JPS5853863B2 - Enzyme electrode system - Google Patents
Enzyme electrode systemInfo
- Publication number
- JPS5853863B2 JPS5853863B2 JP53086473A JP8647378A JPS5853863B2 JP S5853863 B2 JPS5853863 B2 JP S5853863B2 JP 53086473 A JP53086473 A JP 53086473A JP 8647378 A JP8647378 A JP 8647378A JP S5853863 B2 JPS5853863 B2 JP S5853863B2
- Authority
- JP
- Japan
- Prior art keywords
- dehydrogenase
- enzyme
- electrode
- nadp
- enzyme electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【発明の詳細な説明】
本発明は、生体内触媒である酵素を電気化学的触媒とし
て用い、生物関連物質を検出測定する生物化学センサー
あるいは酵素電池などに用いられる酵素電極系の改良に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an enzyme electrode system used in a biochemical sensor or an enzyme battery that detects and measures biological substances by using an enzyme, which is a biological catalyst, as an electrochemical catalyst.
さらに詳しくは、NADにコチンアミドアデニンジヌク
レオチド)あるいはNADP にコチンアミドアデニン
ジヌクレオチドリン酸)などの補酵素を必要とする各種
脱水素酵素電極系に、水素伝達反応を触媒する酵素を添
加することによって、酵素電極の生体関連物質(基質)
に対する応答特性を向上するものである。More specifically, an enzyme that catalyzes the hydrogen transfer reaction can be added to various dehydrogenase electrode systems that require coenzymes such as NAD (cotinamide adenine dinucleotide) or NADP (cotinamide adenine dinucleotide phosphate). Depending on the biologically relevant substance (substrate) of the enzyme electrode
This improves the response characteristics.
従来、補酵素を含む酵素電極は、脱水素酵素、補酵素、
レドックス化合物および集電体から構成されており、そ
の電気化学反応は第1図のように示される。Conventionally, enzyme electrodes containing coenzymes have been used for dehydrogenases, coenzymes,
It is composed of a redox compound and a current collector, and its electrochemical reaction is shown in Figure 1.
すなわち、基質AH2、例えばリンゴ酸、乳酸、グルタ
ミン酸などの有機酸の脱水素反応に補酵素およびレドッ
クス化合物が共役し、集電体と対極との間に電流が流れ
る。That is, the coenzyme and redox compound are conjugated to the dehydrogenation reaction of the substrate AH2, such as an organic acid such as malic acid, lactic acid, or glutamic acid, and a current flows between the current collector and the counter electrode.
しかし、従来の酵素電極では、その応答特性として優れ
たものが得られず、実用上不十分であった。However, conventional enzyme electrodes do not have excellent response characteristics and are insufficient for practical use.
本発明者らは、この種酵素電極について種々検討した結
果、補酵素とレドックス化合物間の共役反応が律速にな
っていることを見出した。As a result of various studies on this type of enzyme electrode, the present inventors found that the rate-limiting coupling reaction between a coenzyme and a redox compound.
そして、上記の点に鑑み、水素(電子)伝達反応を触媒
する酵素、例えばリボアミドデヒドロゲナーゼ(ジアホ
ラーゼ)、レジュースドNADPデヒドロゲナーゼ(明
黄色酵素)、レジュースドNAD(P)デヒドロゲナー
ゼ(DTジアホラーゼ)、レジュースドNADデヒドロ
ゲナーゼ(シトクロムCレダクター−ゼ)を添加するこ
とにより、酵素電極の基質に対する応答特性を大巾に向
上することに成功した。In view of the above, enzymes that catalyze hydrogen (electron) transfer reactions, such as ribamide dehydrogenase (diaphorase), reduced NADP dehydrogenase (bright yellow enzyme), reduced NAD(P) dehydrogenase (DT diaphorase), and reduced NAD dehydrogenase By adding (cytochrome C reductase), we succeeded in greatly improving the response characteristics of the enzyme electrode to the substrate.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
実施例 l 第2図は酵素電極を用いた測定系を示す。Example l Figure 2 shows a measurement system using an enzyme electrode.
1は酵素電極系、2は参照極の飽和カロメル電極(SC
E )、3は白金製対極、4は塩橋、5はセパレータで
ある。1 is an enzyme electrode system, 2 is a saturated calomel electrode (SC) as a reference electrode.
E), 3 is a platinum counter electrode, 4 is a salt bridge, and 5 is a separator.
6は酵素電極糸の集電体で、白金からできており、電解
液γにはP H7,0のリン酸緩衝液にリンゴ酸脱水素
酵素を5ユニツト、酸化型補酵素NADをlXl0
’モル/l、酸化型レドックス化合物としてメチレンブ
ルーを1×10−3モル/l溶解しである。6 is the current collector of the enzyme electrode thread, which is made of platinum, and the electrolyte γ contains 5 units of malate dehydrogenase and 1X10 oxidized coenzyme NAD in a phosphate buffer with a pH of 7.0.
'mol/l, methylene blue as an oxidized redox compound is dissolved at 1 x 10-3 mol/l.
なお対極側の電解液8はP H7,0のリン酸緩衝液で
ある。The electrolytic solution 8 on the counter electrode side is a phosphate buffer solution with a pH of 7.0.
上記の糸において、電解液7にジアホラーゼなO0■ユ
ニット相当添加し、作用極集電体6を+0.4V(vs
、5CE)にアノード分極して集電体と対極間に流れる
電流を測定した。In the above thread, an equivalent amount of O0 units of diaphorase is added to the electrolytic solution 7, and the working electrode current collector 6 is set at +0.4V (vs.
, 5CE), and the current flowing between the current collector and the counter electrode was measured.
この結果、第3図Aに示すように、リンゴ酸添加により
約2μAの定常電流値が得られる。As a result, as shown in FIG. 3A, a steady current value of about 2 μA is obtained by adding malic acid.
一方、電解液7にジアホラーゼを添加しない従来系の応
答特性は曲線Bの如くであった。On the other hand, the response characteristics of the conventional system in which diaphorase was not added to the electrolytic solution 7 were as shown in curve B.
このように本発明の電極系によれば、定常電流値で従来
系の約IO倍という非常に優れた応答が得られる。As described above, according to the electrode system of the present invention, an extremely excellent response can be obtained at a steady current value, which is about IO times that of the conventional system.
実施例 2
実施例1と同様の3電極構成の御淀系を用い、P H7
,0のリン酸緩衝液にイソクエン酸脱水素酵素の活性化
剤であるMgCA!2をio ”モル/l溶解した作
用極側電解液に、イソクエン酸脱水素酵素、酸化型補酵
素NADPおよびレドックス化合物のフェリシアン化カ
リを加える。Example 2 Using the same three-electrode configuration as in Example 1, P H7
, MgCA, an activator of isocitrate dehydrogenase, in 0 phosphate buffer! Isocitrate dehydrogenase, oxidized coenzyme NADP, and potassium ferricyanide, a redox compound, are added to the electrolytic solution on the working electrode side in which io'' mol/l of 2 is dissolved.
作用極を+〇、4V (v s−SCE )Kアノード
分極し、インクエン酸を加えると、約0.1μAの定常
電流値が得られた。When the working electrode was anodically polarized at +〇, 4V (vs-SCE) and ink citric acid was added, a steady current value of about 0.1 μA was obtained.
さらに、水素伝達反応触媒酵素としてNADPペルオキ
シターゼを0.5ユニツト添加すると、定常NK値は約
8倍に上昇した。Furthermore, when 0.5 unit of NADP peroxidase was added as a hydrogen transfer reaction catalytic enzyme, the steady-state NK value increased about 8 times.
実施例 3
実施例1と同様の3電極構成および分極条件として、L
−アラニン脱水素酵素、酸化型NAD。Example 3 As the same three-electrode configuration and polarization conditions as in Example 1, L
-Alanine dehydrogenase, oxidized NAD.
レドックス化合物のフラビンモノヌクVオチドを作用極
側電解液に加える。A redox compound, flavin mononucu V otide, is added to the electrolyte on the working electrode side.
そしてL−アラニンを加えると約0.2μAの定常電流
値が得られた。When L-alanine was added, a steady current value of about 0.2 μA was obtained.
さらに、NADペルオキシターゼを添加すると、定常電
流値は約io倍に上昇した。Furthermore, when NAD peroxidase was added, the steady-state current value increased approximately io times.
上記のように応答電流の上昇効果の認められる水素伝達
反応触媒酵素としては、レジュースドNADPテヒドロ
ゲナーゼ、レジュースドNAD(P)デヒドロゲナーゼ
、レジュースドNADデヒドロゲナーゼ、フェレドキシ
ン−NADPレダクターゼなどがある。Examples of hydrogen transfer reaction catalytic enzymes that have the effect of increasing the response current as described above include reduced NADP tehydrogenase, reduced NAD(P) dehydrogenase, reduced NAD dehydrogenase, and ferredoxin-NADP reductase.
これらのうち後2者は、シトクロムC1フェレドキシン
など天然のレドックス化合物(タンパク質)が電子受容
体となる酵素である。The latter two of these are enzymes whose electron acceptors are natural redox compounds (proteins) such as cytochrome C1 ferredoxin.
本発明による酵素電極系は、脱水素酵素の基質濃度に応
じて電流が流れるため、基質濃度センサーとして用いる
ことができる。The enzyme electrode system according to the present invention allows current to flow in accordance with the substrate concentration of dehydrogenase, so it can be used as a substrate concentration sensor.
さらに基質を大過剰VC含有した系で、脱水素酵素濃度
を変化させると、酵素濃度に応じて電流が流れるため、
脱水素酵素の活性を測定することも可能である。Furthermore, when the dehydrogenase concentration is changed in a system containing a large excess of VC as a substrate, a current flows depending on the enzyme concentration.
It is also possible to measure the activity of dehydrogenase.
また適当な対極例えば酸素極と組み合せると基質を燃料
とする燃料電池が構成できる。In addition, when combined with a suitable counter electrode such as an oxygen electrode, a fuel cell using the substrate as fuel can be constructed.
以上のよウニ、本発明によれば、酵素電極系のセンサー
としての感度、電池としての出力、反応効率などが、著
しく改善される。As described above, according to the present invention, the sensitivity of the enzyme electrode system as a sensor, the output as a battery, the reaction efficiency, etc. are significantly improved.
第1図は従来の酵素電極を用いた電気化学反応のメカニ
ズムを示す模式図、第2図は酵素電極を含む電気化学測
定系の構成を示す略図、第3図は酵素電極系にリンゴ酸
を添加した場合の応答特性の比較を示す。Figure 1 is a schematic diagram showing the mechanism of an electrochemical reaction using a conventional enzyme electrode, Figure 2 is a schematic diagram showing the configuration of an electrochemical measurement system including an enzyme electrode, and Figure 3 is a diagram showing the structure of an electrochemical measurement system including an enzyme electrode. A comparison of response characteristics when added is shown.
Claims (1)
集電体を有し、前記集電体を浸漬した電解液中に脱水素
酵素、補酵素、レドックス化合物が存在しており、さら
に前記補酵素とレドックス化合物間の水素伝達反応触媒
酵素が前記電解液中に存在していることを特徴とする酵
素電極系。 2 前記水素伝達反応触媒酵素がりボアミドデヒドロゲ
ナーゼ、レジュースドNADPデヒドロゲナーゼ、レジ
ュースドNAD(P)デヒドロゲナーゼ、レジュースド
NADデヒドロゲナーゼ、フェントキシン−NADPレ
ダクターゼ、NADペルオキシダーゼおよびNADPベ
ルオキシターゼよりなる群から選んだものである特許請
求の範囲第1項記載の酵素電極系。[Scope of Claims] 1. A dehydrogenase, its coenzyme, a redox compound, and a current collector, and the dehydrogenase, coenzyme, and redox compound are present in an electrolytic solution in which the current collector is immersed. . An enzyme electrode system further comprising an enzyme that catalyzes a hydrogen transfer reaction between the coenzyme and the redox compound and is present in the electrolyte. 2. A patent claim in which the hydrogen transfer reaction catalytic enzyme is selected from the group consisting of diboamide dehydrogenase, reduced NADP dehydrogenase, reduced NAD(P) dehydrogenase, reduced NAD dehydrogenase, fentoxin-NADP reductase, NAD peroxidase, and NADP peroxidase. The enzyme electrode system according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53086473A JPS5853863B2 (en) | 1978-07-14 | 1978-07-14 | Enzyme electrode system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53086473A JPS5853863B2 (en) | 1978-07-14 | 1978-07-14 | Enzyme electrode system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5513860A JPS5513860A (en) | 1980-01-31 |
JPS5853863B2 true JPS5853863B2 (en) | 1983-12-01 |
Family
ID=13887925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53086473A Expired JPS5853863B2 (en) | 1978-07-14 | 1978-07-14 | Enzyme electrode system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5853863B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007132628A1 (en) * | 2006-05-11 | 2007-11-22 | Panasonic Corporation | Method for immobilizing malate dehydrogenase on substrate |
WO2008007499A1 (en) * | 2006-07-13 | 2008-01-17 | Panasonic Corporation | Electrochemical immunoassay chip |
CN102495115B (en) * | 2011-12-23 | 2014-07-23 | 中国科学院地球化学研究所 | Electrochemical method for detecting malic acid in root exudates by utilizing biological enzyme electrode method |
-
1978
- 1978-07-14 JP JP53086473A patent/JPS5853863B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5513860A (en) | 1980-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7459223B2 (en) | Electrochemical methods for generation of a biological proton motive force | |
US6495023B1 (en) | Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration | |
Ikeda et al. | Amperometric fructose sensor based on direct bioelectrocatalysis | |
Jang et al. | Improvement of cathode reaction of a mediatorless microbial fuel cell | |
Ikeda et al. | An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells | |
Ikeda et al. | Electrocatalysis with a glucose-oxidase-immobilized graphite electrode | |
Karyakin et al. | Prussian Blue-basedartificial peroxidase'as a transducer for hydrogen peroxide detection. Application to biosensors | |
Chi et al. | Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition | |
Turner et al. | Carbon monoxide: acceptor oxidoreductase from Pseudomonas thermocarboxydovorans strain C2 and its use in a carbon monoxide sensor | |
US5639672A (en) | Electrochemical determination of fructosamine | |
Kulys et al. | Study of the new electron transfer mediators in glucose oxidase catalysis | |
Chen et al. | Kohlrabi-based amperometric biosensor for hydrogen peroxide measurement | |
JPS5816696B2 (en) | enzyme electrode | |
Kulys et al. | Sensitive yeast bioelectrode to L‐lactate | |
Mizutani et al. | L-Malate-sensing electrode based on malate dehydrogenase and NADH oxidase | |
KANO et al. | Bioelectrocatalysis, powerful means of connecting electrochemistry to biochemistry and biotechnology | |
Zhou et al. | A miniaturized glucose biosensor based on the coimmobilization of glucose oxidase and ferrocene perchlorate in nafion at a microdisk platinum electrode | |
JPS5853863B2 (en) | Enzyme electrode system | |
JPH02253566A (en) | Glucose biological battery and glucose sensor | |
JP4000708B2 (en) | Method for measuring substances using enzyme-immobilized electrode | |
JPH029303B2 (en) | ||
JPS6346377B2 (en) | ||
Murthy et al. | Benzoquinone-mediated enzyme biosensor for amperometric determination of glucose | |
Kinoshita et al. | Electroanalysis of NADH using a new electrode prepared from plastic formed carbon | |
Ozawa et al. | Flavins and quinones as electron transfer mediators for diaphorase catalyzed electrolytic oxidation of nadh |