・(6)なお弗化水素酸形の弱塩
基性陰イオン交換樹脂は原水中の鉱酸アニオンとtlと
んど反応せず9選択的に水中の珪酸と反応するので。R(2NHF)6+ 5in2+ 3H20→R-Na
H81F6+R(iii;NHOH)5...
・・・・・・・・・(5) R(miNHHF2)3+SiO
2→RmiNHH8iF, +R(2NHOH)2...
・・・・・・・・・・・・(6) The weakly basic anion exchange resin in the form of hydrofluoric acid hardly reacts with the mineral acid anions in the raw water and selectively reacts with the silicic acid in the water. Because it reacts.
原水に弗化水素酸を添加してない間は、当該陰イオン交
換樹脂の交換基を珪酸の除去のみに有効に利用すること
ができる。While hydrofluoric acid is not added to the raw water, the exchange groups of the anion exchange resin can be effectively used only for the removal of silicic acid.
弗化水素酸を添加してない原水を当該陰イオン交換樹脂
に通水し、これを続行すると(5)式および(6)式の
反応によって弗化水素形の当該陰イオン交換樹脂が珪酸
の除去に消費されるが、ふたたび原水に弗化水素酸を添
加すると、未反応のOH形弱塩基性陰イオン交換樹脂お
よび(5)式、(6)式によって生成したOH形弱塩基
性陰イオン交換樹脂を弗化水素酸形とすることができる
ので、珪酸の除去を継続することかできる。When raw water to which no hydrofluoric acid has been added is passed through the anion exchange resin and this process is continued, the anion exchange resin in the hydrogen fluoride form converts into silicic acid through the reactions of equations (5) and (6). However, when hydrofluoric acid is added to the raw water again, the unreacted OH-type weakly basic anion exchange resin and the OH-type weakly basic anion generated by formulas (5) and (6) are removed. Since the exchange resin can be in the hydrofluoric acid form, silicic acid removal can be continued.
本発明は以上説明した除去機構によって。The present invention uses the removal mechanism described above.
原水中の珪酸を弗化水素酸を添加した際においては(2
)式の反応によって除去し、また弗化水素酸の添加を中
断している間においては(5)式および(6)式の反応
によって除去する。When hydrofluoric acid is added to silicic acid in raw water (2
), and while the addition of hydrofluoric acid is interrupted, it is removed by the reactions of formulas (5) and (6).
なお前述したように原水に弗化水素酸を添加している間
は原水中の鉱酸アニオンも除去するので2本発明におい
ては断続的に弗化水素酸を添加する際に、比較的高濃度
の、弗化水素酸を短時間に添加し、なるべく樹脂に鉱酸
を吸着させないようにした方が好ましい。As mentioned above, while adding hydrofluoric acid to raw water, mineral acid anions in the raw water are also removed, so in the present invention, when adding hydrofluoric acid intermittently, relatively high concentration It is preferable to add hydrofluoric acid in a short period of time to prevent the mineral acid from adsorbing onto the resin as much as possible.
本発明における弗化水素酸の添加量は原水に添加し友邦
化水素酸がOH形弱塩基性陰イオン交換樹脂に全て吸着
されるような添加量とし、全量で2eq/ln前後の弗
化水素酸をすくなくとも3回以上に分けて断続的に添加
することが好ましい。In the present invention, the amount of hydrofluoric acid added to the raw water is such that all of the hydrofluoric acid is adsorbed on the OH type weakly basic anion exchange resin, and the total amount of hydrogen fluoride is around 2 eq/ln. It is preferable to add the acid intermittently in at least three times or more.
なお原水中に炭酸水素イオンが存在していると、添加し
た弗化水素酸が(7)式に示したごとく中和により弗化
水素塩となってしまい。Note that if hydrogen carbonate ions are present in the raw water, the added hydrofluoric acid will be neutralized to become a hydrogen fluoride salt as shown in equation (7).
(3)式おぷび(4)式の反応に寄与しなくなるので。Because it no longer contributes to the reaction of equation (3) and equation (4).
炭酸水素イオンの量が比較的多い場合はあらかじめ原水
に塩酸などの鉱酸を添加して炭酸水素イオンを遊離炭酸
に変化させ、脱炭酸塔などで当該遊離炭酸を除去した方
が好ましい。When the amount of bicarbonate ions is relatively large, it is preferable to add a mineral acid such as hydrochloric acid to the raw water in advance to convert the bicarbonate ions into free carbonic acid, and then remove the free carbonic acid using a decarboxylation tower or the like.
NaHCO3+I(P→NaF+H2C!03・・・・
・・・・・・・・・・・・・・・・・・・・(力以上説
明したような通水により9弱塩基性陰イオン交換樹脂が
(2)式および(5)式、(6)式で示したごとく珪弗
化水素酸で飽和した場合は以下の再生を行、なう。NaHCO3+I(P→NaF+H2C!03...
・・・・・・・・・・・・・・・・・・・・・(By passing water as explained above, 9 weakly basic anion exchange resin is converted to formulas (2) and (5), ( 6) When saturated with hydrosilicofluoric acid as shown in formula, perform the following regeneration.
すなわち力性ソーダ等のアルカリ溶液を通薬して珪弗化
水素酸を脱着し1弱塩基性陰イオン交換樹脂をOH形と
する。この時の反応は(8)式ないし01式にしたがう
。That is, the hydrosilicic acid is desorbed by passing an alkaline solution such as sodium chloride into the OH form of the weakly basic anion exchange resin. The reaction at this time follows equations (8) to 01.
R”1NHHBiF6 + NaOH−+RmNHOH
+ NaH81F6−−− (8)R=NHH81F+
6 + 2NaOH−4R=NHOH+ Na2S 1
P6 + H20・・・・・・・・・・・・・・・(9
)R”1iNHH8iF6+ 8 NaOH−+ Ra
NHOH+f3 NaF’+ Na25in3+ 4H
20・・・・・・・・・・・・・・・0ω
次いで常法により押出、洗浄を行なった後ふたたび前述
した通水を行なう。なお強塩基性陰イオン交換樹脂を用
いる純水製造装置が併せて設置されている場合は、当該
強塩基性陰イオン交換樹脂の再生廃液を前記珪弗化水素
酸の脱着に用いることができる。R”1NHBiF6 + NaOH−+RmNHOH
+ NaH81F6--- (8) R=NHH81F+
6 + 2NaOH-4R=NHOH+ Na2S 1
P6 + H20・・・・・・・・・・・・(9
)R”1iNHH8iF6+ 8 NaOH-+ Ra
NHOH+f3 NaF'+ Na25in3+ 4H
20・・・・・・・・・・・・0ω Next, after extrusion and washing are carried out in a conventional manner, the above-mentioned water passage is carried out again. Note that if a pure water production device using a strong basic anion exchange resin is also installed, the recycled waste liquid of the strong basic anion exchange resin can be used for desorption of the hydrosilicofluoric acid.
次に本発明に使用する弱塩基性陰イオン交換樹脂につい
て説明する。Next, the weakly basic anion exchange resin used in the present invention will be explained.
本発明に使用する弱塩基性陰イオン交換樹脂は、ポリア
ミン、1・2級アミン、3級アミンなどを交換基の主体
とし、樹脂の母体はスチレンとジビニルベンゼンの共重
合体、アクリルとジビニルベンゼンの共重合体、あるい
はフェノール系のものであり、アンバーライト(登録商
標)工RA−93、工RA−94、工RA−68。The weakly basic anion exchange resin used in the present invention has polyamine, primary/secondary amine, tertiary amine, etc. as the main exchange group, and the base of the resin is a copolymer of styrene and divinylbenzene, acrylic and divinylbenzene. or phenol-based copolymers, such as Amberlite (registered trademark) Engineering RA-93, Engineering RA-94, Engineering RA-68.
工RA−47、工R−45、ダイヤイオン(登録商標)
WAIO、WA20 、 WA30 、レバチット(登
録商標)MP62 、 MP64など、あるいはこれら
と同等のものを使用することができる。なお弱塩基性陰
イオン交換樹脂には塩基性度の強いものから弱いものま
で各種のものがあり、比較的塩基性塵の強い弱塩基性陰
イオン交換樹脂は。Engineering RA-47, Engineering R-45, Diaion (registered trademark)
WAIO, WA20, WA30, Revachit (registered trademark) MP62, MP64, etc., or equivalents thereof can be used. There are various types of weakly basic anion exchange resins ranging from those with strong basicity to those with weak basicity, and weakly basic anion exchange resins have relatively strong basicity.
場合によっては中塩基性陰イオン交換樹脂と呼称される
ことがあるが2本発明でいう弱塩基性陰イオン交換樹脂
はこのような中塩基性陰イオン交換樹脂もその範囲に含
む。In some cases, it may be called a medium basic anion exchange resin, but the weakly basic anion exchange resin as used in the present invention also includes such medium basic anion exchange resins.
次に本発明の実施態様を説明する。Next, embodiments of the present invention will be described.
第1図は本発明を電子工業の超純水の製造工程である逆
浸透膜装置と混床式純水製造装置からなる脱塩装置の前
処理として実施した場合のフローの説明図であって、l
は脱炭酸装置、2はOH形弱塩基性陰イオン交換樹脂3
を充填した珪酸吸9着塔、4は逆浸透膜装置。FIG. 1 is an explanatory diagram of the flow when the present invention is implemented as a pretreatment for a desalination device consisting of a reverse osmosis membrane device and a mixed-bed pure water production device, which is an ultrapure water production process in the electronics industry. ,l
is a decarboxylation device, 2 is an OH type weakly basic anion exchange resin 3
4 is a reverse osmosis membrane device.
5は強塩基性陰イオン交換樹脂6と強酸性陽イオン交換
樹脂7を充填した混床式純水製造装置である。Reference numeral 5 denotes a mixed bed pure water production apparatus filled with a strongly basic anion exchange resin 6 and a strongly acidic cation exchange resin 7.
まず通水について説明すると、凝集沈殿。First, to explain water flow, it is coagulation and precipitation.
濾過あるいは活性炭濾過などの前処理をした原水8に塩
酸あるいは硫酸などの鉱酸9を添加して、原水日中に含
まれている炭酸水素イオンを遊離炭酸として脱炭酸装置
lであらかじめ除去する。A mineral acid 9 such as hydrochloric acid or sulfuric acid is added to raw water 8 that has been pretreated by filtration or activated carbon filtration, and hydrogen carbonate ions contained in the raw water are removed in advance as free carbonic acid in a decarboxylation device 1.
次に遊離炭酸を除去した原水に弗化水素酸lOを断続的
に添加し、これを珪酸吸着塔2に通水する。Next, hydrofluoric acid 1O is intermittently added to the raw water from which free carbonic acid has been removed, and this water is passed through the silicic acid adsorption tower 2.
当該通水によシ(2)式および(3)式、(4)式およ
び(5)式、(6)式によ多水中の珪酸を除去すること
ができる。このようにして珪酸を除去した原水8′を逆
浸透膜装置番で処理する。逆浸透膜装置番においては原
水8′中の珪酸が大巾に低下しているので、濃縮倍量を
大きくすることができ、多量の透過水11を得ることが
できる。次いで当該透過水11を混床式純水製造装置5
に通水して純水12を得る。Silicic acid in the polyhydric water can be removed by the water passage according to formulas (2) and (3), formulas (4) and (5), and formulas (6). The raw water 8' from which silicic acid has been removed in this way is treated with a reverse osmosis membrane device. In the reverse osmosis membrane device number, since the silicic acid in the raw water 8' is greatly reduced, the concentration can be increased and a large amount of permeated water 11 can be obtained. Next, the permeated water 11 is transferred to the mixed bed pure water production device 5.
to obtain pure water 12.
なお図示してないが、当該純水12を精密濾過装置や殺
菌処理や、さらにポリシャーなどで処理して超純水を製
造する。このような通水によシ珪酸吸着塔2が珪弗化水
素酸で飽和吸着に達したら以下の再生を行なう。Although not shown, the pure water 12 is subjected to a precision filtration device, sterilization treatment, and further treated with a polisher to produce ultrapure water. When the silicic acid adsorption tower 2 reaches saturated adsorption with hydrosilicic acid due to such water flow, the following regeneration is performed.
すなわち混床式純水製造装置5を常法により逆洗分離し
、5重量%前後の力性ソーダ溶液13を強塩基性陰イオ
ン交換樹脂6に通薬して当該陰イオン交換樹脂を再生し
、その再生廃液14を常法により逆洗沈整を行なった後
の珪酸吸着塔2に通薬する。その後常法により押出洗浄
を行なう。That is, the mixed bed pure water production apparatus 5 is backwashed and separated using a conventional method, and a strong soda solution 13 of about 5% by weight is passed through the strong basic anion exchange resin 6 to regenerate the anion exchange resin. The regenerated waste liquid 14 is backwashed and settled by a conventional method and then passed through the silicic acid adsorption tower 2. Thereafter, extrusion cleaning is performed using a conventional method.
なお混床式純水製造装置5の強酸性陽イオン交換樹脂マ
については常法により塩酸15で再生する。The strongly acidic cation exchange resin in the mixed bed pure water production apparatus 5 is regenerated with hydrochloric acid 15 in a conventional manner.
図に示したように温床式純水製造装置5が併設されてい
る場合はこのように当該再生廃液14を珪酸吸着塔2の
再生に用いることができるが、このような力性ソーダを
含む再生廃液がない場合は2〜5重量%の力性シーダ溶
液を用いて珪酸吸着塔2を再生すればよい。As shown in the figure, when a hot bed type water purification device 5 is installed, the recycled waste liquid 14 can be used to regenerate the silicic acid adsorption tower 2 in this way. If there is no waste liquid, the silicic acid adsorption tower 2 may be regenerated using a 2 to 5% by weight seeder solution.
なおり性ノーズあるいは再生廃液14の通薬によシ(8
)式ないしQCj式により珪弗化水素酸が脱着されるが
、当該脱着液の処理としてはたとえば石灰などを添加し
て当該脱着液中の弗素成分を弗化カルシウムとして析出
除去するとよい。For refilling the nose or regenerating waste liquid 14 (8
Hydrosilicofluoric acid is desorbed according to the ) formula to the QCj formula, and as a treatment for the desorption liquid, it is preferable to add lime or the like to precipitate and remove the fluorine component in the desorption liquid as calcium fluoride.
また集積回路や大規模集積回路などを製造する電子工業
においては当該製品の洗浄に弗化水素酸を用いるので、
弗化水素酸を含む洗浄酸廃液が排出される。したがって
当該洗浄酸臭液の弗化水素酸の純度が比較的高い場合は
、当該洗浄酸臭液を原水に断続的に添加する弗化水素と
して用いることができる。In addition, in the electronics industry that manufactures integrated circuits and large-scale integrated circuits, hydrofluoric acid is used to clean the products.
Washing acid waste containing hydrofluoric acid is discharged. Therefore, when the purity of the hydrofluoric acid in the cleaning sour-smelling liquid is relatively high, the cleaning sour-smelling liquid can be used as hydrogen fluoride that is intermittently added to raw water.
さらに弗化水素酸としては、弗化ナトリウム溶液をH形
強酸性陽イオン交換樹脂で処理することによっても得ら
れるので、場合によってはこのような手法で得た弗化水
素酸を用いてもさしつかえない。Furthermore, hydrofluoric acid can also be obtained by treating a sodium fluoride solution with an H-type strongly acidic cation exchange resin, so in some cases, it is okay to use hydrofluoric acid obtained by this method. do not have.
以上説明したように本発明は珪酸を含む水に弗化水素酸
を断続的に添加してOH形弱塩基性陰イオン交換樹脂に
通水することによつf、水中の珪酸を選択的かつ効果的
に除去でき、さらに弱塩基性陰イオン交換樹脂は再生効
率がよいので再生剤の使用量も僅かですみ。As explained above, the present invention selectively removes silicic acid from water by intermittently adding hydrofluoric acid to water containing silicic acid and passing the water through an OH type weakly basic anion exchange resin. It can be removed effectively, and weakly basic anion exchange resins have good regeneration efficiency, so only a small amount of regenerant is needed.
また一本発明を電子工業の超純水の製造工程などに応用
した場合は、弗化水素酸を含む洗浄酸廃液や混床式純水
製造装置の再生廃液なども用いることができるので再生
剤費をさらに低下させることができ、全体の超純水製造
コストを大巾に低下させることができる。Furthermore, when the present invention is applied to the manufacturing process of ultrapure water in the electronics industry, cleaning acid waste liquid containing hydrofluoric acid or recycled waste liquid from mixed bed pure water production equipment can be used as a regenerating agent. The cost can be further reduced, and the overall ultrapure water production cost can be significantly reduced.
第1図は本発明の実施態様の一例のフローを示す説明図
である。
1・・・脱炭酸装置 2・・・珪酸吸着塔3・・
・OH形弱塩基性陰イオン交換樹脂4・・・逆浸透膜装
置
5・・・混床式純水製造装置
6・・・強塩基性陰イオン交換樹脂
7・・・強酸性陽イオン交換樹脂FIG. 1 is an explanatory diagram showing a flow of an example of an embodiment of the present invention. 1... Decarboxylation device 2... Silicic acid adsorption tower 3...
・OH type weakly basic anion exchange resin 4... Reverse osmosis membrane device 5... Mixed bed pure water production device 6... Strongly basic anion exchange resin 7... Strongly acidic cation exchange resin
Claims (1)
条件下で弗化水素酸を断続的に添加し、 OH形の弱塩
基性陰イオン交換樹脂に通水することを特徴とする水中
の珪酸除去方法。Hydrofluoric acid is intermittently added to water containing silicic acid under conditions such that excess hydrofluoric acid coexists, and the water is passed through an OH-type weakly basic anion exchange resin. How to remove silicic acid from water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15293781A JPS5855083A (en) | 1981-09-29 | 1981-09-29 | Removing method for silicic acid in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15293781A JPS5855083A (en) | 1981-09-29 | 1981-09-29 | Removing method for silicic acid in water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5855083A true JPS5855083A (en) | 1983-04-01 |
Family
ID=15551403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15293781A Pending JPS5855083A (en) | 1981-09-29 | 1981-09-29 | Removing method for silicic acid in water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5855083A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470421A (en) * | 1993-09-17 | 1995-11-28 | Nisso Engineering Co., Ltd. | Method for purification of etching solution |
JP2008174254A (en) * | 2007-01-17 | 2008-07-31 | Dainippon Printing Co Ltd | Insulated container |
-
1981
- 1981-09-29 JP JP15293781A patent/JPS5855083A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470421A (en) * | 1993-09-17 | 1995-11-28 | Nisso Engineering Co., Ltd. | Method for purification of etching solution |
JP2008174254A (en) * | 2007-01-17 | 2008-07-31 | Dainippon Printing Co Ltd | Insulated container |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3589999A (en) | Deionization process | |
CA2700467C (en) | Selective sulphate removal by exclusive anion exchange from hard water waste streams | |
CA2294129C (en) | Water treatment process | |
US4695387A (en) | Removal of ammonia from wastewater | |
US4448693A (en) | Method for partially desalinating water with a weakly acid and strongly basic ion exchanger materials and subsequently regenerating the ion exchanger materials | |
JP3646900B2 (en) | Apparatus and method for treating boron-containing water | |
US3493498A (en) | Ion-exchange process | |
US3977968A (en) | Ion exchange regeneration | |
JPH0512040B2 (en) | ||
US3617554A (en) | Desalting and purifying water by continuous ion exchange | |
US3197401A (en) | Method for regenerating weakly basic anion exchange resin | |
JP3334142B2 (en) | Treatment method for fluorine-containing water | |
JP2000070933A (en) | Pure water production method | |
JP3319053B2 (en) | Treatment method for fluoride-containing water | |
GB2037608A (en) | Regeneration of anion exchange resins | |
JPS5855083A (en) | Removing method for silicic acid in water | |
JP3203745B2 (en) | Fluorine-containing water treatment method | |
US3607739A (en) | Desalting and purifying water by continuous ion exchange | |
JPH0143593B2 (en) | ||
JPH0137997B2 (en) | ||
US4172783A (en) | Condensate purification process by use of dilute clear lime solution | |
JP3252521B2 (en) | Rinse wastewater treatment method | |
JP2012192341A (en) | Treating method of fluoroborate-containing waste liquid | |
US6281255B1 (en) | Methods for regeneration of weakly basic anion exchange resins with a combination of an alkali metal carbonate and an alkali metal bicarbonate | |
Tiger et al. | Demineralizing solutions by a two-step ion exchange process |