[go: up one dir, main page]

JPS5852427A - Quenching method of metallic pipe - Google Patents

Quenching method of metallic pipe

Info

Publication number
JPS5852427A
JPS5852427A JP15066181A JP15066181A JPS5852427A JP S5852427 A JPS5852427 A JP S5852427A JP 15066181 A JP15066181 A JP 15066181A JP 15066181 A JP15066181 A JP 15066181A JP S5852427 A JPS5852427 A JP S5852427A
Authority
JP
Japan
Prior art keywords
cooling
water
metallic pipe
jet
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15066181A
Other languages
Japanese (ja)
Other versions
JPS614896B2 (en
Inventor
Yasushi Ueno
康 上野
Hiroshi Kamio
神尾 寛
Takao Noguchi
孝男 野口
Masamutsu Numano
沼野 正睦
Shinji Akita
秋田 真次
Megumi Tanaka
恵 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15066181A priority Critical patent/JPS5852427A/en
Publication of JPS5852427A publication Critical patent/JPS5852427A/en
Publication of JPS614896B2 publication Critical patent/JPS614896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To quench a metallic pipe at a uniform cooling speed, by blowing jet water into a metallic pipe of a high temperature from its one end, executing its cooling, also controlling and jetting jet water over the full length from the outside surface, and correcting uneven distribution of cooling of the inside surface. CONSTITUTION:A metallic pipe to be quenched 1 of a high temperature is placed horizontally on a supporting roll group 2 and is rotated. From a nozzle group 3 placed linearly in the upper direction of the metallic pipe 1, laminar flow cooling water is dropped onto the top line of the metallic pipe 1, the outside surface is cooled, also a jet flow is blown into the metallic pipe 1 toward the other end B from its one end T, and the inside surface is cooled. As for the inside surface cooling, its cooling distribution becomes uneven because a temperature rises as the jet water approaches the other end B of the discharge side. In order to correct this unevenness, a header 4 of said nozzle group 3 is divided into plural pieces, and one of such 3 methods as the quantity of jet water is increased as it approaches the end B side, by controlling the outside surface cooling, the action that its cooling start time is quickened, or its cooling end time is delayed is executed.

Description

【発明の詳細な説明】 本発明は鋼管等金属管の焼入方法に関する亀ので、比較
的長尺の金属管を低温域での冷却停止(interru
pted Quench)も含む条件で焼入するKあた
り、金属管全体を均一にかつ短時間で冷却する方法を提
供する亀のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quenching metal pipes such as steel pipes.
This method provides a method for uniformly and quickly cooling the entire metal tube during quenching under conditions including quenching.

金属管を焼入れるにあたり一方の端から高速の噴流水を
吹込むことは、比較的使用水量が少なくて高い冷却能力
をうるうえで有意義である。例えば、内面噴流の流速が
6翼/。では、8000 k=d/、/hr″C(表面
温度600℃、水温30℃)の熱伝達係数を有するが、
外面浸漬水冷却では同じ表面温度、水温の条件下で焼入
後の水温上昇が問題にならない容量の水に浸漬した場合
のそれは、1000kj / m” hr ”Cの程度
にすぎないから高い冷却速度を要する冷却では内面噴流
による冷却が主役となり外面冷却は従であることがわか
る。
When hardening a metal tube, blowing a high-speed jet of water from one end is effective in obtaining a high cooling capacity with a relatively small amount of water used. For example, the flow velocity of the inner jet is 6 blades/. So, it has a heat transfer coefficient of 8000 k=d/,/hr″C (surface temperature 600°C, water temperature 30°C),
In external immersion water cooling, if the surface temperature and water temperature are the same, and the water temperature rise after quenching is immersed in a volume of water that does not pose a problem, the increase in water temperature after quenching is only about 1000kj/m"hr"C, so the cooling rate is high. It can be seen that in the case of cooling that requires a large amount of water, the cooling by the inner surface jet is the main one, and the outer surface cooling is secondary.

しかし、比較的長尺の金属管においては内面噴流が管内
を進むにつれ水温が上昇し、圧力が低下するため冷却能
力は吐出端側はど小さくなる。例えば長尺細径厚肉サイ
ズの鋼管について実験したところ、吐出端側が蒸気と水
の2相流となるほど水温が上昇してしまう現象も見られ
る。即ち条件によっては吐出端側の冷却能力が吹込み端
側に比して相当に劣下してしまうことがある。このよう
な金属管長手方向の冷却不均一は材質的不均一をまねく
However, in a relatively long metal tube, as the inner surface jet moves through the tube, the water temperature increases and the pressure decreases, so the cooling capacity becomes smaller at the discharge end. For example, when we conducted an experiment on a long steel pipe with a small diameter and thick wall, we observed a phenomenon in which the water temperature rose as the discharge end became a two-phase flow of steam and water. That is, depending on the conditions, the cooling capacity on the discharge end side may be considerably lower than that on the blow end side. Such non-uniform cooling in the longitudinal direction of the metal tube leads to non-uniformity in the material.

また、近年、省エネルギーの観点から鋼管おいては圧延
後の保有熱を利用した直接焼入れが指向されてきている
が、この場合には通常の焼入れ即ち常温近傍まで焼入冷
却を継続するもののほか、焼入れ途中の18点以下の適
当な低温域で冷却停止(lnterrupted  Q
uench)を行うもの吃ある。
In addition, in recent years, from the perspective of energy conservation, direct quenching of steel pipes using the heat retained after rolling has been trending toward, but in this case, in addition to normal quenching, that is, continuing quenching cooling to near room temperature, Cooling is stopped at a suitable low temperature range of 18 points or less during quenching (interrupted Q
There are some people who do ``uench''.

この冷却停止は例えば特願昭55−111627でも説
明しているように、直接焼入にもとづく水素性欠陥など
の焼剣れの防止あるいけ次工程の焼戻し加熱に対する省
エネルギーを意図するものである。しかし、内面噴流冷
却を比較的長尺の鋼管に使用した時は長手方向の冷却能
力不均一のため、焼入開始後時★刻々における鋼管の長
さ方向の温度分布が一様でないから前記冷却停止(1n
terruptedQuench )においても冷却停
止時の温度が一様とならず本来の目的にそぐわがくなる
As explained in, for example, Japanese Patent Application No. 55-111627, this cooling stop is intended to prevent burn-out due to hydrogen defects caused by direct quenching and to save energy for tempering heating in the subsequent step. However, when internal jet cooling is used for relatively long steel pipes, the cooling capacity in the longitudinal direction is uneven, and the temperature distribution in the length direction of the steel pipe at every moment after the start of quenching is not uniform. Stop (1n
terruptedQuench), the temperature at the time of cooling stop is not uniform, which is inconsistent with the original purpose.

このように、内面噴流冷却は、高い冷却速度を要する焼
入れに対しては必要不可欠であり、また熱量が多いなど
優れた冷却方法ではあるが、長尺細径厚肉サイズでは長
手方向に大きな温度差がついてしまう欠点がある。
In this way, internal jet cooling is indispensable for quenching, which requires a high cooling rate, and is an excellent cooling method as it generates a large amount of heat. There are drawbacks that make a difference.

本発明は、金I!管の一方の端から内面へ噴流を通水さ
せる焼入れ方法において、前述のごとく金1’I長手方
向に不可避的に形成される内面冷却能力の不均一な分布
を打消し、一様な冷却速度及び又は一様な冷却停止温度
がえられるような金属管の焼入方法を提供するものであ
る。
The present invention is based on gold I! In the quenching method in which a jet of water is passed from one end of the tube to the inner surface, the uneven distribution of the inner surface cooling capacity that is inevitably formed in the longitudinal direction of the metal 1'I as described above is canceled out, and a uniform cooling rate is achieved. and/or provide a method for quenching a metal tube that can provide a uniform cooling stop temperature.

部ち本発明に係る金属管の焼入方法゛は、金属管内へ噴
流水をその一端から吹込むと共に、原管の外面側をその
ほぼ全長にわたりノズルから噴射される噴流水の衝突に
より冷却する焼入方法において、前記金Is管の長さ方
向の外面冷却を次に掲げる制御のうち少なくとも1つを
行うことを特徴とする。
Particularly, the metal tube quenching method according to the present invention involves blowing a jet of water into the metal tube from one end thereof, and cooling the outer surface of the raw tube by colliding with the jet of water jetted from a nozzle over almost its entire length. The quenching method is characterized in that the longitudinal outer surface cooling of the gold Is tube is controlled by at least one of the following controls.

内面噴流水の吐出端側はど 中噴射水量を大とする。Where is the discharge end of the inner jet water? Medium: Increase the amount of water jetted.

(11)その冷却開始(lit射開始)時期をはやめる
(11) The timing of starting cooling (starting lit radiation) is postponed.

(lltlその冷a終了(噴射終了)時期をおくらせる
O 上記した外面の冷却pcおける金属管長さ方向の適正流
量分布及び/又社長さ方向各位置での適正な冷却開始時
間及び/又は終了時間は、、外面から積極的冷却を何ら
行うことなく、又は外面からの冷却を長さ方向各位置で
同一条件とした上で、内面に噴流水を吹込んで冷却を行
い、冷却停止時の長さ方向の温度分布を把握する等の2
〜3の実験により容易に求めることかできる。
(lltl Delay the end of cooling a (injection end) time O Appropriate flow rate distribution in the length direction of the metal tube in the cooling PC on the outer surface and/or appropriate cooling start time and/or end time at each position in the longitudinal direction , without any active cooling from the outside surface, or with cooling from the outside surface under the same conditions at each position in the length direction, cooling is performed by blowing jet water into the inside surface, and the length when cooling is stopped. 2. Understand the temperature distribution in the direction, etc.
It can be easily determined by the experiment described in ~3.

尚外面冷却を行うノズルはスプレー、ミスト、ラミナー
70−などいずれでも良く特に限定されるものではない
が、少量の水で効率よく冷却するには、金属管に噴流が
衝突後もその外表面に沿って層流状の水膜が形成される
ラミナー70−か好ましい。
The nozzle for cooling the outer surface is not particularly limited and may be spray, mist, laminar 70-, etc., but in order to efficiently cool the metal tube with a small amount of water, it is necessary to keep the outer surface of the metal pipe cool even after the jet collides with it. Laminar 70- is preferred along which a laminar water film is formed.

以下本発明の詳細を実施例に基づきながら、説明する。The details of the present invention will be explained below based on examples.

第1図は比較的長尺細径厚肉の鋼管を水タンク中に浸漬
し、鋼管の一方の端から噴流を内面へ吹込む焼入方法で
見られた冷却速度の分布及び冷却の途中停止で見られた
温度の分布である。但し焼入条件の詳細は次に示す通勤
である。
Figure 1 shows the cooling rate distribution and mid-cooling stop observed in a quenching method in which a relatively long, thin-diameter, thick-walled steel pipe is immersed in a water tank and a jet is blown into the inner surface from one end of the steel pipe. This is the temperature distribution seen in . However, the details of the quenching conditions are as shown below.

鋼管17)?イス: 114X&6X290001+w
a内面噴流の流速:61/紅   。
Steel pipe 17)? Chair: 114X&6X290001+w
a Flow velocity of inner jet: 61/red.

II  の入側水m:30℃ 冷却開始温度;900℃ 冷却停止時期:内面吹込み後10秒 第1図めケースでは、内面噴流水が管内を進行するにつ
れ水温が上昇し、出口側水温は100℃以上の水温が数
秒間計測された。つまり、吐出端側は蒸気と水の2相流
となるほど水温上昇があり、かつr部で急激な圧力低下
があったものと推定される。このため、吐出端側では冷
却能力が劣下し、冷却速度が遅く、冷却途中停止後の温
度が高くなったと考えられる。しかし、水タンク中の浸
漬冷却では、内面噴流のかかる不均一を外面側から補償
的に解消してやること#−i困鑓である。
II Inlet side water m: 30℃ Cooling start temperature: 900℃ Cooling stop time: 10 seconds after inner injection In the case shown in Figure 1, the water temperature rises as the inner jet water advances inside the pipe, and the outlet side water temperature Water temperatures of over 100°C were measured for several seconds. In other words, it is presumed that the water temperature rose to such an extent that the flow became a two-phase flow of steam and water on the discharge end side, and that there was a sudden pressure drop at the r section. For this reason, it is thought that the cooling capacity deteriorated on the discharge end side, the cooling rate was slow, and the temperature after cooling was stopped midway was high. However, in immersion cooling in a water tank, it is difficult to compensate for the non-uniformity of the inner jet from the outer surface.

本発明はこのような内面噴流による温度の不均一を是正
したものであり、その実施例を第2図及び第3図(第2
図に対して縮小されて図示されている)に示す。この実
施例では、鋼管の外面はノズルからの噴射水によって冷
却され、かつ鋼管全長にわたって一様な焼入かえられる
べく制御されている。
The present invention corrects the temperature non-uniformity caused by the inner jet flow, and an embodiment thereof is shown in FIGS.
(shown on a reduced scale with respect to the figure). In this embodiment, the outer surface of the steel pipe is cooled by water jetted from a nozzle, and the hardening is controlled to be uniform over the entire length of the steel pipe.

即ち、第2図において、被焼入鋼管1を支持ロール群2
のうえにほぼ水平におき、回転を加える。
That is, in Fig. 2, the steel pipe to be hardened 1 is
Place it almost horizontally on top of the screen and rotate it.

そして、fI41rFの上方に直線的に配置された水噴
射ノズル群6からラミナー70−冷却水を鋼管頂上線に
垂下させ、鋼管外面を回転冷却する。一方、鋼管の内面
側は噴流を鋼管の一端(吹込端側T)から吹込み、他端
(吐出端側B)から吐出させて内面冷却する。鋼管は冷
却中回転させると共に、長手方向に例えば図示しない送
りローラー等の手段で君子移動させラミナーフローの衝
突点を移動させる。この実施例では、水噴射ノズルは内
径δ頗φの円管ノズルで、ノズルピッチ40mとした。
Then, the laminar 70-cooling water is dripped from the water injection nozzle group 6 arranged linearly above the fI41rF to the top line of the steel pipe, thereby rotationally cooling the outer surface of the steel pipe. On the other hand, the inner surface of the steel pipe is cooled by blowing a jet stream from one end (blowing end side T) of the steel pipe and discharging it from the other end (discharge end side B). The steel pipe is rotated during cooling and is moved in the longitudinal direction by means such as a feed roller (not shown) to move the collision point of the laminar flow. In this example, the water injection nozzle was a circular tube nozzle with an inner diameter of δ and φ, and the nozzle pitch was 40 m.

円管ノズルは管軸方向3m長のヘッダー4に接続し給水
する。かくのごとくヘッダー4を長さ方向に分割するこ
とにより、各ヘッダーは単独にあるいは複数個単位で流
量の制御、噴射開始時期の制御、噴射停止時期の制御が
可能となるので、不発EiAが容易に実施可能となって
いる。
The circular pipe nozzle is connected to a header 4 having a length of 3 m in the pipe axis direction to supply water. By dividing the header 4 in this way, it is possible to control the flow rate, injection start timing, and injection stop timing for each header individually or in units of multiple units, making it easy to prevent misfire EiA. It is now possible to implement

ところで、第1図に示したごとく内面噴流によって管軸
方向に不均一な温度分布が形成されてしまうが、この温
度偏差を少なくシ、温唯の均一化を図る外面冷却法とし
てこの実施例では次の3つの方法によっている。
By the way, as shown in Fig. 1, an uneven temperature distribution is formed in the tube axis direction due to the inner jet flow, but this embodiment uses an outer surface cooling method to reduce this temperature deviation and equalize the temperature. This is done using the following three methods.

(イ)外面冷却水の流量を長手方向で変える。(a) Change the flow rate of external cooling water in the longitudinal direction.

(ロ)外面冷却の開始時期を長手方向で変える・(ハ)
外面冷却の停止時期を長手方向で変える。
(b) Changing the start time of external cooling in the longitudinal direction (c)
Change the timing of stopping external cooling in the longitudinal direction.

焼入停止温度250°Cを目標とし、上記(イ)〜(ハ
)の各方法について実施した結果を、その時の実施表−
1から明らかなようにいずれの方法も効果的であり、長
手方向の温度分布は良好である。
Targeting a quenching stop temperature of 250°C, the results of each method (a) to (c) above are shown in the implementation table at that time.
As is clear from No. 1, both methods are effective and the temperature distribution in the longitudinal direction is good.

以上のように本発明に係る金属管の焼入方法は、内面噴
流吐出端はど外面冷ガ奪熱量を多くしたので内面噴流に
伴なう温度の不均一が是正されて金属管の長手方向の温
度が均一となり、従来焼入法の欠点が大幅に解消、改善
されている。このため、長尺鋼管の冷却停止(lnte
rrupted Quench )が可能となり、直接
焼入に伴う水素性欠陥の軽減と焼戻し工程における省エ
ネルギーが達成されている。
As described above, in the method for quenching metal tubes according to the present invention, the amount of heat absorbed by the cold gas on the outer surface is increased at the discharge end of the inner jet flow, so that the temperature non-uniformity associated with the inner jet flow is corrected, and the temperature in the longitudinal direction of the metal tube is corrected. temperature becomes uniform, and the drawbacks of conventional quenching methods are largely eliminated and improved. For this reason, the cooling of long steel pipes is stopped (lnte
ruptured quench) is now possible, reducing hydrogen defects associated with direct quenching and saving energy in the tempering process.

なお、単に焼入操作完了後の長手方向温度が均一である
ばかりでなく、管厚肉の平均冷却速度も長手方向に均一
であるためには、外面冷却水の流量を長手方向で調整す
る方法がもつとも望ましく、また制御も比較的容易であ
る。
In addition, in order not only to have a uniform temperature in the longitudinal direction after the completion of the quenching operation, but also to make the average cooling rate of the thick wall of the pipe uniform in the longitudinal direction, it is necessary to adjust the flow rate of the external cooling water in the longitudinal direction. It is also desirable to have this, and it is also relatively easy to control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷却途中停止の特性図、第2図及び第3v!J
Fiそれぞれ本発明の実施例に係る金属管の焼入方法の
正面説明図及び側面説明図である。 1・−・被焼入鋼管、2・・・支持p−ル詳、3・・・
ノズI%/群、4・・・ヘッダー。 代理人 弁理士  佐 藤 正 年 第1図 (酸1茄)(中火舒)(吐大喝) 豐軸方簡の紋費 第2図
Figure 1 is a characteristic diagram of cooling mid-stop, Figures 2 and 3 v! J
Fig. 1 is a front explanatory view and a side explanatory view of a method for quenching a metal tube according to an embodiment of the present invention; 1...Steel pipe to be hardened, 2...Support p-ru details, 3...
Nozzle I%/group, 4...Header. Agent: Masaru Sato, Patent Attorney Figure 1 of 2015 (1 cup of acid) (medium fire) (large fire) Figure 2 of the emblem of the Tojiku square

Claims (1)

【特許請求の範囲】 金属管内へ噴流水をその一端から吹込むと共に、肢管の
外面側をそのほぼ全長にわたりノズルから噴射される噴
流水の衝突により冷却する焼入方法において、前記金属
管の長さ方向の外面冷却を次に掲げる制御のうち少なく
とも1つを行うことを特徴とする金属管の焼入方法。 内面噴流水の吐出端側はど (1)噴射水量を大とする。 (11)その冷却開始(噴射開始)時期をはやめる。 GiDその冷却終了(噴射終了)時期をおくらせる。
[Claims] A quenching method in which a jet of water is blown into a metal tube from one end thereof, and the outer surface of the limb is cooled by collision of the jet of water jetted from a nozzle over almost the entire length of the metal tube. A method for quenching a metal tube, characterized in that longitudinal outer surface cooling is controlled by at least one of the following: The discharge end side of the inner jet water (1) increases the amount of water jetted. (11) The cooling start (injection start) timing is postponed. GiD delays the end of cooling (end of injection).
JP15066181A 1981-09-25 1981-09-25 Quenching method of metallic pipe Granted JPS5852427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15066181A JPS5852427A (en) 1981-09-25 1981-09-25 Quenching method of metallic pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15066181A JPS5852427A (en) 1981-09-25 1981-09-25 Quenching method of metallic pipe

Publications (2)

Publication Number Publication Date
JPS5852427A true JPS5852427A (en) 1983-03-28
JPS614896B2 JPS614896B2 (en) 1986-02-14

Family

ID=15501716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15066181A Granted JPS5852427A (en) 1981-09-25 1981-09-25 Quenching method of metallic pipe

Country Status (1)

Country Link
JP (1) JPS5852427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054287A1 (en) * 2012-10-04 2014-04-10 Jfeスチール株式会社 Method for manufacturing heavy wall steel pipe
JP2021112879A (en) * 2020-01-20 2021-08-05 三菱重工業株式会社 Resin lining execution method and resin lining cooling apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317271A (en) * 1987-06-22 1988-12-26 Kawasaki Steel Corp Cored wire for welding
JP2007321178A (en) 2006-05-30 2007-12-13 Sumitomo Metal Ind Ltd Steel pipe cooling method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054287A1 (en) * 2012-10-04 2014-04-10 Jfeスチール株式会社 Method for manufacturing heavy wall steel pipe
JP5896036B2 (en) * 2012-10-04 2016-03-30 Jfeスチール株式会社 Manufacturing method for thick-walled steel pipe
JPWO2014054287A1 (en) * 2012-10-04 2016-08-25 Jfeスチール株式会社 Manufacturing method for thick-walled steel pipe
US9506132B2 (en) 2012-10-04 2016-11-29 Jfe Steel Corporation Method for manufacturing heavy wall steel pipe
JP2021112879A (en) * 2020-01-20 2021-08-05 三菱重工業株式会社 Resin lining execution method and resin lining cooling apparatus

Also Published As

Publication number Publication date
JPS614896B2 (en) 1986-02-14

Similar Documents

Publication Publication Date Title
JP4586791B2 (en) Cooling method for hot-rolled steel strip
KR101045363B1 (en) Control chiller and cooling method of steel sheet
JP6813036B2 (en) Manufacturing equipment and manufacturing method for thick steel sheets
US4168993A (en) Process and apparatus for sequentially forming and treating steel rod
CN106661648A (en) Cooling facility and method
CN101880843B (en) Aluminum alloy piston spray quenching heat treatment process and device thereof
JPS5852427A (en) Quenching method of metallic pipe
CN102756000A (en) Jet flow cooling method and device in narrow slit water jacket passage of steel plate
KR101867706B1 (en) Apparatus for cooling
US4421575A (en) Method of cooling steel pipes
JPS629163B2 (en)
CN102747213A (en) Cooling method for continuous heat treatment of high-strength steel
JPS6261656B2 (en)
JPS58151418A (en) Method and device for carrying out steel heat treatment
TW202108264A (en) Secondary cooling method and device for continuously cast slab
JP2002038219A (en) Method for producing martensitic stainless steel pipe
JPS5967323A (en) Cooler of steel strip
JPH0533058A (en) Heat treatment method for steel pipe
WO2017221671A1 (en) Cooling device
JPH0899114A (en) Foam cooling method for high temperature steel
JPS61183415A (en) Cooling method of strip in continuous heat treatment furnace
JPH11269548A (en) Cooling method for inner and outer surfaces of steel pipe and cooling device for inner and outer surfaces
Padhy et al. Nozzle positioning for ultra-fast cooling of steel strips in a run out Table
JPS6045253B2 (en) Cooling control method for hot rolled wire rod
SU141843A1 (en) Method of cooling hot rolled and rolled products