[go: up one dir, main page]

JPS5853045B2 - Manufacturing method of magnetic powder - Google Patents

Manufacturing method of magnetic powder

Info

Publication number
JPS5853045B2
JPS5853045B2 JP55137419A JP13741980A JPS5853045B2 JP S5853045 B2 JPS5853045 B2 JP S5853045B2 JP 55137419 A JP55137419 A JP 55137419A JP 13741980 A JP13741980 A JP 13741980A JP S5853045 B2 JPS5853045 B2 JP S5853045B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
publication
manufacturing
alkaline solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55137419A
Other languages
Japanese (ja)
Other versions
JPS5763606A (en
Inventor
新太郎 鈴木
博則 作本
好美 守谷
雄一 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP55137419A priority Critical patent/JPS5853045B2/en
Publication of JPS5763606A publication Critical patent/JPS5763606A/en
Publication of JPS5853045B2 publication Critical patent/JPS5853045B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は強磁性粉末の製造法に関するものであり、特に
高密度記録に適した保持力及び飽和磁束密度の高い磁気
記録媒体用の強磁性金属1合金粉末の製造方法に関する
ものである。
Detailed Description of the Invention The present invention relates to a method for producing ferromagnetic powder, and in particular, a method for producing ferromagnetic metal 1 alloy powder for magnetic recording media with high coercive force and high saturation magnetic flux density suitable for high-density recording. It is related to.

従来、磁気記録体に使用されていた強磁性粉末としては
r Fe2O3* Co含有7 Fe 203 e
Fe30. 、 Co含有Fe3O4、Fe3O47”
Fe2es e CrO2等ガあった。
The ferromagnetic powder conventionally used in magnetic recording materials is r Fe2O3* Co-containing 7 Fe 203 e
Fe30. , Co-containing Fe3O4, Fe3O47”
There were Fe2es e CrO2, etc.

しかし、これらの強磁性粉末は今後の磁性層の単位体積
当りの記録信号を多くしようとする高密度化の方向に適
したものであるとは言えない。
However, these ferromagnetic powders cannot be said to be suitable for the future trend toward higher densification in which the recording signal per unit volume of the magnetic layer is increased.

すなわち、高密度記録に使用するには保持力(Hc )
および磁束密度(σ)等の磁気特性カ坏充分であり、記
録波長の短い信号の磁気記録にはあまり適していない。
In other words, for use in high-density recording, the coercive force (Hc)
It has insufficient magnetic properties such as magnetic flux density (σ) and magnetic flux density (σ), and is not very suitable for magnetic recording of signals with short recording wavelengths.

そのため最近になり高密度記録に適する強磁性媒体の開
発カ盛んになされている。
Therefore, recently, efforts have been made to develop ferromagnetic media suitable for high-density recording.

その対象となる材料の1つとして強磁性金属1合金の粉
末ガある。
One of the target materials is powder of ferromagnetic metal 1 alloy.

すなわち、γ−Fe2O3は単位体積当りの飽和磁束密
度は約5000ガウスである75瓢F e mFe−C
o合金等ではγ−Fe2O3の約4倍に当る約2000
0〜25000ガウスにも及ぶ高い飽和磁束密度を有し
ていると言われ、きわめて簡単に換言すれば約4倍の再
生出力ガ期待され、より高密度記録が可能となる。
That is, γ-Fe2O3 has a saturation magnetic flux density of about 5000 Gauss per unit volume.
o alloy, etc., it is about 2000, which is about 4 times that of γ-Fe2O3.
It is said to have a high saturation magnetic flux density ranging from 0 to 25,000 Gauss, and in very simple terms, it is expected that the reproduction output will be about four times as high, making higher density recording possible.

このような強磁性金属1合金粉末の製造法としては従来
から次のような方法が検討されてきた。
Conventionally, the following methods have been studied as methods for producing such ferromagnetic metal 1 alloy powder.

(1)強磁性の金属1合金の有機酸塩(主として蓚酸塩
)を加熱分解し、還元性気体で還元する方法。
(1) A method of thermally decomposing an organic acid salt (mainly oxalate) of a ferromagnetic metal 1 alloy and reducing it with a reducing gas.

例えば特公昭36−11412.特公昭36−2223
0,4?、公昭40−8027.特公昭41−1481
8.特公昭42−24032゜特公昭43−22394
.特公昭47−38417゜特開昭47−38523.
特公昭48−29280゜特開昭48−22346.%
開昭48−22994゜米国特許第3186829.米
国特許第 3190748、フタル酸塩を用いるものとして特公昭
47−4286゜ (2)オキシ水酸化鉄あるいはこれらに他の金属(例え
ばCo)を含有(ドープ)せしめたもの、あるいは酸化
鉄、又はフェライト組成酸化物を還元性気体で還元する
方法。
For example, Tokuko Sho 36-11412. Tokuko Sho 36-2223
0,4? , Kosho 40-8027. Tokuko Sho 41-1481
8. Special Publication Showa 42-24032゜Special Publication No. 43-22394
.. Special Publication No. 47-38417° No. 47-38523.
Special Publication No. 48-29280° No. 48-22346. %
1972-22994゜US Patent No. 3186829. U.S. Patent No. 3190748, Japanese Patent Publication No. 47-4286゜ (2) Iron oxyhydroxide or those doped with other metals (e.g. Co), iron oxide, or ferrite as those using phthalates. A method of reducing composition oxides with a reducing gas.

例えば特公昭35−3862.特公昭3711520、
特公昭39−20939.特公昭47−29706.特
公昭47−30477゜特公昭47−39477、%開
昭46−5057゜特開昭46−7153.特公昭48
−24952゜特開昭48−79153.特開昭48−
82393゜特公昭49−7313.特開昭49−13
5867゜特公昭51−5608.米国特許第3598
568゜米国特許第3607220.米国特許第 370227Q、英国特許第640438゜(3)強磁
性金属9合金を不活性ガス中で蒸発させる方法。
For example, Tokuko Sho 35-3862. Tokuko Show 3711520,
Special Publication No. 39-20939. Special Publication Showa 47-29706. Special Publication No. 47-30477° Special Publication No. 47-39477, % Publication No. 46-5057° No. 46-7153. Special Public Service 1977
-24952° Japanese Patent Publication No. 48-79153. Japanese Unexamined Patent Publication 1973-
82393゜Special Publication Showa 49-7313. Unexamined Patent Publication 1973-13
5867゜Special Publication Showa 51-5608. U.S. Patent No. 3598
568° U.S. Patent No. 3,607,220. US Patent No. 370,227Q, British Patent No. 640,438° (3) Method of vaporizing ferromagnetic metal 9 alloy in an inert gas.

例えば、特公昭47−27718.特公昭48−964
.特公昭48−42783゜特開昭48−25662〜
25665.特開昭48−31166、特開昭48−5
5400゜特開昭48−81092.特開昭49−52
134゜(4)金属カルボニル化合物を分解する方法。
For example, Tokuko Sho 47-27718. Special Public Service 1977-964
.. Special Publication Showa 48-42783゜ Japanese Patent Publication No. 48-25662~
25665. Japanese Patent Publication No. 48-31166, Japanese Patent Publication No. 48-5
5400° Japanese Patent Publication No. 48-81092. Japanese Unexamined Patent Publication 1972-1985
134゜(4) Method for decomposing metal carbonyl compounds.

例えば特公昭45−16868.米国特許第 2983997、米国特許第3172776゜米国特許
第3200007.米国特許第 3228882゜ (5)水銀電解によって強磁性金属粉末を電析させたの
ち、水銀を分解除去する方法。
For example, Tokuko Sho 45-16868. US Pat. No. 2,983,997, US Pat. No. 3,172,776, US Pat. No. 3,200,007. US Pat. No. 3,228,882 (5) A method of electrodepositing ferromagnetic metal powder by mercury electrolysis and then decomposing and removing mercury.

例えば、特公昭39−15525.特公昭40−812
5.特公昭47−6007.米国特許第3156650
.米国特許第3262812゜(6)強磁性を有する金
属の塩を、その溶液中で次亜リン酸ナトリウム、あるい
は水素化ホウ素ナトリウム、などで湿式還元する方法。
For example, Tokuko Sho 39-15525. Special Public Service 1977-812
5. Tokuko Showa 47-6007. U.S. Patent No. 3156650
.. US Pat. No. 3,262,812 (6) A method of wet reduction of a ferromagnetic metal salt with sodium hypophosphite, sodium borohydride, etc. in its solution.

例えば、特公昭38−20520.特公昭38−265
55.特公昭43−20116゜特公昭45−9869
.特公昭47−7820゜特公昭47−16052.特
公昭47− 41718、特公昭47−41719.特開昭47−1
353.特開昭47−42252.特開昭47−422
53.特開昭48−7585.特開昭48−25896
.特開昭48−44194゜特開昭48−79754.
特開昭48−82396゜特開昭48−28999,4
!f開昭48−1998゜米国特許第3607218
、米国特許3494760゜米国特許第3535104
、米国特許3661556゜米国特許第366331
8 、米国特許3669643゜米国特許第36728
67゜ (7)その他、例えば衝撃大電流を通じて放電爆発によ
って強磁性金属粉末を生成させる方法。
For example, Tokuko Sho 38-20520. Tokuko Sho 38-265
55. Special Publication No. 43-20116゜ Special Publication No. 45-9869
.. Special Publication No. 47-7820° Special Publication No. 47-16052. Special Publication No. 47-41718, Special Publication No. 47-41719. JP-A-47-1
353. Japanese Patent Publication No. 47-42252. Japanese Patent Publication No. 47-422
53. Japanese Patent Publication No. 48-7585. Japanese Patent Publication No. 48-25896
.. JP-A-48-44194° JP-A-48-79754.
JP-A-48-82396° JP-A-48-28999,4
! f 1977-1998゜U.S. Patent No. 3607218
, U.S. Patent No. 3,494,760゜U.S. Patent No. 3,535,104
, U.S. Patent No. 3661556゜U.S. Patent No. 366331
8, U.S. Patent No. 3669643゜U.S. Patent No. 36728
67゜(7) Other methods include, for example, producing ferromagnetic metal powder by discharge explosion through a large impact current.

PIえば特開昭47−33857゜ 以上のように、各種方法によって検討されて来た75:
、それぞれ、どの方法も一長一短を有しており、まだ、
いずれも工業的、実用的な意味において、決定的な方法
とはなり得ない。
In the case of PI, various methods have been studied as described in Japanese Patent Application Laid-Open No. 47-3385775:
, each method has its advantages and disadvantages, and still
None of these methods can be a definitive method in an industrial or practical sense.

例えば(1)の蓚酸塩の分解による方法は古くがら検討
されて来た方法である2′1′−1この方法で得られる
磁性粉末は一般に粒子サイズ7′l三大きく5〜10μ
程度もあり、このままでは磁気テープとした時テープの
表面力Sザラザラして、雑音レベルガ悪く、また、磁気
ヘッドの摩耗、およびヘッドとテープ表面の密着性−7
5;さまたげられ、目的とする高密度化層゛録ガ実TF
l ’゛たいという欠点がある。
For example, the method (1) using decomposition of oxalate is a method that has been studied for a long time.
If left as is, when used as a magnetic tape, the surface of the tape will be rough, the noise level will be poor, and the magnetic head will wear out, and the adhesion between the head and tape surface will deteriorate.
5; Obstructed and targeted densification layer recording actual TF
There is a drawback that it is difficult to use.

また(3)の蒸発法は複雑な装置および作業を必要とし
、大規模な実施は、工業性、経済性の面で欠点を有して
いる。
Furthermore, the evaporation method (3) requires complicated equipment and operations, and its large-scale implementation has disadvantages in terms of industrial efficiency and economy.

また(5)の水銀電解法においては、電着した生成物は
4〜6%の水銀を含んだ樹枝状の粒子であり、これを熱
処理して樹枝状粒子から除(わけであるカニ、水銀の完
全な除去は困難であり、水銀公害等の面からも実用化に
はむづかしい問題点を有している。
In addition, in the mercury electrolysis method (5), the electrodeposited product is dendritic particles containing 4 to 6% mercury, which is removed from the dendritic particles by heat treatment. It is difficult to completely remove it, and there are also problems such as mercury pollution that make it difficult to put it into practical use.

また(6)の湿式還元反応による方法については、この
方法で得られた強磁性金属9合金粉末は表面の活性度カ
ニ強いため自然性が強(、空気中の酸素や湿気に弱く、
常温、常湿においても、徐々に酸化され、磁気特性の低
下をまねきやすい。
In addition, regarding the wet reduction reaction method (6), the ferromagnetic metal 9 alloy powder obtained by this method has strong surface activity and has strong natural properties (it is weak against oxygen and moisture in the air,
Even at room temperature and humidity, it is gradually oxidized and tends to deteriorate its magnetic properties.

またこの方法で得られる個々の粒子は糸状をしているが
、結合剤との混合分散処理の過程において、その粒子形
状の破壊を生じて磁場配向性−lJ:悪くなり、磁気記
録体の磁気特性、特に角形比が悪くなる欠点を有してい
る。
In addition, the individual particles obtained by this method are filamentous, but in the process of mixing and dispersing with a binder, the particle shape is destroyed and the magnetic field orientation deteriorates. It has the disadvantage of poor characteristics, especially the squareness ratio.

さて本発明は(2)のオキシ水酸化鉄、又は酸化鉄を還
元性ガスで乾式還元する方法に属するものである力S1
これに属する従来の方法についても幾つかの欠点ガ指摘
されていた。
Now, the present invention belongs to the method (2) of dry reducing iron oxyhydroxide or iron oxide with a reducing gas.
Several drawbacks have been pointed out regarding conventional methods related to this.

まず、還元処理ガ通常高温水素気流中で行なわれるため
、体積の減少。
First, the reduction process is usually carried out in a high-temperature hydrogen stream, resulting in a reduction in volume.

多孔質化、形状の変化、焼結ガ生じて、たとえ望ましい
形状の鉄酸化物から出発しても期待はどの磁気特性−I
)二得られ難い。
Porousness, shape changes, and sintering occur, and even if we start from iron oxide with the desired shape, we cannot expect any magnetic properties.
) Two are difficult to obtain.

これはγ−F e 203の通常の製造工程においても
α−Fe203→Fe3O4の工程つまり水素ガスによ
ってα−F e 203のシの酸素を取る工程において
、形状の変化、焼結ガ一番起り易いと言われ、これを防
ぐ努カガかなりなされている。
This is because even in the normal manufacturing process of γ-Fe 203, changes in shape and sintering are most likely to occur in the process of α-Fe203→Fe3O4, that is, the process of removing oxygen from α-Fe 203 using hydrogen gas. This is said to be the case, and considerable efforts have been made to prevent this.

これに比較して金属9合金の場合はさらに全部の酸素を
取るわけであるから、なおさら、形状の変化、焼結は激
しくなる方向にあると言え、保磁力(Hc ) 。
In comparison, in the case of metal 9 alloy, all the oxygen is taken up, so it can be said that the change in shape and sintering are even more severe, and the coercive force (Hc).

角形比−!J二悪(、テープ化において分散ガ不完全と
なり記録材料的に、有望な性質をそなえているにもかか
わらず実用的になり得ていない。
Square ratio-! Two evils: Dispersion is incomplete when tape is made, and although it has promising properties as a recording material, it has not been practical.

また、この方法で得られた金属9合金粉末も発火性であ
るという欠点を有し、実際上の使用の妨げとなっている
Furthermore, the metal 9 alloy powder obtained by this method also has the drawback of being flammable, which hinders its practical use.

すなわち、本発明の、β−Fe00H又はγF e O
OHを原料としこれをアルカリ溶液中で処理した後、済
過、水洗、乾燥し、次いで還元性ガス中で還元すること
により、上記欠点である形状の崩れ、焼結カニ防止され
保持力(He)、角形比(σr/σs)9分散性に優れ
、がつ発火性のおさえられた安定な、磁気記録用強磁性
体として充分使用に耐え得る金属粉末ガ得られる。
That is, β-Fe00H or γFeO of the present invention
By using OH as a raw material and treating it in an alkaline solution, filtering it, washing it with water, drying it, and then reducing it in a reducing gas, the above drawbacks of shape collapse and sintering crabs are prevented, and the holding power (He ), squareness ratio (σr/σs) 9 A metal powder is obtained which has excellent dispersibility, is stable with suppressed ignitability, and is sufficiently usable as a ferromagnetic material for magnetic recording.

本発明に用いられるβ−FeOOH又はγ−FeOOH
には、これらにCO+ Nte T’l* BteM
o e A gなどの金属をドープせしめたもの迄カニ
含まれ、アルカリとしては苛性ソーダ、苛性カリ。
β-FeOOH or γ-FeOOH used in the present invention
For these, CO+ Nte T'l* BteM
Even those doped with metals such as o e a g are included, and the alkalis include caustic soda and caustic potash.

アンモニア等を挙げることカニできる。Ammonia etc. can be listed as crab.

またこれら原料及びアルカリについては各々混合物を用
いても差支えない。
Furthermore, a mixture of each of these raw materials and alkali may be used.

以下さらに詳細に本発明を説明すると、本発明に用いる
β−FeOOHは、例えば塩化第一鉄水溶液に酸素もし
くは酸素含有気体を通じてβFe0OHを沈殿せしめ、
これを戸別することにより得られ、γ−FeOOHは、
例えば酸化第一鉄水溶液にアルカリを添加し全塩化第一
鉄の80%程度を中和し、しかる後酸素もしくは酸素含
有気体を通じてγ−FeOOHを沈殿せしめ、これを戸
別することにより得られる。
To explain the present invention in more detail below, β-FeOOH used in the present invention can be obtained by precipitating β-FeOOH by passing oxygen or an oxygen-containing gas into a ferrous chloride aqueous solution, for example.
γ-FeOOH is obtained by distributing this from door to door.
For example, it can be obtained by adding an alkali to an aqueous ferrous oxide solution to neutralize about 80% of the total ferrous chloride, then passing oxygen or an oxygen-containing gas to precipitate γ-FeOOH, and distributing it from house to house.

また通常行なわれている方法でCoo Ni、T L
B it Mo+ Agなどをβ−Fe00H或いはγ
−FeOOHにドープせしめ、原料とすることもできる
Also, using the usual method, Coo Ni, T L
B it Mo+ Ag etc. to β-Fe00H or γ
-FeOOH can also be doped and used as a raw material.

アルカリ処理は、例えば苛性ソーダを用いる場合、その
水溶液濃度は1N〜2 o H−z:好ましく、IN未
満では効果7′l三認められない。
In the alkali treatment, for example, when caustic soda is used, the concentration of the aqueous solution is preferably 1N to 20 Hz, and if it is less than IN, no effect will be observed.

また2ON以上では洗浄操作及びN a OH消費量か
らして工業的、経済的ではない。
Further, if the pressure is 2ON or more, it is not industrially or economically viable due to the cleaning operation and the amount of NaOH consumed.

処理温度は30〜100’C。処理時間は特に制限はな
いカニ、効果を顕著ならしめるためには0.5時間以上
とすることカニ好ましい。
The processing temperature is 30-100'C. There is no particular restriction on the treatment time, but in order to make the effect noticeable, it is preferably 0.5 hours or more.

同、アルカリとして苛性カリ、アンモニア等−I)N使
用し得ることは前述の通りであり、その好ましい使用条
件も上記と同等である。
As mentioned above, caustic potash, ammonia, etc.-I)N can be used as the alkali, and the preferable conditions for use thereof are also the same as above.

さらに、このアルカリ処理の前後、もしくはアルカリ処
理と同時に本発明者等ガ既に出願している特願昭51−
51795号に記したアルミニウム化合物又は/及びケ
イ素化合物を例着、吸着又は沈殿させる処理、特願昭5
3−30150号に記したZn、Cr、Cuの一つ又は
二つ以上の化合物を付着、吸着又は沈殿させる処理、特
願昭51−30151号に記したCoeNi9Mnes
bの一つ又は二つ以上の化合物を付着、吸着又は沈殿さ
せる処理等を行なうことにより、より以上の効果カニ期
待される。
Furthermore, the present inventors have already filed a patent application filed in 1973 before or at the same time as this alkali treatment.
Example of treatment for adsorbing or precipitating aluminum compounds and/or silicon compounds as described in No. 51795, patent application No. 5179
Treatment for adhering, adsorbing or precipitating one or more compounds of Zn, Cr, and Cu as described in No. 3-30150, and CoeNi9Mnes as described in Japanese Patent Application No. 30151-1983.
Even greater effects can be expected by performing treatments such as attaching, adsorbing, or precipitating one or more of the compounds described in (b).

アルカリ溶液中で処理後濾過、水洗、乾燥する。After treatment in an alkaline solution, it is filtered, washed with water, and dried.

つづいて、これらの処理−75:なされたβ−Fe00
H又はγ−Fe00Hは600℃を越えない温度好まし
くは500°Cを越えない湿度で水素雰囲気中において
還元される。
Subsequently, these treatments-75: β-Fe00
H or γ-Fe00H is reduced in a hydrogen atmosphere at a temperature not exceeding 600°C, preferably at a humidity not exceeding 500°C.

温度について下限は実際上ないガ、低温においては反応
カニ非常にゆっくり進むので、実施の観点からは、反応
時間部長くなって実際的でなくなるのをさげるため、少
なくとも250’Cの温度を使用すべきである。
Although there is practically no lower limit for temperature, the reaction proceeds very slowly at low temperatures, so from a practical standpoint it is recommended to use temperatures of at least 250'C to avoid long reaction times that are impractical. Should.

しかし、200℃程度の低い温度でも可能である。However, temperatures as low as 200° C. are also possible.

還元後、還元器を冷却して、空気1%および窒素99%
の混合ガスを還元器に導入し、約30分の間隔で、この
ガスの空気含有量を2倍づつにする。
After reduction, the reducer is cooled down to 1% air and 99% nitrogen.
is introduced into the reductor, and the air content of this gas is doubled at intervals of approximately 30 minutes.

4〜5時間後、空気だけに切り替え、還元器から磁性鉄
粉を取り出すこと作できる。
After 4 to 5 hours, it is possible to switch to air only and take out the magnetic iron powder from the reducer.

そして、磁気テープ、その他の磁気記録媒体とすること
カニできる。
It can also be used as magnetic tape or other magnetic recording media.

つぎに、さらに詳細に、本発明の具体化例を実施例をも
って説明する水、この実施例によって本発明の制限布な
されるものではない。
Next, embodiments of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例 1 反応塔として径15CTL高さ3mの塩化ビニル製容器
を用い、約70 ?/1!の塩化第一鉄FeCl2溶液
を301とり、NH3ガスを吹き込んで全FeCl2の
約80%を中和し、温度10〜15°Cに保ちながら、
酸素ガスを約201/minで吹き込み、反応時間約9
時間で平均長軸約1μ程度の均斉なγ−FeOOH(レ
ピドクロサイト)の針状粒子カニ得られた。
Example 1 A vinyl chloride container with a diameter of 15CTL and a height of 3m was used as a reaction column, and the reaction tower was approximately 70? /1! Take 301 ml of ferrous chloride FeCl2 solution, neutralize about 80% of the total FeCl2 by blowing NH3 gas, and while keeping the temperature at 10 to 15 °C,
Oxygen gas was blown in at a rate of about 201/min, and the reaction time was about 9
Uniform acicular particles of γ-FeOOH (lepidocrocite) with an average long axis of about 1 μm were obtained over time.

このようにして得られたγ−Fe00Hの炉別後の湿ケ
ーキをFe2O3換算で1802とり約61の5−N−
NaOH溶液を加えて攪拌しなガら約80°Cで約3時
間分散させた。
The wet cake of γ-Fe00H obtained in this way after furnace separation is 1802 in terms of Fe2O3, which is about 61 5-N-
A NaOH solution was added and the mixture was dispersed at about 80° C. for about 3 hours without stirring.

その後、濾過し、p液f’= p H7,5程度になる
まで水洗し、乾燥した。
Thereafter, it was filtered, washed with water until the pH of the p-liquid f'=about 7.5, and dried.

その後、この乾燥ケーキ約20′?をボート(巾約5c
rrL長さ10 tax )に取り、径線10c11L
、長さ約100CrrLの還元器に入れH2ガスを約3
1/minで流し込み約400℃で約5時間遠元して金
属粉とした。
Then this dried cake about 20'? The boat (width approx. 5c)
Take rrL length 10 tax) and radial line 10c11L
, put in a reducer with a length of about 100 CrrL and add about 3 H2 gas.
The mixture was poured at a rate of 1/min and heated at approximately 400° C. for approximately 5 hours to obtain metal powder.

その後還元器を冷却し室温まで下げて、空気1%及び窒
素99%から成る混合ガスを送り込み、約30分間隔毎
にこの混合ガス中の空気の含有量を倍にする。
The reductor is then cooled down to room temperature and a gas mixture consisting of 1% air and 99% nitrogen is introduced, doubling the air content in the gas mixture at approximately 30 minute intervals.

約5時間後、還元器には空気だけを流し、その後鉄粉を
取り出す。
After about 5 hours, only air is allowed to flow through the reducer, and then the iron powder is taken out.

Hm=10KOeで測定した磁気特性は下記の如(であ
った。
The magnetic properties measured at Hm=10KOe were as follows.

Hc=900 Q6 σr=73.2 emu/グ σB = 151 0m11/7 σr/σs=0.485 比較例 1 本発明の処理なせず、他の実施例1と同様にして磁性粉
を得、その磁気特性を測定した。
Hc=900 Q6 σr=73.2 emu/gσB = 151 0m11/7 σr/σs=0.485 Comparative Example 1 Magnetic powder was obtained in the same manner as in Example 1 without the treatment of the present invention. The magnetic properties were measured.

結果は次の通りである。The results are as follows.

Hc=650 0e σr = 43.2 emu/グ σ5=175 emu/グ σr/σs=0.247 実施例 2 10−N −N a OH溶液とした以外は実施例1と
同様にして磁性粉を得、その磁気特性を測定した。
Hc = 650 0e σr = 43.2 emu/g σ5 = 175 emu/g σr/σs = 0.247 Example 2 Magnetic powder was prepared in the same manner as in Example 1 except that a 10-N -N a OH solution was used. The magnetic properties were measured.

結果は次の通りである。Hc=920 0e σy = 72.6 emu/P σs = 150.3 emu/グ σr/σs=0.485 実施例 3 実施例1において、反応塔として径30船、高さ5mの
耐酸性容器を用い、その底部にフランジ連結で酸素ガス
分散材をはさみ、同径の高さ30備なるガス室を取付け
た。
The results are as follows. Hc = 920 0e σy = 72.6 emu/P σs = 150.3 emu/g σr/σs = 0.485 Example 3 In Example 1, an acid-resistant vessel with a diameter of 30 vessels and a height of 5 m was used as the reaction tower. A gas chamber with the same diameter and a height of 30 cm was installed with an oxygen gas dispersion material sandwiched in the bottom part by flange connection.

70℃の水2001を反応塔に注入し、これに塩化第一
鉄Fec12・6H6H2O185を溶かし、70℃の
水を加えて総量を2501とした。
2001 of water at 70°C was injected into the reaction tower, 185 ferrous chloride Fec12.6H6H2O was dissolved therein, and water at 70°C was added to make the total amount 2501.

塩化第一鉄はF e C4にして400 ?#である。Ferrous chloride is 400 as F e C4? It is #.

次に、生蒸気を時々導入して反応液を常に70’Cに保
ちつつ毎分2501の割合で分散材により細分化された
酸素ガスを圧入し、酸化した。
Next, while keeping the reaction solution at 70'C by introducing live steam from time to time, oxygen gas finely divided by a dispersion material was injected at a rate of 250 mm per minute for oxidation.

約5時間で反応率85%となり、平均長軸約1μ程度の
均斉なβ−Fe00H(アカガナイト)の針状粒子−1
5ヨ得られた。
The reaction rate reached 85% in about 5 hours, and uniform β-Fe00H (akaganite) acicular particles with an average long axis of about 1μ were produced.
I got 5yo.

このようにして得られたβ−Fe00Hを使用した以外
は実施例1と同様にして磁性粉を得、このものの磁気特
性を測定した。
Magnetic powder was obtained in the same manner as in Example 1 except that β-Fe00H thus obtained was used, and the magnetic properties of this powder were measured.

結果は次の通りである。The results are as follows.

c σr σS σr/σS 比較例 2 アルカリ溶液中での処理、従って済過、水洗。c. σr σS σr/σS Comparative example 2 Processing in alkaline solution and therefore filtration, washing with water.

乾燥もしない以外は実施例3と同様にして磁性粉を得、
このものの磁気特性を測定した。
Magnetic powder was obtained in the same manner as in Example 3 except that it was not dried.
The magnetic properties of this material were measured.

結果は次の通りである。The results are as follows.

c σr σS σr/σS e emu/L? emu/? e emu/′? e m u /グ 50 32.1 178.5 0.180 50 75.2 165.3 0.455c. σr σS σr/σS e emu/L? emu/? e emu/'? e m u /g 50 32.1 178.5 0.180 50 75.2 165.3 0.455

Claims (1)

【特許請求の範囲】 1 β−Felon又はγ−FeOOHをアルカリ溶液
中で処理した後、済過、水洗、乾燥し、次いで還元する
ことを特徴とする磁性粉の製造法。 2 アルカリ溶液濃度ガ1〜2ONである特許請求の範
囲1記載の製造法。 3 アルカリ溶液中の処理温度が30〜100℃である
特許請求の範囲1記載の製造法。 4 還元を還元性ガス流下200〜600℃で行なう特
許請求の範囲1記載の製造法。 5 アルカリ溶液亦苛性ソーダ水溶液、苛性カリ水溶液
、アンモニア水の内より選択された1又は2以上の混合
物である特許請求の範囲1記載の製造法。 6 還元性ガスガ水素である特許請求の範囲1記載の製
造法。
[Claims] 1. A method for producing magnetic powder, which comprises treating β-Felon or γ-FeOOH in an alkaline solution, followed by filtering, washing with water, drying, and then reducing. 2. The manufacturing method according to claim 1, wherein the alkaline solution concentration is 1 to 2 ON. 3. The manufacturing method according to claim 1, wherein the treatment temperature in the alkaline solution is 30 to 100°C. 4. The production method according to claim 1, wherein the reduction is carried out at 200 to 600°C under a flow of reducing gas. 5. The production method according to claim 1, wherein the alkaline solution is a mixture of one or more selected from the group consisting of an aqueous caustic soda solution, an aqueous caustic potash solution, and aqueous ammonia. 6. The production method according to claim 1, wherein the reducing gas is hydrogen.
JP55137419A 1980-10-01 1980-10-01 Manufacturing method of magnetic powder Expired JPS5853045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55137419A JPS5853045B2 (en) 1980-10-01 1980-10-01 Manufacturing method of magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55137419A JPS5853045B2 (en) 1980-10-01 1980-10-01 Manufacturing method of magnetic powder

Publications (2)

Publication Number Publication Date
JPS5763606A JPS5763606A (en) 1982-04-17
JPS5853045B2 true JPS5853045B2 (en) 1983-11-26

Family

ID=15198184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55137419A Expired JPS5853045B2 (en) 1980-10-01 1980-10-01 Manufacturing method of magnetic powder

Country Status (1)

Country Link
JP (1) JPS5853045B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932105A (en) * 1982-08-17 1984-02-21 Mitsui Toatsu Chem Inc Novel method of manufacturing ferromagnetic iron powder
JPH0616446B2 (en) * 1985-04-03 1994-03-02 ソニー株式会社 Method for producing metallic magnetic powder

Also Published As

Publication number Publication date
JPS5763606A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
US4290799A (en) Ferromagnetic metal pigment essentially consisting of iron and a process for its production
US4274865A (en) Production of magnetic powder
US4306921A (en) Production of magnetic powder
JPS5853045B2 (en) Manufacturing method of magnetic powder
JPS62139803A (en) Production of ferromagnetic metallic powder
JP2661914B2 (en) Method for producing acicular magnetic iron oxide containing cobalt
JPS6349722B2 (en)
US4497654A (en) Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders
JPH0343325B2 (en)
JPS59107503A (en) Method of manufacturing magnetic powders with iron as main constituent for magnetic recording
JPH0312125B2 (en)
JPS619504A (en) Manufacture of magnetic metallic powder
JPH0635326B2 (en) Method for producing particles containing iron carbide
JPH038083B2 (en)
JPH0285302A (en) Iron base needle like alloy powder, and production and use thereof
JPS59199533A (en) Magnetic powder
JPS58159311A (en) Manufacture of metallic magnetic powder
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type
JPS619503A (en) Manufacture of magnetic metallic powder
JPH0544414B2 (en)
JPS619506A (en) Manufacture of magnetic metallic powder
JPH0416924B2 (en)
JPH04357116A (en) Production of particle powder of needle-like goethite
JPS5855203B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JPS5951498B2 (en) Method for producing acicular α-FeOOH particle powder