JPS5851715A - Partially eccentric structure type conduit aerial cable system - Google Patents
Partially eccentric structure type conduit aerial cable systemInfo
- Publication number
- JPS5851715A JPS5851715A JP15002181A JP15002181A JPS5851715A JP S5851715 A JPS5851715 A JP S5851715A JP 15002181 A JP15002181 A JP 15002181A JP 15002181 A JP15002181 A JP 15002181A JP S5851715 A JPS5851715 A JP S5851715A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- conduit
- aerial cable
- spacer
- insulating spacer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 125000006850 spacer group Chemical group 0.000 claims description 54
- 239000004020 conductor Substances 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 230000005684 electric field Effects 0.000 description 12
- 238000009413 insulation Methods 0.000 description 8
- 229910018503 SF6 Inorganic materials 0.000 description 4
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
Landscapes
- Installation Of Bus-Bars (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は管路気中ケーブル方式において、部分的に偏
心構造型の管路気中ケーブルユニットを接続した部分偏
心構造型管路気中ケーブル方式に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a partially eccentric structure type aerial pipe cable system in which partially eccentric structure type pipe line aerial cable units are connected.
従来管路気中ケーブル方式は第1図に示すように、導体
1 、 ”1 ’ に厚内の銅パイプ又はアルミパイプ
を採用し、これを主としてエポキシ樹脂製の柱状形絶縁
スペーサ2・・・又は円錐筒状形コーンスペーサ2′・
・・で鉄、アルミ、ステンレス等かうするパイプ状の金
′属シース4.4″ 内に同軸状に支持固定して配設さ
れてなる管路気中ケーブルユニッ)1、■・・・の導体
1.1# の対向する端部に、それぞれプラグイン・
コンタクト5を設けて、これにより導体1.II を接
続すると共に金属シース4.4・の対向する端部に設け
られた接続フランジ6.6′ を気密に締付けて接続
し、導体l。As shown in Figure 1, the conventional conduit aerial cable system employs a thick copper pipe or aluminum pipe as the conductor 1, "1", and this is mainly connected to a columnar insulating spacer 2 made of epoxy resin. Or conical cylindrical cone spacer 2'.
A conduit aerial cable unit that is coaxially supported and fixed within a pipe-shaped metal sheath 4.4" made of iron, aluminum, stainless steel, etc.) 1. Plug in the opposite ends of the conductor 1.1#, respectively.
A contact 5 is provided, thereby connecting the conductor 1. II and the connecting flanges 6.6' provided at the opposite ends of the metal sheath 4.4.
1″ と金属シース4.4″簡のそれぞれの空間をζは
絶縁性のすぐれた8F、ガス(六ふり化硫黄ガス)等の
絶縁ガス3が充填されたものであった。叙上の従来の方
式においては絶縁ガス3の充填圧力が比較的低い場合(
約1.0〜15 Q/、 ”ゲージ圧)には前記空間の
耐電圧と前記絶縁スペーサ2・・・、2#・・・の沿面
耐電圧とは略同−絶縁特性を維持しているが、SF、ガ
ス3の耐電圧特性は該ガスのその充填圧力と共に増加す
るので、管路気中ケーブルの耐電圧特性を上げるため封
入するSF、ガス3の充填圧力を高めた場合、絶縁スペ
ーサ2.2′ の沿面の耐電圧特性は、スペーサを導体
あるいはシースとの結合部のガス、金属絶縁体が接触す
る部分での電界の乱れにより、SF6ガス8の充填空間
の耐電圧特性に比し、相対的に著しく低下することがあ
る。前記両者の耐電圧特性を平衡せしめるためには第1
図ならびに第2図において矢印Aにて示した柱状形絶縁
スペーサ2の沿面の長さを該スペーサ2と金属シース4
との間の距離(第1図、第2図において矢印Bにて示す
)に比し相対的に長くとることが効果的であり、又管路
気中ケーブルユニット■に示すように円錐筒状スペーサ
2′の場合には円錐筒状部の長さを長くする事が効果的
であることが知られている。しかしながら柱状形絶縁ス
ペーサ2の場合には脚柱が一本として構成されるため所
要の強度を得るためには脚柱を太くしなければならずそ
の結果狭い空間に太い脚柱が立設されるため、構造上ス
ペーサの沿面長さを長くすることが困難となり導体1と
金属シース4間の沿面距離が相対的に短かくなる。又柱
状スペーサの場合電界の方向と柱状形絶縁スペーサ2の
脚柱部の沿面の方向とが略一致しているため沿面の電界
がコーン・スペーサの沿面の電界に比べて大きくなり、
SF6ガス3の耐電圧特性が局部の最大電界によって支
配されるため、導体近傍あるいは、シース近傍の絶縁ス
ペーサ表面あるいは、スペーサ取付部等の最大電界付近
のごく微小領域で放電条件が成立すると、それが更に電
界の弱い領域まで進展して全路絶縁破壊になる。これに
対して円錐筒状絶縁方式のコーン・スペーサ2・では沿
面方向と電界の方向とが交差するので沿面方向の電界強
度は大巾(約178〜1/4程度)に低減する。なお第
2図は第1図におけるX−X断面図で第8図は第1図に
おけるY−Y矢視方法端面図であり2a、2’a は
それぞれ前記スペーサ2及び2gのスペーサスリーブで
ある。The spaces of the 1" and 4.4" metal sheaths were each filled with an insulating gas 3 such as 8F and gas (sulfur hexafluoride gas) having excellent insulation properties. In the conventional method described above, when the filling pressure of the insulating gas 3 is relatively low (
Approximately 1.0 to 15 Q/, gauge pressure), the withstand voltage of the space and the creeping withstand voltage of the insulating spacers 2..., 2#... are approximately the same - maintaining insulation properties. However, the withstand voltage characteristics of SF and gas 3 increase with the filling pressure of the gas, so when the filling pressure of SF and gas 3 to be enclosed is increased in order to improve the withstand voltage characteristics of the pipe line aerial cable, the insulating spacer 2.2' creeping voltage characteristics are compared to the voltage resistance characteristics of the space filled with SF6 gas 8 due to the disturbance of the electric field at the part where the spacer is connected to the conductor or sheath and the gas and metal insulators come into contact. However, in some cases, there is a relatively significant decrease in the withstand voltage characteristics.
The length of the creeping surface of the columnar insulating spacer 2 indicated by arrow A in the figure and FIG.
It is effective to make the distance relatively long compared to the distance (indicated by arrow B in Figures 1 and 2). In the case of the spacer 2', it is known that increasing the length of the conical cylindrical portion is effective. However, in the case of the columnar insulating spacer 2, since it is constructed as a single pillar, the pillar must be made thicker in order to obtain the required strength, and as a result, a thicker pillar is erected in a narrow space. Therefore, it is structurally difficult to increase the creepage length of the spacer, and the creepage distance between the conductor 1 and the metal sheath 4 becomes relatively short. In addition, in the case of a columnar spacer, since the direction of the electric field and the direction of the creeping surface of the columnar part of the columnar insulating spacer 2 are approximately the same, the electric field on the creeping surface is larger than that of the cone spacer.
Since the withstand voltage characteristics of SF6 gas 3 are controlled by the local maximum electric field, if discharge conditions are established in a very small area near the maximum electric field, such as near the conductor, the surface of the insulating spacer near the sheath, or the spacer mounting area, the This further progresses to areas where the electric field is weak, resulting in total circuit dielectric breakdown. On the other hand, in the conical cylindrical insulation type cone spacer 2, since the creeping direction and the direction of the electric field intersect, the electric field strength in the creeping direction is greatly reduced (about 178 to 1/4). Note that FIG. 2 is a sectional view taken along the line X-X in FIG. 1, and FIG. 8 is an end view taken along the Y-Y arrow direction in FIG. 1, and 2a and 2'a are spacer sleeves of the spacers 2 and 2g, respectively. .
この発明は成上に鑑みなされたもので、柱状形絶縁スペ
ーサ2・・・によって支持固定配設される導体lを金属
シース4に対し偏心せしめて配置し、円錐筒状絶縁スペ
ーサ2′ にて金属シース4′ と同軸状に支持固定配
設された導体1′ を有する管路気中ケーブルユニット
■に接続可能とすると共に、充填された絶縁ガス(8F
6ガス)3の充填圧力を上昇せしめた場合も前記絶縁ガ
ス3の耐電圧特性と柱状形絶縁スペーサ2の耐電圧特性
(沿面絶縁特性)とが平衡を維持し、かつ円錐筒状絶縁
スペーサ(コーン・スペーサ) 2’ t’有スル同軸
状管路気中ケーブルユニット■に円滑に接続することが
できる部分偏心構造型管路気中ケーブル方式を提供する
のをその目的とする。This invention was made in view of the growth of the industry, and the conductor l supported and fixed by column-shaped insulating spacers 2 is arranged eccentrically with respect to the metal sheath 4, and the conductor l is arranged eccentrically with respect to the metal sheath 4. It is possible to connect to the conduit aerial cable unit ■ which has the conductor 1' supported and fixed coaxially with the metal sheath 4', and it also has an insulating gas filled (8F
Even when the filling pressure of the insulating gas 3 is increased, the withstand voltage characteristics of the insulating gas 3 and the withstand voltage characteristics (creeping insulation characteristics) of the columnar insulating spacer 2 maintain a balance, and the conical cylindrical insulating spacer ( The purpose of this invention is to provide a partially eccentric structure type conduit aerial cable system that can be smoothly connected to a coaxial conduit aerial cable unit (2) with a cone spacer).
この発明の要旨は成上の特許請求の範囲に記載した部分
偏心構造型管路気中ケーブル方式の構成にある。The gist of the present invention lies in the structure of the partially eccentric structure type conduit aerial cable system described in the above claims.
以下この発明を、その実施例の−を示した図面を参照し
ながら詳細に説明する。第4図はこの発明にかかる部分
偏心構造型管路気中ケーブル房式の基本構成の実施例の
金属シース縦断側□面図である。同図において管路気中
ケーブルユニット1′は導体21が金属シース24に対
し偏心位置に配設固定支持されるよう構成され、これに
接続される管路気中ケーブルユニット■′ は導体21
′ は金属シース24′に対し同軸形に構成されてい
る。Hereinafter, the present invention will be explained in detail with reference to the drawings showing the embodiments thereof. FIG. 4 is a longitudinal cross-sectional side view of the metal sheath of an embodiment of the basic configuration of the partially eccentric structure type conduit air cable tuft type according to the present invention. In the figure, a conduit aerial cable unit 1' is constructed such that a conductor 21 is arranged and fixedly supported at an eccentric position with respect to a metal sheath 24, and a conduit aerial cable unit 1' connected to this is configured so that a conductor 21 is arranged and fixed at an eccentric position with respect to a metal sheath 24.
' is constructed coaxially with respect to the metal sheath 24'.
上記導体偏心型管路気中ケーブルユニット1′において
は柱状形絶縁スペーサ22により導体21が支持固定さ
れ、その脚柱部の長さはあらかじめ設定された導体21
の偏心量だけ長くして、導体21を柱状形絶縁スペーサ
22のスリーブ22aを介して支持し、導体22を金属
シース24に対し同一偏心量を維持して配設支持固定さ
れ、又前記同軸型管路気中ケーブルユニット■・ にお
いては円錐筒状形絶縁スペーサ22′の円錐形部分の長
さを偏心ユニット側の長脚の柱状スペーサの耐−電圧特
性以上の特性を得るより、あらかじめ設定された長さに
適合するより長く形成し、前記円錐筒状形絶縁スペーサ
22′の中心軸線と導体21’ の中心軸線とを一致
せしめて金属シース24′ に対し同軸状に導体21’
がスペーサスリブ22’aを介して前記絶縁スペー
サ22′ により支持固定されている。成上のように構
成された偏心構造型管路気中ケーブルユニット1′ と
同軸型管路気中ケ−プルユニット■・ とのそれぞれの
導体21と21’とは、偏心構造型管路気中ケーブルユ
ニット1′における導体21の接続端部に、例えば偏心
ブロック25a を固着し、この偏心ブロック25a
にプラグインコンタクト25を金属シース24と同
軸的に固着し、該プラグインコンタクト25を同軸型管
路気中ケーブルユニット■′のパイプ状形導体21’
の端部に嵌入することにより接続される。このような
偏心ブロックを使用する場合のほか、プラグイン・コン
タクトに同様な機能をもたせても同様の効果がある。し
たがって完成した偏心構造型管路気中ケーブルユニット
I#の接続端末は常に金属シース24に対し同軸位置に
構成されるので管路気中ケーブルユニ7)1・の互換性
が得られる。又金属シース24.24’はそれぞれの両
端に一体的に形成されているシース接続フラ:/ジ26
,26・を図面には示していないがボルトナツトで気密
に緊締して接続される。管路気中ケーブルユニットl′
・・・ l[l・・・を成上の如く接続することにより
部分偏心構造型管路気中ケーブル方式が形成される。又
管路気中ケーブルユニットlにおいて、第5図(b)の
柱状形絶縁スペーサの横断面図に示すごとく導体21の
断面形状を楕円状形導体21b に成形して偏心柱状形
スペーサ22bによりその長袖が前記スペーサ22b
の長脚部横断面中心線に直角となるよう配設支持固定
すれば導体21b の電界方面の曲率が大きくなるた
め柱状形絶縁スペーサ22b の耐電圧に一次的に影
響を及ぼす電界強度を局部的に緩和することができてそ
の耐電圧を高めることができると共に上下方向の導体寸
法が短かくなるため柱状長脚型絶縁スペーサ22b
の有効沿面長さを増加せしめる事と相俟って該スペーサ
22b の耐電圧特性を向上せしめることができる。In the above-mentioned conductor eccentric type conduit aerial cable unit 1', the conductor 21 is supported and fixed by the columnar insulating spacer 22, and the length of the pillar part is determined by the preset length of the conductor 21.
The conductor 21 is supported via the sleeve 22a of the columnar insulating spacer 22, and the conductor 22 is arranged, supported and fixed to the metal sheath 24 while maintaining the same eccentricity, and the coaxial type In the conduit aerial cable unit, the length of the conical part of the conical cylindrical insulating spacer 22' is set in advance in order to obtain characteristics that are higher than the withstand voltage characteristics of the columnar spacer with long legs on the eccentric unit side. The length of the conical insulating spacer 22' and the conductor 21' are made to coincide with each other, so that the conductor 21' is coaxially connected to the metal sheath 24'.
is supported and fixed by the insulating spacer 22' via the spacer rib 22'a. The conductors 21 and 21' of the eccentric structure type air conduit cable unit 1' and the coaxial type air conduit cable unit 1, which are configured as shown above, are For example, an eccentric block 25a is fixed to the connection end of the conductor 21 in the middle cable unit 1'.
The plug-in contact 25 is coaxially fixed to the metal sheath 24, and the plug-in contact 25 is connected to the pipe-shaped conductor 21' of the coaxial type air conduit cable unit ■'.
The connection is made by fitting the end of the In addition to using such an eccentric block, the same effect can be obtained by providing a plug-in contact with a similar function. Therefore, since the connection terminal of the completed eccentric structure type air conduit cable unit I# is always arranged in a coaxial position with respect to the metal sheath 24, compatibility of the air conduit cable unit 7) 1 is obtained. Further, the metal sheaths 24 and 24' have sheath connection flanges integrally formed at both ends thereof.
, 26 are not shown in the drawings, but are connected in an airtight manner with bolts and nuts. Pipeline aerial cable unit l'
By connecting . . . 1 [l . In addition, in the conduit aerial cable unit l, the cross-sectional shape of the conductor 21 is formed into an elliptical conductor 21b, as shown in the cross-sectional view of the columnar insulating spacer in FIG. 5(b), and the eccentric columnar spacer 22b is used to The long sleeve is the spacer 22b.
If the conductor 21b is arranged and supported so that it is perpendicular to the center line of the cross section of the long leg, the curvature of the conductor 21b in the direction of the electric field increases, so that the electric field strength that primarily affects the withstand voltage of the columnar insulating spacer 22b can be reduced locally. The columnar long leg type insulating spacer 22b can reduce the voltage and increase the withstand voltage, and the vertical conductor dimension can be shortened.
Together with increasing the effective creepage length of the spacer 22b, the withstand voltage characteristics of the spacer 22b can be improved.
なお第5図(a)は第4図におけるA−A断面図、第6
図は第4図におけるB −B断面矢視方向端面図である
。Note that FIG. 5(a) is a sectional view taken along line A-A in FIG.
The figure is an end view of the B-B cross section in the direction of arrows in FIG. 4.
この発明は成上の構成を有するので、柱状形絶縁スペー
サの脚柱部を長く形成することができ、その沿面距離が
長くなり、又導体形状を成上の断面楕円状形に形成すれ
ば柱状形絶縁スペーサの耐電圧に直接影響を及ぼす電界
の緩和が局部的に得られると共に長脚柱状形絶縁スペー
サにおける有効沿面距離の増加と相俟って柱状形絶縁ス
ペーサの耐電圧特性は向上する。又円錐筒状形絶縁スペ
ーサの円錐筒状部長さも長くしであるのでその沿面耐電
圧特性も向上して長脚柱状絶縁スペーサの絶縁特性と平
衡を保持させることができる。更に又長脚柱状絶縁スペ
ーサに支持固定配設されている管路気中ケーブルユニッ
トの導体の両端には偏心形プラグインコンタクトが固着
されプラグインコンタクトは常に金属シースと同軸位置
に配設されているので、異方式の管路気中ケーブルユニ
ットに簡単に接続して、容易迅速に部分偏心構造型管路
気中ケーブル方式を構成することができる。Since the present invention has a construction of the construction, the pillar portion of the columnar insulating spacer can be formed long, and its creepage distance becomes long. The electric field that directly affects the withstand voltage of the columnar insulating spacer can be locally relaxed, and together with the increase in the effective creepage distance of the long columnar insulating spacer, the withstand voltage characteristics of the columnar insulating spacer are improved. Further, since the length of the conical cylindrical portion of the conical cylindrical insulating spacer is also long, its creeping voltage withstand characteristics are improved, and it is possible to maintain a balance with the insulating characteristics of the long columnar insulating spacer. Furthermore, eccentric plug-in contacts are fixed to both ends of the conductor of the conduit aerial cable unit, which is supported and fixed on the long columnar insulating spacer, and the plug-in contacts are always arranged in a coaxial position with the metal sheath. Therefore, it is possible to easily connect to a conduit aerial cable unit of a different type to easily and quickly configure a partially eccentric structure type conduit aerial cable system.
又従来の管路気中ケーブルとの互換性もある。It is also compatible with conventional pipeline aerial cables.
例えば従来の方式では500KV 系80の場合金属
シース内径500■、導体外径180麿φ、スヘーサス
リーブ外径220鱈ψで金属シース内面と導体間の絶縁
距離がト■■ であったが、導体位置を80■絶縁スペ
ーサの脚柱方向上方に偏心せしめると前記脚柱部さを約
20%長くすることができ絶縁スペーサの耐電圧特性は
絶縁ガス(SF、ガス)の充填圧力を上昇せしめること
と相俟って、管路気中ケーブルの絶縁スペーサの沿面耐
電圧特性は著しく向上する。又この方式においては絶縁
体内部の電界を下げることができ固体絶縁体の貫通に対
する絶縁特性も向上せしめることができる。更に又偏心
構造型管路気中ケーブルユニットに接続される円錐筒状
絶縁スペーサに支持、固定され金属シースと同軸状に配
設された導体を有する管路気中ケーブルユニットにおい
ては前記絶縁スペーサの円錐筒状部の長さを長くしであ
るので該絶縁スペーサの耐電圧特性も向上することは言
うまでもない。For example, in the conventional system for a 500KV system 80, the metal sheath inner diameter was 500 mm, the conductor outer diameter was 180 mm, the spacer sleeve had an outer diameter of 220 mm, and the insulation distance between the metal sheath inner surface and the conductor was 7 mm, but the conductor position was By eccentrically moving the insulating spacer upward in the direction of the pillar, the length of the pillar can be increased by about 20%. Together with this, the creeping voltage withstand characteristics of the insulating spacer of the air conduit cable are significantly improved. Further, in this method, the electric field inside the insulator can be lowered, and the insulation properties against penetration of the solid insulator can also be improved. Furthermore, in a conduit aerial cable unit having a conductor supported and fixed to a conical cylindrical insulating spacer and disposed coaxially with a metal sheath, which is connected to an eccentric structure type conduit aerial cable unit, Needless to say, since the length of the conical cylindrical portion is increased, the withstand voltage characteristics of the insulating spacer are also improved.
この発明は成上の構成及び作用を有するので、この発明
に従えば柱状形絶縁スペーサの脚部の長さを長くして導
体を金属シースに対し偏心位置に支持、固定、配設した
管路気中ケーブルユニットと、円錐筒状絶縁スペーサの
円錐筒状部長さを長くして導体を金属シースIで対し同
軸的に支持、固定、配設した管路気中ケーブルユニット
とのそれぞれの導体を偏心プラグインコンタクトをもっ
て接続し、それぞれの導体と金属シース間に形成される
空間に従来よりも更に高圧の絶縁ガス(例えばSF6ガ
ス)を充填して、該絶縁ガスの耐電圧特性を向上せしめ
た場合、絶縁ガスの該電圧特性の向上に平衡して、それ
ぞれの管路気中ケーブルユニットのそれぞれの絶縁スベ
=すの耐電圧特性を容易かつ簡単に向上せしめることが
でき、信頼性の高い管路気中ケーブル方式を得る事がで
きその効果は工業上ならびに経済1著しい。Since the present invention has the above-described structure and operation, according to the present invention, the length of the leg portion of the columnar insulating spacer is increased to support, fix, and arrange the conductor at an eccentric position with respect to the metal sheath. The conductors of the aerial cable unit and the conduit aerial cable unit in which the length of the conical cylindrical part of the conical cylindrical insulating spacer is lengthened and the conductor is coaxially supported, fixed, and arranged with the metal sheath I are Connections are made using eccentric plug-in contacts, and the space formed between each conductor and metal sheath is filled with a higher voltage insulating gas (for example, SF6 gas) than before, improving the withstand voltage characteristics of the insulating gas. In this case, it is possible to easily and simply improve the voltage withstand characteristics of each insulating surface of each conduit aerial cable unit in balance with the improvement of the voltage characteristics of the insulating gas, and to create a highly reliable conduit. An underground cable system can be obtained, and its effects are significant industrially and economically.
第1図は従来の管路気中ケーブル方式の金属シースの中
心線縦断側面図、第2図は第1図におけるX−X断面図
、第3図は第1図におけるY−Y断面端面図、第4図は
この発明にかかる部分偏心構造型管路気中ケーブル方式
の金属シースの中心線縦断側面図、第5図はこの発明に
採用される偏心構造型管路気中ケーブルユニットにおけ
る絶縁スペーサの横断面図を示し図(a)は第4図にお
けるA−、A断面図、図(b)は前記管路気中ケーブル
ユニットの導体断面が楕円状形の場合の絶縁スペーサの
横断面図、第6図は第4図にふ・けるB−B断面矢視方
向端面図を示す。
21、21b、 21 ’・・・・・・導体、22.2
2b、 22’・・・・・・絶縁スベー?、22a、2
2’、・・・・・・絶縁スペーサスリーフ、23・・・
・・・絶縁ガス(8F、ガス)、24.24’・・・・
・・金属シース、25・・・・・・プラグインコンタク
ト、25.・・・・・・プラグインコンタクトの偏心ブ
ロック、26.26’・・・金属シース接続7ラン゛ジ
、l・・・・・・・偏心構造型管路気中ケーブルユニッ
ト l I・・・・・・同軸型管路気中ケーブルユニッ
ト。Fig. 1 is a centerline vertical sectional side view of a metal sheath of a conventional ductwork aerial cable system, Fig. 2 is a sectional view along the line X-X in Fig. 1, and Fig. 3 is an end view of the Y-Y sectional view in Fig. 1. , FIG. 4 is a longitudinal cross-sectional side view along the center line of the metal sheath of the partially eccentric structure type conduit aerial cable system according to the present invention, and FIG. 5 shows the insulation in the eccentric structure type conduit aerial cable unit adopted in the present invention. Figure (a) shows a cross-sectional view of the spacer, and Figure (a) is a cross-sectional view of A--A in Figure 4. Figure (b) is a cross-sectional view of the insulating spacer when the conductor cross section of the conduit aerial cable unit is elliptical. FIG. 6 shows an end view of the BB cross section in the direction of the arrow shown in FIG. 4. 21, 21b, 21'...Conductor, 22.2
2b, 22'...Insulation base? , 22a, 2
2',... Insulating spacer leaf, 23...
...Insulating gas (8F, gas), 24.24'...
...Metal sheath, 25...Plug-in contact, 25. ...... Eccentric block of plug-in contact, 26.26'... 7-range metal sheath connection, l... Eccentric structure type conduit aerial cable unit l I... ...Coaxial type air conduit cable unit.
Claims (1)
イプ状金属シース内に偏心して支持固定した管路気中ケ
ーブルユニットの導体と、長円雄部状形絶縁スペーサに
てパイプ状導体をパイプ状金属シース内に同軸的に支持
固定した同軸型管路気中ケー7’ルユニットの導体とを
偏心型ブラッグイン・コンタクト)てより又は偏心ブロ
ックを介在させて接続することを特徴とする部分偏心構
造型管路気中ケーブル方式。(1) A conductor of a conduit aerial cable unit in which a pipe-shaped conductor is eccentrically supported and fixed inside a pipe-shaped metal sheath with a long column-shaped insulating spacer, and a pipe-shaped conductor with an oval male part-shaped insulating spacer. is connected to the conductor of a coaxial type air cable unit coaxially supported and fixed within a pipe-shaped metal sheath through an eccentric type plug-in contact or via an eccentric block. Partially eccentric structure conduit aerial cable system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15002181A JPS5851715A (en) | 1981-09-22 | 1981-09-22 | Partially eccentric structure type conduit aerial cable system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15002181A JPS5851715A (en) | 1981-09-22 | 1981-09-22 | Partially eccentric structure type conduit aerial cable system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5851715A true JPS5851715A (en) | 1983-03-26 |
Family
ID=15487752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15002181A Pending JPS5851715A (en) | 1981-09-22 | 1981-09-22 | Partially eccentric structure type conduit aerial cable system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5851715A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02114813A (en) * | 1988-10-24 | 1990-04-26 | Mitsubishi Electric Corp | Gas insulated bus |
-
1981
- 1981-09-22 JP JP15002181A patent/JPS5851715A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02114813A (en) * | 1988-10-24 | 1990-04-26 | Mitsubishi Electric Corp | Gas insulated bus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205724746U (en) | A gas-insulated wall-piercing bushing for UHV DC projects | |
US4272642A (en) | Gas-insulated high-voltage bushing with shield electrode embedded in an annular insulating body | |
KR830008438A (en) | Gas insulated power lines | |
JPS5851715A (en) | Partially eccentric structure type conduit aerial cable system | |
US2141894A (en) | Cable for transmitting electric power | |
US4780577A (en) | Electrical bushing of a gas insulated electrical apparatus | |
US4328391A (en) | Gas insulated transmission line having tapered particle trapping ring | |
US1777071A (en) | Insulator | |
JPS63121419A (en) | Insulating spacer for gas insulated electric equipment | |
US4101727A (en) | High-tension electric cable | |
JPS6031386Y2 (en) | gas insulated termination box | |
JPS60193214A (en) | Gas bushing | |
SU1212333A3 (en) | Underground multipolesealed gas-filled high-voltage line | |
JPH029459Y2 (en) | ||
JPS6036981Y2 (en) | Particle trap for gas insulated equipment | |
JPS61190812A (en) | Flexible type conduit aerial bus | |
US2009854A (en) | Transmission line | |
JPH0130803Y2 (en) | ||
CN116189966A (en) | Insulating tubular bus and manufacturing method thereof | |
JPH03151608A (en) | Lead wire supporting equipment | |
KR100291666B1 (en) | Ultra high voltage cable connection | |
SU426241A1 (en) | CABLE DEVICE HIGH VOLTAGE | |
JPS5843398Y2 (en) | Power cable connection | |
JPS598006B2 (en) | butsing | |
JPH05211710A (en) | Connecting device for bar-shaped conductor |