[go: up one dir, main page]

JPS5852375B2 - Ocean interval equalization method - Google Patents

Ocean interval equalization method

Info

Publication number
JPS5852375B2
JPS5852375B2 JP10818879A JP10818879A JPS5852375B2 JP S5852375 B2 JPS5852375 B2 JP S5852375B2 JP 10818879 A JP10818879 A JP 10818879A JP 10818879 A JP10818879 A JP 10818879A JP S5852375 B2 JPS5852375 B2 JP S5852375B2
Authority
JP
Japan
Prior art keywords
equalizer
insertion interval
fixed
variable
ocean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10818879A
Other languages
Japanese (ja)
Other versions
JPS5632838A (en
Inventor
克昭 菊地
久雄 辻
芳男 野村
義博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10818879A priority Critical patent/JPS5852375B2/en
Publication of JPS5632838A publication Critical patent/JPS5632838A/en
Publication of JPS5852375B2 publication Critical patent/JPS5852375B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 本発明は、海底同軸ケーフル伝送方式の海洋区間等化方
式における等化器挿入法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for inserting an equalizer in an ocean section equalization system of a submarine coaxial cable transmission system.

従来、海底同軸ケーフル伝送方式の海洋区間等化方式は
海底中継伝送路で生じる等化度偏差と雑音余裕劣化の関
係に着目して設計され、海洋区間等化器の挿入間隔が決
められてきた。
Conventionally, ocean section equalization systems for submarine coaxial cable transmission systems have been designed by focusing on the relationship between equalization degree deviation and noise margin degradation that occur in submarine relay transmission lines, and the insertion interval of ocean section equalizers has been determined. .

例えば、C8−36M方式(電電公社)では海洋区間等
化器の挿入間隔は等化度偏差と雑音余裕劣化に着目して
求められている。
For example, in the C8-36M system (Electric Corporation), the insertion interval of the ocean section equalizer is determined by paying attention to the equalization degree deviation and noise margin deterioration.

(田畑、井出、袴田:”C8−36M方式の概要″、通
研実報VoL、23/163、P366(1974)、
参照)しかし、方式の広帯域化に伴い海底中継伝送路が
過負荷余裕制限形化してきたため、従来の如く等化度偏
差と雑音余裕劣化に着目した設計方法で等化器の挿入間
隔を決定することが不可能となってきた。
(Tabata, Ide, Hakamada: “Overview of the C8-36M system”, Tsuken Jitsho Vol. 23/163, P366 (1974),
(Reference) However, as submarine relay transmission lines have become more limited in their overload margins due to broadband transmission systems, equalizer insertion intervals are determined using conventional design methods that focus on equalization degree deviation and noise margin deterioration. It has become impossible.

即ち、従来の等比設計法で等化器を挿入すれば、中継器
が過負荷状態となるためである。
That is, if an equalizer is inserted using the conventional geometric design method, the repeater will be overloaded.

海底中継伝送路の過負荷余裕制限形化は、次に示す現象
で説明できる。
The overload margin limitation of submarine trunk transmission lines can be explained by the following phenomenon.

第1図は、現在、電電公社で研究中の伝送帯域100M
Hzを超える大容量海底同軸ケーブル伝送方式の海底中
継伝送路で生じる等化度偏差と雑音余裕劣化量および過
負荷余裕劣化量の関係を示している。
Figure 1 shows the 100M transmission band currently under research at the Telegraph and Telephone Public Corporation.
This figure shows the relationship between the equalization degree deviation, noise margin deterioration amount, and overload margin deterioration amount that occurs in the submarine relay transmission line of the large-capacity submarine coaxial cable transmission system exceeding Hz.

中継数に対応して累積する等化度偏差第1図aと雑音余
裕劣化第1図すおよび過負荷余裕劣化第1図Cを比較す
れば、同じ中継数で過負荷余裕劣化量は雑音余裕劣化量
よりもはるかに大きいことがわかる。
Comparing the equalization degree deviation accumulated in accordance with the number of relays in Figure 1a, the noise margin deterioration in Figure 1S, and the overload margin deterioration in Figure 1C, it can be seen that with the same number of relays, the amount of overload margin deterioration is equal to the noise margin It can be seen that this is much larger than the amount of deterioration.

例えば、50中継における雑音余裕劣化量は約3dBで
あるが、過負荷余裕劣化量は約9dBと大きい。
For example, the amount of noise margin deterioration in 50 relays is about 3 dB, but the overload margin deterioration amount is as large as about 9 dB.

即ち、方式の広帯域化に伴い、海底中継伝送路は過負荷
余裕制限形化しているといえる。
In other words, it can be said that as the bandwidth of the system becomes wider, the overload margin of submarine relay transmission lines is becoming limited.

従って本発明の目的は海底同軸ケーブル伝送方式の広帯
域化に伴う海底中継伝送路の過負荷余裕制限形化に対処
すること、及び各等化器の挿入間隔を固定等化器の挿入
間隔の整数倍とL−で等化器を整然と装置(ルた海洋区
間等化方式を提供することにある。
Therefore, an object of the present invention is to deal with the overload margin limitation of submarine relay transmission lines due to the broadbandization of submarine coaxial cable transmission systems, and to fix the insertion interval of each equalizer to an integer of the equalizer insertion interval. The object of the present invention is to provide an ocean section equalization method using an equalizer in an orderly manner.

本発明は海底中継伝送路で生じる等化度偏差を補償する
海洋区間等化方式において、方式過負荷余裕を海洋区間
等化器構成要素である固定等化器、半固定等化器および
可変等化器に配分して各等化器の挿入間隔を定め、上記
3種類の等化器のいずれかの組合せ、またはすべての等
化器を、固定等化器の挿入間隔と一致して挿入される海
洋区間等化器に内蔵させることを特徴とする。
The present invention utilizes a fixed equalizer, a semi-fixed equalizer, a variable equalizer, etc., which are components of the ocean section equalizer, in an ocean section equalization method that compensates for equalization degree deviations occurring in submarine relay transmission lines. determine the insertion interval of each equalizer, and insert any combination of the above three types of equalizers, or all the equalizers, in accordance with the insertion interval of the fixed equalizer. It is characterized by being built into the ocean section equalizer.

以下図面により実施例を説明する。Examples will be described below with reference to the drawings.

第2図は本発明の原理を示しており、1は陸揚局、2は
海底中継伝送路(中継器とケーブルで構成される)、3
は固定等化器、4は半固定等化器、5は可変等化器、6
は挿入間隔の調整を示す矢印であり、この6が原理のポ
イントである。
Figure 2 shows the principle of the present invention, where 1 is a landing station, 2 is a submarine relay transmission line (consisting of repeaters and cables), and 3 is a landing station.
is a fixed equalizer, 4 is a semi-fixed equalizer, 5 is a variable equalizer, 6
is an arrow indicating adjustment of the insertion interval, and this 6 is the key point of the principle.

ここで、固定等化器3は布設前に明らかな等化度偏差で
ある中継器およびケーブルの設計・製造偏差を補償し、
半固定等化器4は布設によって生じる等化度偏差である
ケーブルのハンドリング効果等を補償し、可変等化器5
は布設後に生じる等化度偏差であるケーブル減衰量の経
時変化や海水温季節変動に伴う中継器利得およびケーブ
ル減衰量の変動を補償するものである。
Here, the fixed equalizer 3 compensates for design and manufacturing deviations of repeaters and cables that are obvious equalization degree deviations before installation,
The semi-fixed equalizer 4 compensates for cable handling effects, which are equalization degree deviations caused by installation, and the variable equalizer 5
This compensates for changes in cable attenuation over time, which are equalization deviations that occur after installation, and changes in repeater gain and cable attenuation due to seasonal changes in seawater temperature.

方式の過負荷余裕を固定等化器、半固定等化器および可
変等化器の3種類の等化器に重みづげ配分すれば、各等
化器の挿入間隔はそれぞれの等化器が補償すべき等化度
偏差による単位中継区間当りの過負荷余裕劣化量に応じ
て求められる。
If the overload margin of the method is weighted and distributed to three types of equalizers: fixed equalizer, semi-fixed equalizer, and variable equalizer, the insertion interval of each equalizer is It is determined according to the amount of overload margin deterioration per unit relay section due to the equalization degree deviation to be compensated.

しかし、単純に重みづけ配分したのでは第2図に示す如
(各等化器の挿入間隔n+o、nzo、n3o (中継
)の相対関係は何ら無いため等化器は海底に不規則に布
設されることとなり実用上不都合である。
However, if the weights were simply distributed, as shown in Figure 2 (because there is no relative relationship between the insertion intervals n+o, nzo, and n3o (relay) of each equalizer, the equalizers would be installed irregularly on the seabed. This is a practical disadvantage.

そこで本発明では、第2図の矢印6で示す如く半固定等
化器の挿入間隔n20および可変等化器の挿入間隔n3
oを固定等化器の挿入間隔nlOの整数倍に調整するこ
とを原理のポイントとし、重みづけ配分のパラメータと
して固定等化器と可変等化器の挿入間隔比を適用する。
Therefore, in the present invention, as shown by arrow 6 in FIG. 2, the insertion interval n20 of the semi-fixed equalizer and the insertion interval n3 of the variable equalizer are
The key point of the principle is to adjust o to an integral multiple of the insertion interval nlO of the fixed equalizer, and the ratio of the insertion intervals of the fixed equalizer and variable equalizer is applied as a parameter for weight distribution.

ただし、挿入間隔の調整は過負荷余裕を満足する範囲内
であることは当然である。
However, it is a matter of course that the insertion interval is adjusted within a range that satisfies the overload margin.

さて、各等化器の挿入間隔に相対関係を持たせつつ過負
荷余裕を3種類の等化器に重みづげ配分する等花器挿入
間隔算出手順は基本挿入則を示す第3図a −bを用い
て以下の如く示される。
Now, the procedure for calculating the equalizer insertion interval, in which the overload margin is weighted and distributed to the three types of equalizers while maintaining a relative relationship between the insertion intervals of each equalizer, is shown in Figure 3 a-b, which shows the basic insertion rules. It is shown below using .

第3図aは各等化器の挿入間隔を示し、第3図すは、第
3図aの結果をもとに各等化器を海洋区間等化器に内蔵
されて海底中継伝送路に規則的に挿入1゜た場合を示し
ている。
Figure 3a shows the insertion interval of each equalizer, and Figure 3a shows how each equalizer is built into the ocean section equalizer and connected to the submarine relay transmission line based on the results of Figure 3a. This shows the case of regular insertion of 1°.

海洋区間等化器のうち、7は固定等化器のみの構成、8
は固定等化器と半固定等化器の構成、9は固定等化器と
可変等化器の構成を示している。
Of the ocean section equalizers, 7 consists of only fixed equalizers, and 8
9 shows the configuration of a fixed equalizer and a semi-fixed equalizer, and 9 shows the configuration of a fixed equalizer and a variable equalizer.

なお、計算に用いる各記号は以下の如く定義する。Note that each symbol used in calculations is defined as follows.

ただし、N、 nl、n2、n3は未知数、a、 b、
、c、OMは既知数である。
However, N, nl, n2, n3 are unknown numbers, a, b,
, c, OM are known numbers.

N(=n3/n1):固定等化器と可変等化器の挿入間
隔比、nl:固定等化器の挿入間隔(中継)、n2:半
固定等化器の挿入間隔(中継)、n3:可変等化器の挿
入間隔(中継)、a:固定等化器で補償すべき等化度偏
差による単位中継区間当りの過負荷余裕劣化量(dB)
、b:半固定等化器で補償すべき等化度偏差による単位
中継区間当りの過負荷余裕劣化量(dB) 、c :可
変等化器で補償すべき等化度偏差による単位中継区間当
りの過負余裕劣化量(dB)、OM二方式の過負荷余裕
(dB)である。
N (=n3/n1): Fixed equalizer and variable equalizer insertion interval ratio, nl: Fixed equalizer insertion interval (relay), n2: Semi-fixed equalizer insertion interval (relay), n3 : insertion interval of variable equalizer (relay), a: amount of overload margin deterioration per unit relay section due to equalization degree deviation to be compensated for by fixed equalizer (dB)
, b: Overload margin deterioration amount (dB) per unit relay section due to equalization degree deviation to be compensated by the semi-fixed equalizer, c: per unit relay section due to equalization degree deviation to be compensated for by the variable equalizer The overload margin deterioration amount (dB) of OM2 and the overload margin (dB) of the two OM methods.

〔手順1〕挿入間隔比Nの上限値N、。[Step 1] Upper limit value N of the insertion interval ratio N.

算出ただし、〔〕はガウス記号 〔手順2〕パラメータNの範囲明確化 nlは過負荷余裕OMを挿入間隔比Nの場合における各
等化器の過負荷余裕劣化量で割って求められる。
Calculation However, [ ] is a Gaussian symbol [Procedure 2] Range clarification of parameter N nl is obtained by dividing overload margin OM by the amount of overload margin deterioration of each equalizer in the case of insertion interval ratio N.

ただし、可変等化器の前に位置する海洋区間等化器には
半固定等化器が存在するものとする。
However, it is assumed that a semi-fixed equalizer exists in the ocean section equalizer located before the variable equalizer.

〔手順4〕可変等化器挿入間隔n3算出 式(3)の結果を受けて、n3は挿入間隔比Nの定義か
ら次式のようになる。
[Step 4] Based on the result of the variable equalizer insertion interval n3 calculation formula (3), n3 is calculated as follows from the definition of the insertion interval ratio N.

n3−N−nl (中継)(4) 〔手順5〕半固定等化器挿入間隔n2算出(りOM−(
an1+en3 )<bn3の場合n2≦(N−1)n
l (中継)(5) (!りOM (an1+cn3)≧bn3の場合n2
≧N−n1=n3 (中継)(6)〔手順6〕最適挿
入間隔比Nの選択 N=1〜NmaXの範囲における各等化器の挿入間隔の
うち、最適挿入間隔比を選択する。
n3-N-nl (Relay) (4) [Step 5] Semi-fixed equalizer insertion interval n2 calculation (RIOM-(
If an1+en3)<bn3, then n2≦(N-1)n
l (Relay) (5) (!riOM (an1+cn3)≧bn3 if n2
≧N-n1=n3 (Relay) (6) [Step 6] Selection of optimal insertion interval ratio N Select the optimal insertion interval ratio from among the insertion intervals of each equalizer in the range of N=1 to NmaX.

なお、最適挿入間隔比Nの選択基準としては、(イ)等
化器総数最少、(0)海洋区間等化番数最少、←→可変
等化器最少等が差げられるが、どの基準を採用するかは
方式の適用領域により異なる。
The criteria for selecting the optimal insertion interval ratio N include (a) the minimum total number of equalizers, (0) the minimum number of equalization numbers for ocean sections, and the minimum number of variable equalizers. Whether it is adopted depends on the area in which the method is applied.

上記手順1〜手順6で求められた半固定等化器と可変等
化器の挿入間隔n2、n3は式(4)、(5)、(6)
で示される如く、固定等化器の挿入間隔n1 の整数倍
であることがわかる。
The insertion intervals n2 and n3 of the semi-fixed equalizer and variable equalizer obtained in steps 1 to 6 above are calculated using equations (4), (5), and (6).
As shown, it can be seen that it is an integral multiple of the insertion interval n1 of the fixed equalizer.

以上説明したように、本発明は海底同軸ケーブル伝送方
式の広帯域化に伴い海底中継伝送路が過負荷余裕制限形
化していることに置目し、固定等化器、半固定等化器お
よび可変等化器に対し過負荷余裕を配分することにより
上記3種類の等化器の挿入間隔を求めるものであり、方
式の広帯域化に対処できる海洋区間等化方式であるとい
える。
As explained above, the present invention focuses on the fact that submarine relay transmission lines are becoming limited in overload margin due to the broadbandization of submarine coaxial cable transmission systems. The insertion intervals of the three types of equalizers described above are determined by allocating overload margins to the equalizers, and it can be said that this is an ocean section equalization method that can cope with wide-band implementation.

特に、海洋区間等化器構成要素である固定等化器、半固
定等化器および可変等化器のいずれかの等化器の組合せ
、または3種類の等化器すべてを、固定等化器の挿入間
隔と挿入間隔の一致している海洋区間等化に内蔵させる
ことができる(第3図b)。
In particular, a combination of equalizers, or all three types of equalizers, which are ocean interval equalizer components, fixed equalizer, semi-fixed equalizer, and variable equalizer, or all three types of equalizers, It can be incorporated into the ocean section equalization whose insertion interval matches the insertion interval of 1 (Fig. 3b).

その結果、海底中継伝送路への海洋区間等化器の挿入は
期則的となるため布設が容易となる。
As a result, the ocean section equalizer can be inserted into the submarine relay transmission line periodically, making installation easier.

さらに、海洋区間等化器は上記3種類の等化器を複数内
蔵するため、挿入される各等化器の総数に較べ海洋区間
等化器の挿入数は著しく低減でき、経済化が図られる等
実用上の利点を有する。
Furthermore, since the ocean section equalizer incorporates a plurality of the three types of equalizers mentioned above, the number of ocean section equalizers to be inserted can be significantly reduced compared to the total number of each equalizer to be inserted, resulting in economic efficiency. It has other practical advantages.

また、第3図すにおいて固定等化器のみの構成を示す海
洋区間等化器7の余裕スペースは、布設前に予測不可能
な等化度偏差を補償する半固定等化器、あるいは位相等
化を行う群遅延等化器を内蔵させる応用例が可能である
In addition, the extra space of the ocean section equalizer 7, which shows the configuration of only a fixed equalizer in Figure 3, is not limited to a semi-fixed equalizer that compensates for unpredictable equalization degree deviations before installation, or a phase etc. An application example is possible in which a group delay equalizer that performs the equalization is built in.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは伝送帯域100■hを越える大容量海底同軸
ケーブル伝送方式の海底中継伝送路で生じる等化度偏差
を示す図、第1図すは第1図aの伝送路における雑音余
裕劣化量を示す図、第1図Cは第1図aの伝送路におけ
る過負荷余裕劣化量を示す図、第2図は本発明の詳細な
説明する図、第3図aは本発明により各等化器の挿入間
隔を調整した後の各等化器の挿入間隔を示す図、及び第
3図すは本発明に従って各等化器を海洋区間等化器に内
蔵させた状態を示す図である。 1・・・・・・陸揚局、2・・・・・・海底中継伝送路
(中継器とケーブルで構成)、3・・・・・・固定等化
器、4・・・・・・半固定等化器、5・・・・・・可変
等化器、6・・・・・・等比容挿入間隔の調整を示す矢
印、7・・・・・・固定等化器のみの構成の海洋区間等
化器、8・・・・・・固定等化器と半固定等化器で構成
される海洋区間等化器、9・・・・・・固定等化器と可
変等化器で構成される海洋区間等化器。
Figure 1a shows the equalization degree deviation that occurs in the submarine relay transmission line of the large-capacity submarine coaxial cable transmission system with a transmission band exceeding 100 h. FIG. 1C is a diagram showing the amount of overload margin deterioration in the transmission line of FIG. 1a, FIG. 2 is a diagram explaining the present invention in detail, and FIG. FIG. 3 is a diagram showing the insertion interval of each equalizer after adjusting the insertion interval of the equalizer, and FIG. 3 is a diagram showing a state in which each equalizer is built into the ocean section equalizer according to the present invention. . 1... Landing station, 2... Submarine relay transmission line (consisting of repeaters and cables), 3... Fixed equalizer, 4... Semi-fixed equalizer, 5...variable equalizer, 6...arrow indicating adjustment of isovolume insertion interval, 7...configuration of only fixed equalizer ocean interval equalizer, 8... ocean interval equalizer composed of a fixed equalizer and a semi-fixed equalizer, 9...... fixed equalizer and variable equalizer An ocean interval equalizer consisting of.

Claims (1)

【特許請求の範囲】[Claims] 1 海底同軸ケーフル伝送方式の過負荷余裕を海洋区間
等化器構成要素である、布設前に明らかな等化度偏差を
補償する固定等化器と、布設によって生じる等化度偏差
を補償する半固定等化器および布設後に生じる等化度偏
差を補償する可変等化器に重みづげ配分し、各等化器に
配分された過負荷余裕を各等化器が補償すべき等化度偏
差による単位中継区間当りの過負荷余裕劣化量で割り、
少数点板下切り捨てによる整数化により各等化器の海底
中継伝送路への挿入間隔を定めるごとき海洋区間等化方
式であって、固定等化器と可変等化器の挿入間隔比(整
数)をパラメータとすることにより、まず可変等化器の
挿入間隔が固定等化器の挿入間隔の整数倍となる固定等
化器と可変等化器の挿入間隔を定め、次に半固定等化器
の挿入間隔を固定等化器の挿入間隔の整数倍となるごと
く定め、半固定等化器と可変等化器の挿入間隔を固定等
化器の挿入間隔の整数倍とすることにより、固定等化器
、半固定等化器および可変等化器を固定等化器の挿入間
隔と一致して挿入される海洋区間等化器に内蔵されるこ
とを特徴とする海洋区間等化方式。
1. The overload margin of the submarine coaxial cable transmission system can be reduced by using a fixed equalizer that compensates for obvious equalization degree deviations before installation, which are components of the ocean section equalizer, and a semi-equalizer that compensates for equalization degree deviations caused by installation. The equalization degree deviation that each equalizer should compensate for the overload margin distributed to each equalizer by weighting and distributing it to the fixed equalizer and the variable equalizer that compensates for the equalization degree deviation that occurs after installation. Divide by the amount of overload margin deterioration per unit relay section by
An ocean section equalization method that determines the insertion interval of each equalizer into the submarine relay transmission line by rounding down the decimal point board to an integer, and the insertion interval ratio (integer) of the fixed equalizer and variable equalizer. By using as a parameter, first determine the insertion interval of the fixed equalizer and variable equalizer such that the insertion interval of the variable equalizer is an integral multiple of the insertion interval of the fixed equalizer, and then determine the insertion interval of the semi-fixed equalizer. By setting the insertion interval of the semi-fixed equalizer and the variable equalizer to be an integral multiple of the insertion interval of the fixed equalizer, An ocean section equalization method characterized in that an ocean section equalizer, a semi-fixed equalizer, and a variable equalizer are built into an ocean section equalizer that is inserted in accordance with the insertion interval of the fixed equalizer.
JP10818879A 1979-08-27 1979-08-27 Ocean interval equalization method Expired JPS5852375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10818879A JPS5852375B2 (en) 1979-08-27 1979-08-27 Ocean interval equalization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10818879A JPS5852375B2 (en) 1979-08-27 1979-08-27 Ocean interval equalization method

Publications (2)

Publication Number Publication Date
JPS5632838A JPS5632838A (en) 1981-04-02
JPS5852375B2 true JPS5852375B2 (en) 1983-11-22

Family

ID=14478229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10818879A Expired JPS5852375B2 (en) 1979-08-27 1979-08-27 Ocean interval equalization method

Country Status (1)

Country Link
JP (1) JPS5852375B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184272U (en) * 1987-05-21 1988-11-28
JPH0236674U (en) * 1988-09-02 1990-03-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT385384B (en) * 1986-07-28 1988-03-25 Stastny & Schroegendorfer Ges SPEAKER COVER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184272U (en) * 1987-05-21 1988-11-28
JPH0236674U (en) * 1988-09-02 1990-03-09

Also Published As

Publication number Publication date
JPS5632838A (en) 1981-04-02

Similar Documents

Publication Publication Date Title
US5455844A (en) Selection diversity system using decision feedback equalizer in digital mobile telecommunication systems
GB2307150A (en) Interference reduction in telecommunications systems
US7065134B2 (en) Adaptive equalizer with large data rate range
JPS6349928B2 (en)
EP0030037B1 (en) Amplitude equalizer, particularly for use in a signal transmission system
JPS5852375B2 (en) Ocean interval equalization method
JPS59201534A (en) Adaptive equalizing method for digital signal and adaptive equalizer
KR840002599A (en) Finite impulse responsive balanced filters installed in transceivers in telecommunication systems
US5245556A (en) Adaptive equalizer method and apparatus
US4028644A (en) System equalization for repeatered submarine cable system
EP0123315B1 (en) Transversal type equalizing method
JP7139909B2 (en) waveform equalizer
EP2613488B1 (en) Adaptive equalization method and adaptive equalizer
US11184209B1 (en) Signal processing circuit in digital domain and method thereof
Lee et al. Adaptive MIMO equalization for few-mode fiber transmission with various differential mode delays
JPH11215068A (en) Optical gain equalizing device and method
US1944297A (en) Distortion correcting for transmission lines
Szentirmai The problem of phase equalization
JP2000224080A (en) Device and method for equalizing line
US2258047A (en) Wave transmission system
US3270147A (en) Repeatered telephone systems
US2231527A (en) Transmission regulation
JPS6076822A (en) Equalization system
CN113824659B (en) Signal processing circuits and methods in the digital domain
US1624551A (en) Multiplex transmission