JPS5854485B2 - Metal magnetic powder and processing method - Google Patents
Metal magnetic powder and processing methodInfo
- Publication number
- JPS5854485B2 JPS5854485B2 JP54130538A JP13053879A JPS5854485B2 JP S5854485 B2 JPS5854485 B2 JP S5854485B2 JP 54130538 A JP54130538 A JP 54130538A JP 13053879 A JP13053879 A JP 13053879A JP S5854485 B2 JPS5854485 B2 JP S5854485B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic powder
- metal magnetic
- magnetic
- fatty acid
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/061—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Paints Or Removers (AREA)
- Powder Metallurgy (AREA)
- Magnetic Record Carriers (AREA)
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】
この発明は磁気記録媒体の記録素子として有用な金属磁
性粉末と処理方法に関するものであり、その目的とする
ところは耐酸化性と分散性に優れた金属磁性粉末を提供
する点にある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal magnetic powder useful as a recording element of a magnetic recording medium and a processing method, and its purpose is to provide a metal magnetic powder with excellent oxidation resistance and dispersibility. It is in the point of doing.
金属鉄粉末などの金属磁性粉末は、一般的に金属酸化物
粉末を加熱還元して製造されるものであり、酸化物系磁
性粉末に比較して非常に高い保磁力(He)を有するな
どの優れた磁気的性能の点から、その将来性が期待され
ている。Metal magnetic powders such as metal iron powders are generally manufactured by heating and reducing metal oxide powders, and have very high coercive force (He) compared to oxide-based magnetic powders. Due to its excellent magnetic performance, its future potential is expected.
ところが、金属磁性粉末は空気中で酸化を受は易く、酸
化の進行と共に飽和磁化量(σS)などの磁気特性が経
時的に低下するという貯蔵安定性の面および発火の危険
性が大きいという安全性の面で問題があり、また磁気テ
ープなどの磁気記録媒体に用いるために磁性塗料を調製
したとき、粒子の凝集が生起し易く、結合剤中に均一に
分散できず、感度特性やSN比が不十分となるなどの欠
点がある。However, metal magnetic powders are easily oxidized in the air, and as the oxidation progresses, magnetic properties such as saturation magnetization (σS) deteriorate over time, which is a problem in terms of storage stability, and there is a high risk of ignition, which is a safety concern. Furthermore, when preparing magnetic paint for use in magnetic recording media such as magnetic tapes, particles tend to aggregate and cannot be uniformly dispersed in the binder, resulting in poor sensitivity characteristics and S/N ratio. There are disadvantages such as insufficient
このような事情から、従来より、加熱還元して得られた
直後の金属磁性粉末をトルエンやキシレンなどの有機溶
媒中に浸漬し、濾過して風乾などによって徐々に粒子表
面を酸化させて酸化物被膜を形成させ、耐酸化性の向上
を図ったり、種々の物質によって粒子表面を被覆処理し
て耐酸化性および分散性を改善することが試みられてい
る。For this reason, conventionally, metal magnetic powder immediately after thermal reduction is immersed in an organic solvent such as toluene or xylene, filtered, and air-dried to gradually oxidize the particle surface to form oxides. Attempts have been made to form a film to improve oxidation resistance, or to coat the particle surface with various substances to improve oxidation resistance and dispersibility.
しかしながら、これらの方法でも1だ充分に満足できる
耐酸化性および分散性は達成されていない現状である。However, at present, even with these methods, sufficiently satisfactory oxidation resistance and dispersibility have not been achieved.
この発明者らは、上述のような金属磁性粉末に内在する
欠点を改良するために種々の研究を重ねた結果、金属磁
性粉末の粒子表面をラノリン脂肪酸の塩にて被覆すれば
、優れた耐酸化性と分散性が付与されることならびに磁
気記録媒体用とじての磁性塗料を調製した場合に磁性粉
末の充填性と塗料の流動性にも優れることを究明し、こ
の発明をなすに至った。The inventors have conducted various studies to improve the drawbacks inherent in metal magnetic powder as described above, and have found that if the particle surface of metal magnetic powder is coated with a lanolin fatty acid salt, it will have excellent acid resistance. The inventors have discovered that this invention provides excellent magnetic powder filling properties and paint fluidity when preparing a magnetic paint for use in magnetic recording media. .
ラノリン脂肪酸は羊毛脂を原料とする脂肪酸を意味し、
牛脂脂肪酸などと同様に種々の脂肪酸成分を含むもので
あるが、その塩はトルエンなどの有機溶媒に対する溶解
性が良好であるという特徴を持っている。Lanolin fatty acids refer to fatty acids made from wool fat.
Although it contains various fatty acid components like beef tallow fatty acid, its salt has a characteristic that it has good solubility in organic solvents such as toluene.
したがって、金属磁性粉末の粒子表面に被覆処理を施す
には、ラノリン脂肪酸の塩を溶解させた有機溶媒中に金
属磁性粉末を浸漬するという簡単な操作でよく、しかも
形成された粒子表面の被膜は非常に均一で緻密なものと
なる。Therefore, in order to coat the particle surface of metal magnetic powder, a simple operation of immersing the metal magnetic powder in an organic solvent in which a salt of lanolin fatty acid is dissolved is sufficient, and the coating on the particle surface that is formed is It becomes very uniform and dense.
他の一般的な脂肪酸塩、すなわち炭素数6〜26程度の
単体脂肪酸のアルカリ金属塩やアンモニウム塩では、水
に対する溶解性は犬Δいがトルエンなどの有機溶媒に対
してはほとんどあるいは全く溶解性を示さない。Other common fatty acid salts, such as alkali metal salts and ammonium salts of simple fatty acids with about 6 to 26 carbon atoms, have low solubility in water, but have little or no solubility in organic solvents such as toluene. does not indicate.
金属磁性粉末は水媒体での処理は不適であり、したがっ
てこれらの脂肪酸塩による被覆処理は、脂肪酸塩の粉末
を有機溶媒中に分散させた懸濁液を用いて行なうことに
なり、粒子表面には脂肪酸塩の粉末が単に付着した状態
の緻密性と均一性に欠ける被膜が形成され、結果として
この発明におけるような充分な耐酸化性と分散性は付与
されない。Metal magnetic powders are unsuitable for treatment in an aqueous medium, so coating with these fatty acid salts is carried out using a suspension of fatty acid salt powder dispersed in an organic solvent. In this case, a film lacking in density and uniformity is formed in which the fatty acid salt powder is merely adhered, and as a result, sufficient oxidation resistance and dispersibility as in the present invention are not imparted.
この発明の対象である金属磁性粉末としては、鉄を主体
として所望によりコバルト、クロム、ニッケルなどの元
素を含有させた粉末が好適であるが、コバルトやニッケ
ルを主体とする粉末、あるいハ鉄、コバルト、ニッケル
の二種以上からなる合金粉末でもよい。The metal magnetic powder that is the object of this invention is preferably a powder containing iron as a main ingredient and optionally containing elements such as cobalt, chromium, or nickel. An alloy powder consisting of two or more of , cobalt, and nickel may also be used.
ラノリン脂肪酸の塩としては、カルシウム塩が最も良好
である。Calcium salts are the best salts of lanolin fatty acids.
また、その被覆量は金属磁性粉末に対して0.7〜5w
t%が好1しく、より過少では耐酸化性と分散性の向上
効果が不十分であり、また過多であれば磁性塗料を調製
してこれを基体に塗着して磁性層を形成した場合にブリ
ードアウトを生起したり、塗膜が粘性を帯びる恐れがあ
る。In addition, the amount of coating is 0.7 to 5 w with respect to the metal magnetic powder.
t% is preferable; if it is less, the effect of improving oxidation resistance and dispersibility will be insufficient; if it is too much, a magnetic coating is prepared and applied to the substrate to form a magnetic layer. This may cause bleed-out or the paint film may become viscous.
有機溶媒としてはトルエンが最も好適である。Toluene is the most preferred organic solvent.
ラノリン脂肪酸の塩による被覆処理は、通常の金属磁性
粉末が加熱還元による生成後にトルエンなどの有機溶媒
中へ浸漬処理されるため、この有機溶媒中に上記の塩を
溶解しておくことによっても行なえ、昔た未処理もしく
は風乾などの他の種種の処理を経た金属磁性粉末を上記
の塩を溶解した有機溶媒中に浸漬することによっても行
なえる。Coating treatment with salts of lanolin fatty acids can also be carried out by dissolving the above salts in the organic solvent, since ordinary metal magnetic powder is immersed in an organic solvent such as toluene after being generated by thermal reduction. It can also be carried out by immersing a metal magnetic powder, either untreated or subjected to various other treatments such as air drying, into an organic solvent in which the above-mentioned salts are dissolved.
以下、この発明を実施例にて詳細に説明する。Hereinafter, this invention will be explained in detail with reference to Examples.
実施例 1
トルエン100部(重量部、以下同様)に対して0.1
5部のラノリン脂肪酸カルシウムを90℃の加温下で溶
解し、この溶液中に10部の金属鉄磁性粉末(平均長径
0.4μrrL)を添加して5時間攪拌混合し、済過、
真空乾燥を行なったところ、約1.5 wt%のラノリ
ン脂肪酸カルシウムにて粒子表面が被覆された金属鉄磁
性粉末が得られた。Example 1 0.1 per 100 parts (by weight, same below) of toluene
5 parts of lanolin fatty acid calcium was dissolved under heating at 90°C, 10 parts of metal iron magnetic powder (average major axis 0.4 μrrL) was added to this solution, and stirred and mixed for 5 hours.
When vacuum drying was performed, a metal iron magnetic powder whose particle surface was coated with about 1.5 wt% calcium lanolin fatty acid was obtained.
実施例 2
実施例1におけるラノリン脂肪酸カルシウムの量を種々
に変更して、上記カルシウム塩の被覆量が異なる種々の
金属鉄磁性粉末を製造した。Example 2 The amount of lanolin fatty acid calcium in Example 1 was varied to produce various metal iron magnetic powders with different amounts of calcium salt coating.
比較例 1
実施例1におけるラノリン脂肪酸カルシウムのトルエン
溶液の代わりに、トルエン100部に対して1.5部の
ステアリン酸ナトリウム粉末を分散させた懸濁液を用い
、実施例1と同様の処理を行なった。Comparative Example 1 The same treatment as in Example 1 was carried out using a suspension prepared by dispersing 1.5 parts of sodium stearate powder in 100 parts of toluene instead of the toluene solution of calcium lanolin fatty acid in Example 1. I did it.
上記の実施例1、比較例1にて得られた金属鉄磁性粉末
、ならびにトルエンに浸漬して風乾した従来の一般的な
金属鉄磁性粉末(比較例2)のおのおのについて、60
℃、90%RHの腐蝕性雰囲気下においたときの、飽和
磁化量(σS)の経過変化を第1図に示す。For each of the metal iron magnetic powder obtained in Example 1 and Comparative Example 1, and the conventional general metal iron magnetic powder (Comparative Example 2) immersed in toluene and air-dried, 60
FIG. 1 shows the change over time in the saturation magnetization (σS) when placed in a corrosive atmosphere at 90% RH.
図中、曲線Aは実施例1の、曲線Bは比較例1の、曲線
Cは比較例2のそれぞれ飽和磁化量の変化を示す。In the figure, curve A shows the change in the saturation magnetization amount of Example 1, curve B shows the change in Comparative Example 1, and curve C shows the change in Comparative Example 2.
捷た、上記の実施例1釦よび比較例1,2の金属鉄磁性
粉末を用いて、それぞれ下記の組成の磁性塗料を調製し
た。Using the crushed metal iron magnetic powders of Example 1 and Comparative Examples 1 and 2, magnetic paints having the following compositions were prepared.
金属鉄磁性粉末(実施例または比較例)・・・・・・7
0部。Metallic iron magnetic powder (example or comparative example)...7
0 copies.
結合剤・・・・・・VAGH(米国、UCC社製、塩ビ
ー酢ビービニルアルコールプレポリマー)20部、二′
ツポールN1432J(日本ゼオン社製、アクリロニト
リル−ブタジェン共重合体)7部、コロネートL(日本
ポリウレタン社製、3官能性ポリイソシアネート)3部
。Binder: 20 parts of VAGH (manufactured by UCC, USA, vinyl chloride, vinegar, vinyl alcohol prepolymer), 2'
7 parts of Tupol N1432J (manufactured by Nippon Zeon Co., Ltd., acrylonitrile-butadiene copolymer), 3 parts of Coronate L (manufactured by Nippon Polyurethane Co., Ltd., trifunctional polyisocyanate).
添加剤・・・・・・カーボンブラック1.4部と流動パ
ラフィン0.5部。Additives: 1.4 parts of carbon black and 0.5 parts of liquid paraffin.
溶剤・・・・・・メチルイソブチルケトン100部とト
ルエン100部。Solvent: 100 parts of methyl isobutyl ketone and 100 parts of toluene.
これらの磁性塗料をそれぞれ常法に準じて、厚さ11μ
mのポリエステルフィルム上に乾燥塗膜厚が4μ舟とな
るように塗布して磁気テープを製造し、この磁気テープ
について角型比(Br/Bs)と最大磁束密度(Bs
)を測定した結果を次表に示す。Each of these magnetic paints was coated with a thickness of 11μ according to the usual method.
A magnetic tape was manufactured by applying the film to a polyester film of 4 μm to a dry coating thickness of 4 μm, and the squareness ratio (Br/Bs) and maximum magnetic flux density (Bs
) are shown in the table below.
なむ、周知の通り磁性粉末の分散性は角型比、充填性と
塗料の流動性(粘度)は最大磁束密度の変化として表わ
される。As is well known, the dispersibility of magnetic powder is expressed as the squareness ratio, and the filling property and fluidity (viscosity) of the paint are expressed as changes in maximum magnetic flux density.
一方、前記実施例2にて得られたラノリン脂肪酸カルシ
ウムの被覆量が異なる種々の金属磁性粉末のそれぞれに
ついて、上記と同様にして磁気テープを製造したときの
最大磁束密度と角型比とを測定した。On the other hand, the maximum magnetic flux density and squareness ratio were measured when magnetic tapes were manufactured in the same manner as above for each of the various metal magnetic powders with different coating amounts of lanolin fatty acid calcium obtained in Example 2. did.
その結果をラノリン脂肪酸カルシウムの被覆量に対比し
て第2図に示す。The results are shown in FIG. 2 in comparison with the amount of lanolin fatty acid calcium coating.
曲線りは磁気テープの角型比を意味する。Curve means the squareness ratio of the magnetic tape.
以上の結果から、この発明による金属磁性粉末は粒子表
面がラノリン脂肪酸の塩にて被覆されているため、耐酸
化性が非常に優秀であり、貯蔵安定性に優れ、またこれ
を使用して磁性塗料を調製した場合の磁性粉末の分散性
と充填性、ならびに塗料の流動性が良好となって、優れ
た磁気特性を有する磁気記録媒体を提供し得ることが判
る。From the above results, the metal magnetic powder according to the present invention has excellent oxidation resistance and storage stability because the particle surface is coated with lanolin fatty acid salt, and it can be used to create magnetic It can be seen that the dispersibility and filling properties of the magnetic powder when the coating material is prepared and the fluidity of the coating material are improved, making it possible to provide a magnetic recording medium with excellent magnetic properties.
第1図は実施例むよび比較例の金属鉄磁性粉末の飽和磁
化量の経時変化を示す特性図、第2図はラノリン脂肪酸
カルシウムの被覆量と、磁気テープの最大磁束密度と角
型比との関係を示す図である。
A・・・・・・実施例1の、B・・・・・・比較例1の
、C・・・・・・比較例2のそれぞれ磁性粉末の飽和磁
化量変化曲線、D・・・・・・磁気テープの最大磁束密
度の、E・・・・・・磁気テープの角型比のそれぞれ変
化曲線。Figure 1 is a characteristic diagram showing the change over time in the saturation magnetization of the metallic iron magnetic powders of Examples and Comparative Examples, and Figure 2 is a graph showing the variation in the amount of lanolin fatty acid calcium coating, the maximum magnetic flux density, and the squareness ratio of the magnetic tape. FIG. A: Saturation magnetization change curve of magnetic powder of Example 1, B: Comparative example 1, C: Comparative example 2, D: ...The maximum magnetic flux density of the magnetic tape, E...The curves of changes in the squareness ratio of the magnetic tape.
Claims (1)
被覆されたことを特徴とする金属磁性粉末。 2 ラノリン脂肪酸の塩がカルシウム塩である特許請求
の範囲第1項記載の金属磁性粉末。 3 ラノリン脂肪酸の塩を有機溶媒中に溶解し、この溶
液中に金属磁性粉末を浸漬して混合することを特徴とす
る金属磁性粉末の処理方法。 4 金属磁性粉末が金属鉄を主体とする磁性粉末である
特許請求の範囲第3項記載の金属磁性粉末の処理方法。 5 ラノリン脂肪酸の塩がカルシウム塩である特許請求
の範囲第3項捷たは第4項記載の金属磁性粉末の処理方
法。 6 有機溶媒がトルエンである特許請求の範囲第3項、
第4項または第5項記載の金属磁性粉末の処理方法。[Scope of Claims] 1. A metal magnetic powder characterized in that the particle surface is coated with a film containing a lanolin fatty acid salt. 2. The metal magnetic powder according to claim 1, wherein the lanolin fatty acid salt is a calcium salt. 3. A method for treating metal magnetic powder, which comprises dissolving a salt of lanolin fatty acid in an organic solvent, and mixing the metal magnetic powder by immersing it in this solution. 4. The method for processing metal magnetic powder according to claim 3, wherein the metal magnetic powder is a magnetic powder mainly composed of metal iron. 5. The method for treating metal magnetic powder according to claim 3 or 4, wherein the lanolin fatty acid salt is a calcium salt. 6 Claim 3, in which the organic solvent is toluene,
The method for treating metal magnetic powder according to item 4 or 5.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54130538A JPS5854485B2 (en) | 1979-10-09 | 1979-10-09 | Metal magnetic powder and processing method |
US06/194,858 US4305993A (en) | 1979-10-09 | 1980-10-07 | Magnetic recording medium |
DE8080106109T DE3066061D1 (en) | 1979-10-09 | 1980-10-08 | Magnetic recording medium |
EP80106109A EP0027255B1 (en) | 1979-10-09 | 1980-10-08 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54130538A JPS5854485B2 (en) | 1979-10-09 | 1979-10-09 | Metal magnetic powder and processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5654013A JPS5654013A (en) | 1981-05-13 |
JPS5854485B2 true JPS5854485B2 (en) | 1983-12-05 |
Family
ID=15036676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54130538A Expired JPS5854485B2 (en) | 1979-10-09 | 1979-10-09 | Metal magnetic powder and processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5854485B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5920402A (en) * | 1982-07-26 | 1984-02-02 | Fuji Photo Film Co Ltd | Ferromagnetic metallic powder |
JPH0643601B2 (en) * | 1985-06-12 | 1994-06-08 | 戸田工業株式会社 | Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron |
JP2008248238A (en) * | 2007-03-07 | 2008-10-16 | Hitachi Maxell Ltd | Manufacturing method of magnetic coating, and magnetic recording medium using the magnetic coating |
-
1979
- 1979-10-09 JP JP54130538A patent/JPS5854485B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5654013A (en) | 1981-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5854485B2 (en) | Metal magnetic powder and processing method | |
US4303699A (en) | Method of manufacturing magnetic powder | |
EP0075870B1 (en) | Magnetic recording medium | |
JPH059922B2 (en) | ||
JPS5853681B2 (en) | Metal magnetic powder and its processing method | |
JPS5852523B2 (en) | Metal magnetic powder and its processing method | |
JP3041880B2 (en) | Ferromagnetic metal particles for magnetic recording | |
JPH039529B2 (en) | ||
JP2659957B2 (en) | Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder | |
JPS6129122B2 (en) | ||
JP3154126B2 (en) | Magnetic recording media | |
JPH0743824B2 (en) | Magnetic recording medium and manufacturing method thereof | |
JP3154125B2 (en) | Magnetic recording media | |
JP3194294B2 (en) | Magnetic recording media | |
JPS598046B2 (en) | Jikiki Rokutai | |
JPH0444610B2 (en) | ||
JPH04302818A (en) | Magnetic recording medium | |
JPS5972646A (en) | Magnetic recording medium | |
JPS6216451B2 (en) | ||
JPS5852804A (en) | Magnetic recording medium | |
JPH01239817A (en) | Ferromagnetic metal powder, manufacture thereof and magnetic recording medium using the same powder | |
JPS6323135B2 (en) | ||
JPS63271712A (en) | Magnetic recording medium | |
JPH05143964A (en) | Magnetic recording medium | |
JPH04302820A (en) | Magnetic recording medium |