JPS5849629Y2 - Container for semiconductor devices - Google Patents
Container for semiconductor devicesInfo
- Publication number
- JPS5849629Y2 JPS5849629Y2 JP1978092217U JP9221778U JPS5849629Y2 JP S5849629 Y2 JPS5849629 Y2 JP S5849629Y2 JP 1978092217 U JP1978092217 U JP 1978092217U JP 9221778 U JP9221778 U JP 9221778U JP S5849629 Y2 JPS5849629 Y2 JP S5849629Y2
- Authority
- JP
- Japan
- Prior art keywords
- container body
- container
- reference mark
- coordinates
- reference marks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49171—Fan-out arrangements
Landscapes
- Wire Bonding (AREA)
Description
【考案の詳細な説明】
この考案は、伸縮性がある絶縁性素材からなる容器本体
とこの容器本体の表面に形成されたインナーリードとを
備えた半導体装置用容器のワイヤポンチ゛イングが正確
に行われるための6良に関するものである。[Detailed description of the invention] This invention enables accurate wire punching of a container for semiconductor devices, which is equipped with a container body made of a stretchable insulating material and an inner lead formed on the surface of the container body. It is about the 6 good things to do.
第1図は従来の半導体装置用容器の要部の平面図である
。FIG. 1 is a plan view of the main parts of a conventional container for semiconductor devices.
第1図において、1はこの半導体装置用容器にボンディ
ングされる半導体素子、2は半導体素子1の一生面上に
形成された複数個の電極、3は半導体装置用容器の熱ま
たは加工による伸縮性のある絶縁性素材からなる容器本
体、4は良導電性金属からなり容器本体3の表面に電極
2に対応するように形成された複数個のインナーリード
、5は容器本体3に設けられ半導体素子1が固着される
素子固着領域、6は金Au、銀Agなどからなり相対応
する電極2とインナーリード4とをそれぞれ接続する金
属細線である。In FIG. 1, 1 is a semiconductor element bonded to this semiconductor device container, 2 is a plurality of electrodes formed on the entire surface of the semiconductor device 1, and 3 is elasticity of the semiconductor device container due to heat or processing. A container body made of a certain insulating material, 4 a plurality of inner leads made of a highly conductive metal and formed on the surface of the container body 3 to correspond to the electrodes 2, 5 a semiconductor element provided on the container body 3; 1 is an element fixing region to which it is fixed, and 6 is a thin metal wire made of gold Au, silver Ag, etc. and connecting the corresponding electrodes 2 and inner leads 4, respectively.
なお、素子固着領域5は必ずしもインナーリード4と同
一平面上にある必要はない。Note that the element fixing region 5 does not necessarily need to be on the same plane as the inner lead 4.
最近のワイヤボンディング技術の発展に伴い、ワイヤポ
ンチ゛イングの無人化・自動化が進んでいる。With the recent development of wire bonding technology, wire punching is becoming increasingly unmanned and automated.
この場合、多くは基本的には、容器本体3上に配置した
インナーリード4上のポンチ゛イング点の座標指定の半
導体素子1上の電極2の座標指定を行い、ミニコンピユ
ータまたはマイクロコンピュータによる制御によってワ
イヤボンディングを行うものである。In this case, basically, in most cases, the coordinates of the electrode 2 on the semiconductor element 1 are specified by the coordinates of the punching point on the inner lead 4 arranged on the container body 3, and the wire is connected under the control of a minicomputer or microcomputer. It performs bonding.
容器本体3に被熱または被圧による伸縮性がある場合、
X方向(第1図における横方向)およびY方向(第1図
における縦方向)の伸縮率が必ずしも同一でない場合が
起こる。If the container body 3 has elasticity due to heat or pressure,
There are cases where the expansion/contraction ratios in the X direction (horizontal direction in FIG. 1) and the Y direction (vertical direction in FIG. 1) are not necessarily the same.
特に、インナーリード4が微細化されたり、インナーリ
ード4の数が極めて多くなったりした場合には、指定さ
れた位置に確実なワイヤボンディングができない場合が
発生する。In particular, when the inner leads 4 are miniaturized or the number of inner leads 4 becomes extremely large, there may be cases where reliable wire bonding cannot be performed at a designated position.
この考案は、上記の点に鑑みてなされたものであり、容
器本体に同一直線上にない少なくとも3個の基準印を設
けて容器本体の表面に平行な任意の方向における容器本
体の伸縮率の算出を可能にすることによって、正確なワ
イヤポンチ゛イングを行うことができる半導体装置用容
器を提供することを目的としたもので゛ある。This idea was made in view of the above points, and it is possible to measure the expansion/contraction rate of the container body in any direction parallel to the surface of the container body by providing at least three reference marks that are not on the same straight line on the container body. It is an object of the present invention to provide a container for a semiconductor device that allows accurate wire punching by making calculation possible.
以下、実施例に基づいてこの考案を説明する。This invention will be explained below based on examples.
第2図はこの考案による半導体装置用容器の一実施例の
要部の平面図である。FIG. 2 is a plan view of a main part of an embodiment of a semiconductor device container according to this invention.
第2図において、第1図と同一符号は第1図にて示した
ものと同様のものを表わしている。In FIG. 2, the same reference numerals as in FIG. 1 represent the same components as shown in FIG.
3aは実施例の半導体装置用容器の容器本体、7a、7
b、7C,7dは容器本体の表面に形成され同一直線上
にはない4個の基準印である。3a is the container body of the semiconductor device container of the example, 7a, 7
b, 7C, and 7d are four reference marks formed on the surface of the container body and not on the same straight line.
4個の基準印7a、7b、7C,7dを同一直線上に並
ばないように配置することによって、容器本体3aがX
方向(第2図における横方向)およびY方向(第2図に
おける縦方向)に対して異なる伸縮率を有する場合でも
、4個の基準印7a、7b、7C,7dの互いの距離を
測定し、(すなわち、各座標を測定し)、この半導体装
置用容器の設計図面における値と比較することによって
、X方向およびY方向の伸縮率を容易に算出することが
できる。By arranging the four reference marks 7a, 7b, 7C, and 7d so that they are not aligned on the same straight line, the container body 3a is
Even if they have different expansion/contraction rates in the direction (horizontal direction in Figure 2) and the Y direction (vertical direction in Figure 2), the distances between the four reference marks 7a, 7b, 7C, and 7d can be measured. , (that is, by measuring each coordinate) and comparing it with the values in the design drawing of this semiconductor device container, the expansion/contraction ratios in the X direction and the Y direction can be easily calculated.
また、半導体素子1上に配置された電極2の場合は、半
導体素子1が素子固着領域5上に固着された後でも、半
導体素子1と電極2との互いの位置関係は変らないので
、半導体装置用容器の仮想のXY座標系とワイヤボンデ
ィング装置のxy座標系との相互の位置関係すなわち平
行移動量と回転角とを与えてやればよい。Furthermore, in the case of the electrode 2 disposed on the semiconductor element 1, even after the semiconductor element 1 is fixed on the element fixing region 5, the mutual positional relationship between the semiconductor element 1 and the electrode 2 does not change. The mutual positional relationship between the virtual XY coordinate system of the device container and the xy coordinate system of the wire bonding device, that is, the amount of parallel movement and the rotation angle may be given.
容器本体3aに異方性の伸縮性のある場合には、半導体
素子1の場合と同様の平行移動量と回転角を与える操作
では十分でない。When the container body 3a has anisotropic stretchability, the operation of providing the same amount of parallel movement and rotation angle as in the case of the semiconductor element 1 is not sufficient.
容器本体3aのインナーリード4に正確なワイヤボンデ
ィングを行うためには、上記の平行移動量および回転角
のほかに、容器本体3の各方向への伸縮率を与える必要
がある。In order to perform accurate wire bonding to the inner lead 4 of the container body 3a, it is necessary to provide the expansion/contraction ratio of the container body 3 in each direction in addition to the above-mentioned translation amount and rotation angle.
一例として4個の基準印7a、7b、7C,7dと各イ
ンナーリード4とが仮想の同−XY座標系上にあり、か
つ、基準印7aと基準印7bとを結ぶ直線、基準印7b
と基準印7Cとを結ぶ直線、基準印7Cと基準印7dと
を結ぶ直線、および基準印7dと基準印7aとを結ぶ直
線がX軸またはY軸と直交するように配置された場合を
例にとり、4個の基準印7 a 、7 b 、7 C,
7dの役割を具体的に説明する。As an example, the four reference marks 7a, 7b, 7C, 7d and each inner lead 4 are on the same virtual -XY coordinate system, and the straight line connecting the reference marks 7a and 7b is the reference mark 7b.
An example is a case where the straight line connecting the reference mark 7C and the reference mark 7C, the straight line connecting the reference mark 7C and the reference mark 7d, and the straight line connecting the reference mark 7d and the reference mark 7a are arranged so as to be perpendicular to the X-axis or the Y-axis. , four reference marks 7 a , 7 b , 7 C,
The role of 7d will be explained in detail.
ミニコンピユータまたはマイクロコンピュータの記憶数
値は、仮想のXY座標系上での、複数個のボンディング
点の座標A(XO,YO)、4個の基準印7 a 、7
b 、7 C,7dの各座標B(Xm。The numerical values stored in the minicomputer or microcomputer are the coordinates A (XO, YO) of multiple bonding points and four reference marks 7 a , 7 on a virtual XY coordinate system.
Each coordinate B (Xm.
Ym)、およびこれらの基準印間の設計図面上に指定さ
れた距離〔例えば、基準印7aと基準印7bとの間の距
離をLl、基準印7bと基準印7Cとの間の距離をL2
、基準印7Cと基準印7dとの間の距離をL3.基準印
7dと基準印7aとの間の距離をL4とする〕である。Ym), and the distance specified on the design drawing between these reference marks [for example, the distance between reference mark 7a and reference mark 7b is Ll, and the distance between reference mark 7b and reference mark 7C is L2.
, the distance between the reference mark 7C and the reference mark 7d is L3. The distance between the reference mark 7d and the reference mark 7a is L4].
次に問題となる容器本体3aの伸縮率の算出、およびポ
ンチ゛イング装置上に固定した容器本体3aと仮想のX
Y座標系との間の平行移動量と回転角との算出を行う必
要がある。Next, calculation of the expansion/contraction rate of the container body 3a, which is a problem, and the relationship between the container body 3a fixed on the punching device and the virtual
It is necessary to calculate the amount of translation and rotation angle with respect to the Y coordinate system.
平行移動量および回転角は、容器本体3a上にある2定
点を用いて仮想のXY座標系による座標値をボンディン
グ装置の実在座標系A(Xo、yo)への変換を行えば
よい。The amount of parallel movement and the rotation angle can be determined by converting the coordinate values in the virtual XY coordinate system to the real coordinate system A (Xo, yo) of the bonding apparatus using two fixed points on the container body 3a.
しかしながら、平行移動量および回転角の補正だけでは
、容器本体3aの伸縮性に異方性がある場合には、正確
な位置にボンディングを行うことは不可能である。However, if the container main body 3a has anisotropy in its elasticity, it is impossible to perform bonding at an accurate position by only correcting the amount of translation and the angle of rotation.
各方向に対する伸縮率には、容器本体3a上の4個の基
準隣7a、7b、7C,7dの座標を実測することで、
これらの基準印間の距離11.12,13,14(それ
ぞれLl、 L2. L3. L4に対応するもの)を
算出することができる。The expansion/contraction ratio in each direction is determined by actually measuring the coordinates of four reference neighbors 7a, 7b, 7C, and 7d on the container body 3a.
The distances 11, 12, 13, and 14 (corresponding to Ll, L2, L3, and L4, respectively) between these reference marks can be calculated.
従って、各方向への伸縮率にはに1=11/L1.に2
−12/L2゜k 1= l 3/ L3. k2=
l 4/ L4の形で示すことができる。Therefore, the expansion/contraction ratio in each direction is 1=11/L1. to 2
-12/L2゜k 1=l 3/L3. k2=
It can be expressed in the form l4/L4.
このようにして、伸縮性に異方性を有する容器本体3a
上に配置されたインナーリード4のボンディング点の座
標は記憶された仮想座標A(Xo、Yo)を2定点の実
測によるボンディング装置の実在座標A(xo、yo)
への変換と4個の基準印の実測による異方伸縮率の補正
A(klXo、に2yo)を行い、ワイヤボンディング
を行えばよいことがわかる。In this way, the container body 3a has anisotropy in elasticity.
The coordinates of the bonding point of the inner lead 4 placed above are determined by converting the stored virtual coordinates A (Xo, Yo) to the actual coordinates A (xo, yo) of the bonding device based on actual measurements at two fixed points.
It can be seen that it is sufficient to perform wire bonding after converting to 200 and correcting the anisotropic expansion/contraction ratio A (klXo, 2yo) by actually measuring the four reference marks.
上記の実施例では基準印が4個ある場合について述べた
が、同一直線上にない少なくとも3個の基準印があれば
よい。Although the above embodiment describes the case where there are four reference marks, it is sufficient to have at least three reference marks that are not on the same straight line.
なお、基準印の素材、形状、大きさ、および基準印間の
距離は特に規定しない。Note that the material, shape, and size of the reference marks, and the distance between the reference marks are not particularly specified.
以上詳述したように、この考案による半導体装置用容器
においては、伸縮性のある容器本体に同一直線上にない
少なくとも3個の基準印を設けたので、この基準印の座
標を測定することによって容器本体のその表面に平行な
任意の方向の伸縮率を算出することができ、伸縮率の異
方性を知ることができる。As detailed above, in the container for semiconductor devices according to this invention, at least three reference marks that are not on the same straight line are provided on the elastic container body, so that by measuring the coordinates of these reference marks, The expansion/contraction rate in any direction parallel to the surface of the container body can be calculated, and the anisotropy of the expansion/contraction rate can be determined.
従って、インナーリードのボンディング点の正確な位置
を算出することができ、正確なワイヤボンディングがで
きる。Therefore, the accurate position of the bonding point of the inner lead can be calculated, and accurate wire bonding can be performed.
第1図は従来の半導体装置用容器の要部の平面図、第2
図はこの考案による半導体装置用容器の一実施例の要部
の平面図である。
図において、1は半導体素子、2は半導体素子1の電極
、3,3aは容器本体、4はインナーリード、5は素子
固着領域、6は金属細線、7a、7b、7C,7dは基
準印である。
なお、図中同一符号はそれぞれ同一または相当部分を示
す。Figure 1 is a plan view of the main parts of a conventional container for semiconductor devices;
The figure is a plan view of essential parts of an embodiment of the semiconductor device container according to this invention. In the figure, 1 is a semiconductor element, 2 is an electrode of the semiconductor element 1, 3 and 3a are the container body, 4 is an inner lead, 5 is an element fixing area, 6 is a thin metal wire, and 7a, 7b, 7C, and 7d are reference marks. be. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
容器本体とこの容器本体の表面に形成されたインナーリ
ードとを備えたものにおいて、上記容器本体に同一直線
上にない少なくとも3個の座標測定専用の基準印を設け
、上記基準印の座標を測定することによって上記容器本
体の表面に平行な任意の断向における上記容器本体の被
熱または被圧による伸縮率を算出することが可能である
ようにしたことを特徴とする半導体装置用容器。In a container body made of an insulating material that is stretchable when subjected to heat or pressure, and an inner lead formed on the surface of the container body, at least three coordinates that are not on the same straight line on the container body. By providing a reference mark exclusively for measurement and measuring the coordinates of the reference mark, it is possible to calculate the expansion and contraction rate of the container body due to heat or pressure in any direction parallel to the surface of the container body. A container for a semiconductor device, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1978092217U JPS5849629Y2 (en) | 1978-07-03 | 1978-07-03 | Container for semiconductor devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1978092217U JPS5849629Y2 (en) | 1978-07-03 | 1978-07-03 | Container for semiconductor devices |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS559557U JPS559557U (en) | 1980-01-22 |
JPS5849629Y2 true JPS5849629Y2 (en) | 1983-11-12 |
Family
ID=29022183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1978092217U Expired JPS5849629Y2 (en) | 1978-07-03 | 1978-07-03 | Container for semiconductor devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5849629Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6253273U (en) * | 1985-09-24 | 1987-04-02 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53136479A (en) * | 1977-05-04 | 1978-11-29 | Fujitsu Ltd | Automatic alignment method |
-
1978
- 1978-07-03 JP JP1978092217U patent/JPS5849629Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS559557U (en) | 1980-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7219561B2 (en) | Force-detecting device | |
JP2002319028A (en) | Image processing method and device therefor, and bonding device | |
CN110793439A (en) | A Coordinate Unification Standard and Coordinate Unification Method of Multi-sensor Measuring Machine | |
KR101183101B1 (en) | Method of die bonding for flip chip | |
JPS5849629Y2 (en) | Container for semiconductor devices | |
JPS58171291A (en) | Detector for angle of inclination of robot | |
CN107368222B (en) | Array substrate, touch display panel and display device thereof | |
CN109099827B (en) | Method for detecting posture of pen body through capacitance and electromagnetic positioning double sensors | |
CN1776385A (en) | Six-dimensional force sensor integrated strain gauge | |
JPS6358121A (en) | Multifunctional matrix sensor | |
JP2621420B2 (en) | Bonding pads for semiconductor devices | |
CN102121943A (en) | Six-dimensional acceleration sensor based on minitype single-axis acceleration sensing element/sensor | |
CN116773054A (en) | A flexible pressure sensor based on the eddy current principle and its preparation method | |
JP2018119801A (en) | Body part contact force sensor | |
US4587977A (en) | Measuring device for determining the location of a stylus | |
CN221826067U (en) | A three-axis resistive surface strain gauge | |
CN222964648U (en) | Contactless level meter | |
CN114791278B (en) | Attitude angle sensing device and monitoring method based on geomagnetic field and gravity field perception | |
JPS6020938Y2 (en) | Parts for semiconductor integrated circuits | |
JP2982794B1 (en) | Semiconductor device | |
RU2011153C1 (en) | Method of calibrating measuring head | |
JP2673247B2 (en) | Morphometric strain gauge and morphometric detector using the same | |
KR950005139A (en) | Electronic component mounting system and mounting method | |
JPS62229009A (en) | Automatic measuring method for attitude and dimensions of object with line sensor | |
JPH03272151A (en) | Correction of position of wire bonding device |