[go: up one dir, main page]

JPS5848513A - Optical amplifier for wave shaping - Google Patents

Optical amplifier for wave shaping

Info

Publication number
JPS5848513A
JPS5848513A JP56147415A JP14741581A JPS5848513A JP S5848513 A JPS5848513 A JP S5848513A JP 56147415 A JP56147415 A JP 56147415A JP 14741581 A JP14741581 A JP 14741581A JP S5848513 A JPS5848513 A JP S5848513A
Authority
JP
Japan
Prior art keywords
optical
pulse
optical pulse
waveform
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56147415A
Other languages
Japanese (ja)
Other versions
JPS6159574B2 (en
Inventor
Kunihiko Washio
鷲尾 邦彦
Koichi Minemura
峰村 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56147415A priority Critical patent/JPS5848513A/en
Publication of JPS5848513A publication Critical patent/JPS5848513A/en
Publication of JPS6159574B2 publication Critical patent/JPS6159574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Amplifiers (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To obtain a waveform suitable for long-distance transmission and time division for an ultrahigh speed signal shaping and amplifying the waveform of an optical pulse, by providing an optical fiber inducing and scattering amplifying medium and an optically exciting mode synchronizing laser. CONSTITUTION:A part of an optical pulse 1 is transmitted by an optical branching device 2 to a timing extracting circuit 3. The circuit 3 extracts a clock frequency of the pulse 1, controls an optically exciting mode synchronizing laser 5 and synchronizes a mode synchronizing optical pulse 6 to the clock frequency. The pulses 1 and 6 are superimposed and made incident to an optical fiber inducing and scattering amplifying medium 8. From the exit light, an excited light transmitted at an optical branching device 9 is eliminated to obtain an optical pulse code train wave-shaped and amplified as an output signal 10.

Description

【発明の詳細な説明】 との錦明は、光パルスの波形全整形し、増幅する超高速
光通信用の波形整形光増幅装置(関する〇長尺の光伝送
路に光パルスを伝搬させると、光伝送路において損失と
分散とを生じるために、光パルスは減衰しかつそのパル
ス幅は広がる0このパルス幅の広がりは帯域劣化をきた
し、伝送可能なビットレートを制限する。
[Detailed Description of the Invention] Kinmei has developed a waveform-shaping optical amplification device for ultra-high-speed optical communications that completely shapes and amplifies the waveform of an optical pulse (relating to Since loss and dispersion occur in the optical transmission path, the optical pulse is attenuated and its pulse width is widened. This widening of the pulse width causes band deterioration and limits the bit rate that can be transmitted.

一般に1長距離の光通信には、jt、伝送路゛の途中に
光中継器を設置しなくてはならな・い。光中継器には、
一旦光信号を電気信号に変換しこれを再び光信号に戻す
再生中継器と、光信号を直接増幅する光増幅中継器とが
ある0 再生中継器には、レーザ光の外部変調ないしはレーザ光
源のM接置病が用いられる。しかし、外部変調に用いら
れる光変調器は、高速変調が、可能であるが、挿入損失
が大きいために長距離伝送には適さない。一方、レーザ
光源の直接変調は、光出力の点では問題はあtb生じな
いが、例えば半導体レーザの場合1.クロ、ツタ周波数
がIGHz以上になると安定に高速変調を行なうことが
峻しくなるという欠点がある0、         ・
このため1時分割多重などの方法に6よ〕光パルスを多
重化し、高速大容量の信号を長短1IIKわたって伝送
する目的には、再生中継器はあtb適さないO これに対し、光増幅中継器によれば、その広帯域性によ
シ時分割番重された光を直接増幅するどとができるので
、もし光伝送呻が損失制限により伝送可能距離がきまっ
ている場合には、光増幅を利用し九光増幅中継器を用い
ることによシ超高速信号の長距離−送が一部で門る。
Generally, for long-distance optical communications, an optical repeater must be installed in the middle of the transmission line. The optical repeater has
There are two types of regenerative repeaters: one is a regenerative repeater that converts an optical signal into an electrical signal and then returns it to an optical signal, and the other is an optical amplification repeater that directly amplifies the optical signal. M juxtaposition disease is used. However, although the optical modulator used for external modulation is capable of high-speed modulation, it is not suitable for long-distance transmission because of its large insertion loss. On the other hand, direct modulation of a laser light source does not cause any problems in terms of optical output; however, for example, in the case of a semiconductor laser, 1. There is a drawback that it becomes difficult to stably perform high-speed modulation when the frequency exceeds IGHz.
Therefore, regenerative repeaters are not suitable for the purpose of multiplexing optical pulses using methods such as time division multiplexing and transmitting high-speed, large-capacity signals over long and short distances.In contrast, optical amplification Repeaters can directly amplify time-division multiplexed light due to their broadband properties, so if the possible transmission distance is limited due to loss limitations, optical amplification can be used. By using nine optical amplification repeaters, long-distance transmission of ultra-high-speed signals is partially possible.

しかしながら、光増幅中継器として、従来は専らレーず
増幅器が用いられていたため、光伝送路゛の分散によ〉
帯域が劣化′シパルス幅が広がる場合にあってはその対
策を榛することができず、このような場合゛には適切な
空中継ができないという欠点があった。  ゛ この発明の目的畝上述−したような従来の欠点を解消し
光パルスの波形を整形し増幅する超高速信号の長距離伝
送用の光中継器に適した波形整形光増幅装置を提供する
ことKある〇 この発明の他の目的は、レーザ光源を直接変調して得ら
れた光パルスのピーク値を高め、かつパルス幅を狭めて
尖鋭化することによ)、時分割多重通信などに適した波
形の鋭い信号光パルスを発生しうる波形整形光増幅装置
を提供することにあ′るO この発明によれば、光伝送路を伝搬してパルス幅の広が
った光パルスのパルス幅を狭めて増幅し、尖鋭な大振幅
の光パルスを出力として得ることができる。また、レー
ザ光源を直接変調して得られたパルス幅の広い光パルス
のパルス幅ヲ狭めて増幅し、尖鋭6光パルスを出力とし
て増)出すことができる。
However, since laser amplifiers have traditionally been used exclusively as optical amplification repeaters, dispersion of the optical transmission line
In the case where the band deteriorates and the signal width widens, no countermeasures can be taken, and in such cases there is a drawback that appropriate aerial relay cannot be carried out. [Objective of the present invention] It is to provide a waveform shaping optical amplification device suitable for an optical repeater for long-distance transmission of ultrahigh-speed signals, which eliminates the above-mentioned conventional drawbacks and shapes and amplifies the waveform of an optical pulse. K〇Another object of the present invention is to increase the peak value of the optical pulse obtained by directly modulating a laser light source, and narrow the pulse width to make it sharp), making it suitable for time division multiplex communication, etc. An object of the present invention is to provide a waveform shaping optical amplification device capable of generating signal light pulses with sharp waveforms. A sharp, large-amplitude optical pulse can be obtained as an output. Furthermore, it is possible to narrow the pulse width of a wide optical pulse obtained by directly modulating a laser light source and amplify it, thereby increasing the output of six sharp optical pulses.

次に、この発明によ±波形整形光増幅装置について2図
面を参照して詳細に説明する。
Next, the waveform shaping optical amplification device according to the present invention will be explained in detail with reference to two drawings.

第1図は、この発明の一実施例の構成をプロ。FIG. 1 shows the configuration of one embodiment of this invention.

り図によシ示したものである。This is shown in the figure below.

第1図において、lは、入力信号としての2値符号化さ
れた光パルスで、波長は1.55μm、クロ。
In FIG. 1, l is a binary-encoded optical pulse as an input signal, with a wavelength of 1.55 μm and a wavelength of 1.55 μm.

り周波数すなわちピットレイトは1.6Gb/aである
。光伝送路を伝搬してきた入力信号lは、パルス幅が9
.5f18に広がってお多、その信号レベルはピーク値
で、30dBmと微弱である。2は光合波器であプ、こ
れによシ入力信号1の一部はタイ電ング抽出回路3に送
゛られ、他方の分肢出力は光合波器7を介して光7アイ
パ誘導散乱増幅媒体8に結合される◎゛タイング抽出回
路3は入力信号lのクロック周波数1.6GHzを抽出
し、このクロ、り周波数でもつで光励起用モ゛−ド同期
レーザ5を制御し、このモード同期レーf5から発生す
るモード同期光パルス6をクロ、り周波数に同期させる
The frequency, or pit rate, is 1.6 Gb/a. The input signal l propagating through the optical transmission line has a pulse width of 9
.. The signal level spreads to 5f18, and the peak value of the signal is as weak as 30 dBm. 2 is an optical multiplexer, by which a part of the input signal 1 is sent to the tie power extraction circuit 3, and the output of the other branch is sent to the optical multiplexer 7 to the optical multiplexer 7 and the optical fiber 7 to the optical fiber guided scattering amplification circuit. The timing extraction circuit 3 coupled to the medium 8 extracts the clock frequency of 1.6 GHz from the input signal l, controls the mode-locked laser 5 for optical excitation with this clock frequency, and controls the mode-locked laser 5 for optical excitation. The mode-locked optical pulse 6 generated from the laser beam f5 is synchronized to the black and white frequencies.

このモード同期光パルス60波長は132am、−パル
ス幅は6.Insである。4は可変遅延回路であ〕。
This mode-locked optical pulse 60 has a wavelength of 132 am and a pulse width of 6. It is Ins. 4 is a variable delay circuit].

多層膜干渉フィルタを用いた光合波器7にて入力信号1
の光パルスのピークとモード同期光パルス6のビーりと
が重なるように、タイミングをw4整するのに用いられ
る。
Input signal 1 at optical multiplexer 7 using multilayer interference filter
It is used to adjust the timing w4 so that the peak of the optical pulse 6 and the beat of the mode-locked optical pulse 6 overlap.

光合波器7を出射した入力信号“lと励起用のモード同
期光゛パルス6とは重ね合わさクーて光フアイバ誘導散
乱増幅媒体8に入射する0この光フアイバ誘導散乱増幅
媒体8からの出射光は、多層膜干渉フィルタを用いた光
分波器9に導かれ、透過してきた励起光が一除去され、
出力信号10として。
The input signal "l" outputted from the optical multiplexer 7 and the mode-locked light pulse 6 for excitation are superimposed and input into the optical fiber stimulated scattering amplification medium 8. The output light from the optical fiber stimulated scattering amplification medium 8 is is guided to an optical demultiplexer 9 using a multilayer interference filter, and the transmitted excitation light is removed.
As output signal 10.

パル;”IAカo、I n s 、ピーク値がOdBm
の波形が整形され増幅された光パルス符号列が得られる
Pal; "IA power, Ins, peak value is OdBm
An optical pulse code sequence whose waveform is shaped and amplified is obtained.

光フアイバ中の誘導散乱を用いた光増幅については、例
えば、1980年8月14日発行のエレク) a 二/
 x V 31−ズ(Electronics Let
ters)。
Regarding optical amplification using stimulated scattering in optical fibers, see, for example, Elec, August 14, 1980) a 2/
x V 31-s (Electronics Let
ters).

第16巻、第658頁から666頁に記載の−この発明
の発明者の一人である鴬尾′他による論文を参照さ糺た
い。光ファイバとして単一モードファイバを用い、低分
散・低損失の波長斌で強く励起す、れば、数十W程度の
励起入力で容易に4j+aa以上の小信号増□幅利得が
得られる。− 増幅利得をもつとも大きくずぶような、励起光(周波数
り)と被増幅信号元(周波数νS)との−波数差ν゛2
−ν8は、光ファイバのコア径や屈折率分布を変えて元
ファイバの分散特性−を変え、これにより位相整合条件
を制御することによ、り、100cIL”8Kから3.
Q Q □c+a−”程度まで比較的広範囲に自由に変
えることができる〇 通常のレーザ媒質を用いるレーザ増幅器は、励起の0N
−OFPK対する応答時間が媒質の縦緩和時間TIKよ
ってPi埋決まるため1例えば半導体レーザの場合でナ
ノ秒程度以下の高速スイッチングは困難であるが、S導
散乱の応答時間は媒質のコヒーレントな時間1によって
ほぼ決まシ、媒質が元7アイバの場合にはピコ秒程度の
高速な応答が可能である九め、励起光パルスとしてモー
ド同期光パルスのよう1klIaの狭す光パルスを用い
ても充分これに追随できる。酵導利得は励起光の強度に
関して指数関数的に変化するので、背景光成分の少ない
尖鋭なモード同期光パルスで励起すれば、パルス幅の広
い信号入力のパルス幅を狭めて増幅することがてきる。
Please refer to the article by Utsugo' et al., one of the inventors of this invention, published in Volume 16, pages 658-666. If a single mode fiber is used as the optical fiber and is strongly pumped at a wavelength with low dispersion and low loss, a small signal amplification gain of 4j+aa or more can be easily obtained with a pumping input of about several tens of W. − Wave number difference ν゛2 between the pumping light (frequency) and the amplified signal source (frequency νS), which is large even with amplification gain
-v8 can be changed from 100cIL"8K to 3.8K by changing the core diameter and refractive index distribution of the optical fiber to change the dispersion characteristics of the original fiber and thereby controlling the phase matching conditions.
Q
-The response time for OFPK is determined by the longitudinal relaxation time TIK of the medium, so it is difficult to achieve high-speed switching of less than a nanosecond in the case of a semiconductor laser. However, the response time for S scattering is determined by the coherent time of the medium. It is almost determined by this, and when the medium is an original 7-Iber, a high-speed response on the order of picoseconds is possible.9) This is also sufficient even if a narrow optical pulse of 1 klIa, such as a mode-locking optical pulse, is used as the excitation light pulse. can follow. Fermentation gain changes exponentially with the intensity of excitation light, so if you excite with a sharp mode-locked light pulse with little background light component, you can narrow the pulse width of a wide pulse width signal input and amplify it. Ru.

5の励起用モード同期レーザとして1例えば。For example, 1 as a mode-locked laser for excitation of 5.

波長1.32JmONd:YAG v−fttMjhる
e とfiできる。この場合、単一モードファイバの分
散特性を変えることくよ)、波長1.35μmから13
5amにかけての半導体レーず光を増幅することができ
る。従って、光伝送システムの設計上極めて好都合であ
る◇ モード同期光パルス60繰シ返し周波数を高めることが
困難な場合には、レーザ発振器の外部で。
The wavelength is 1.32 JmONd: YAG v-fttMjhrue. In this case, the dispersion characteristics of the single-mode fiber must be changed), and the wavelength can be changed from 1.35 μm to 13 μm.
It is possible to amplify light from a semiconductor laser up to 5 am. Therefore, it is extremely convenient in the design of the optical transmission system. ◇ If it is difficult to increase the mode-locked optical pulse 60 repetition frequency, use it outside the laser oscillator.

例えば半透鏡と光遅延回路とを用いて多重化し。For example, multiplexing using a semi-transparent mirror and an optical delay circuit.

光パルスの繰)返しを高める方法を用いるとよい。It is preferable to use a method that increases the repetition of light pulses.

こt[より、80元ファイバ誘誘導散乱幅器用の励起光
パルスの繰シ返しが高められる。
This increases the repetition rate of the excitation light pulse for the 80-element fiber induced scattering filter.

以上述べたごとく、仁の発明によれば、光パルスの波形
を整形し増幅する、超高速信号の長距離伝送や時分割多
重に適した波形整形光増幅装置が得られる。
As described above, according to Jin's invention, it is possible to obtain a waveform shaping optical amplification device that shapes and amplifies the waveform of an optical pulse and is suitable for long-distance transmission and time division multiplexing of ultrahigh-speed signals.

なお、この発明は、上述した一実施例に見られる構成の
みに限定されることなく、もちろんいくつかの変形が考
えられる。
Note that the present invention is not limited to the configuration shown in the above-described embodiment, and of course, several modifications can be made.

例えば、可変遅延回路4をタイミング抽出回路3と励起
用モード同期レーザ5との1田に設けたが。
For example, the variable delay circuit 4 is provided between the timing extraction circuit 3 and the excitation mode-locked laser 5.

この代)に、励起用モード同期レーザ5と光合波器7と
の間に光遅延回路を設けることによっても同様の効果が
得られる。また、光合波器2と光合波器7との間に光遅
延回路を設け、ここで入力信号lを遅延させることによ
って入力信号lとモード同期光パルス6とのタイiング
を合わせるようにもできる。
Similar effects can also be obtained by providing an optical delay circuit between the excitation mode-locked laser 5 and the optical multiplexer 7 instead. Furthermore, an optical delay circuit is provided between the optical multiplexer 2 and the optical multiplexer 7, and by delaying the input signal l here, the timing of the input signal l and the mode-locked optical pulse 6 can be matched. can.

また、この実施例においては、光合波器7や光分波器9
として多層膜干渉フィルタを用い九が。
In addition, in this embodiment, the optical multiplexer 7 and the optical demultiplexer 9
9 using a multilayer interference filter.

この代シに1例えば回折格子分光器などを用いることも
できる。
Alternatively, a diffraction grating spectrometer, for example, may be used.

また−光送信部で送信光パルスのピーク値を高め、かつ
光パルス幅を狭める目的に本発明の波形整形光増幅装置
を使用するときは、前記実施例で述べ九タイミング抽出
回路3をWに使用する必要は無く、送信部からタイミン
グ信号を直接持ってきてもよい。
In addition, when using the waveform shaping optical amplification device of the present invention for the purpose of increasing the peak value of the transmitted optical pulse and narrowing the optical pulse width in the optical transmitter, the timing extraction circuit 3 described in the above embodiment is set to W. There is no need to use it, and the timing signal may be brought directly from the transmitter.

なお、この発明の実施例においては、パルス振幅変調に
よシ符号化された光パルスとして21[符号化された光
パルスを用いた場合にっ−で説明したが光パルスとして
は多値符号化パルスであっても、tたアナログ値をもり
た光パルスてありても、もちろん差しつかえない。
In addition, in the embodiment of the present invention, as an optical pulse encoded by pulse amplitude modulation, 21 [described in the case of using an encoded optical pulse], but as an optical pulse, multi-level encoding is used. Of course, it does not matter whether it is a pulse or an optical pulse with an analog value.

【図面の簡単な説明】[Brief explanation of drawings]

M1図は、この発明の一実施例の構成を示すブロック図
である。 第1図において、、l−・・・・・入力信号、2・・・
・−・光分岐器、3・・・・−タイミング抽出回路、4
・・・、・・可変遅延回路、5・・・−・光励起用モー
ド同期レーザ、6・・・・・・モード同期光パルス、 
7−・・−光合波器、8・・・・・・光ファイバ誘導数
4増幅媒体、9・・・・−光分波器。
FIG. M1 is a block diagram showing the configuration of an embodiment of the present invention. In FIG. 1, l-...input signal, 2...
・−・Optical splitter, 3・・・・−Timing extraction circuit, 4
. . . Variable delay circuit, 5 . . . Mode-locked laser for optical excitation, 6 . . . Mode-locked optical pulse,
7--Optical multiplexer, 8-- Optical fiber guided number 4 amplification medium, 9-- Optical demultiplexer.

Claims (1)

【特許請求の範囲】[Claims] パルス振幅変11によ〕符号化された光パルスの波形を
整形し増幅する波形整形光増幅装置において、光フアイ
バ誘導散乱増幅媒体と光励起用モード同期レーザとを備
え、前記光パルスのクロック周波数に同期して前記光励
起用そ−ド同期レーザから発生せしめられるモード同期
光パルスと前記党パルスとを重畳して前記光ファイバ誘
導散乱増鵬媒体に入力し、前記光パルスの波形を整形し
増幅イすることを特徴とする波形整形光増幅装置0
A waveform shaping optical amplification device that shapes and amplifies the waveform of an encoded optical pulse by pulse amplitude modification 11 includes an optical fiber stimulated scattering amplification medium and a mode-locked laser for optical excitation, and A mode-locked optical pulse generated from the optically pumped laser-locked laser and the optical pulse are superimposed and input into the optical fiber stimulated scattering enhancement medium, and the waveform of the optical pulse is shaped and amplified. Waveform shaping optical amplification device 0 characterized by
JP56147415A 1981-09-18 1981-09-18 Optical amplifier for wave shaping Granted JPS5848513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147415A JPS5848513A (en) 1981-09-18 1981-09-18 Optical amplifier for wave shaping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147415A JPS5848513A (en) 1981-09-18 1981-09-18 Optical amplifier for wave shaping

Publications (2)

Publication Number Publication Date
JPS5848513A true JPS5848513A (en) 1983-03-22
JPS6159574B2 JPS6159574B2 (en) 1986-12-17

Family

ID=15429781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147415A Granted JPS5848513A (en) 1981-09-18 1981-09-18 Optical amplifier for wave shaping

Country Status (1)

Country Link
JP (1) JPS5848513A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217736A (en) * 1985-07-16 1987-01-26 Nippon Telegr & Teleph Corp <Ntt> Optical pulse width compressing and amplifying method
JPH0252535A (en) * 1988-08-17 1990-02-22 Fujitsu Ltd Full optical processing repeater
US5510931A (en) * 1989-08-31 1996-04-23 Fujitsu Limited Optical amplifier and optical communication system with optical amplifier using pumping right beam
JP2007269186A (en) * 2006-03-31 2007-10-18 Japan Climate Systems Corp Seal structure of vehicular air-conditioner
WO2016199903A1 (en) * 2015-06-10 2016-12-15 古河電気工業株式会社 Pulse laser device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870946B1 (en) 1998-08-06 2005-03-22 Secugen Corporation Compact optical fingerprint capturing and recognition system
US6381347B1 (en) 1998-11-12 2002-04-30 Secugen High contrast, low distortion optical acquistion system for image capturing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217736A (en) * 1985-07-16 1987-01-26 Nippon Telegr & Teleph Corp <Ntt> Optical pulse width compressing and amplifying method
JPH0252535A (en) * 1988-08-17 1990-02-22 Fujitsu Ltd Full optical processing repeater
US5510931A (en) * 1989-08-31 1996-04-23 Fujitsu Limited Optical amplifier and optical communication system with optical amplifier using pumping right beam
US5521737A (en) * 1989-08-31 1996-05-28 Fujitsu Limited Optical amplifier and optical communication system with optical amplifier using pumping light beam
US5526163A (en) * 1989-08-31 1996-06-11 Fujitsu Limited Optical amplifier and optical communication system with optical amplifier using pumping light beam
US5535050A (en) * 1989-08-31 1996-07-09 Fujitsu Limited Optical amplifier and optical communication system with optical amplifier using pumping light beam
US5546213A (en) * 1989-08-31 1996-08-13 Fujitsu Limited Optical amplifier and optical communication system provided with the optical amplifier
JP2007269186A (en) * 2006-03-31 2007-10-18 Japan Climate Systems Corp Seal structure of vehicular air-conditioner
WO2016199903A1 (en) * 2015-06-10 2016-12-15 古河電気工業株式会社 Pulse laser device
JPWO2016199903A1 (en) * 2015-06-10 2018-03-29 古河電気工業株式会社 Pulse laser equipment
US10534128B2 (en) 2015-06-10 2020-01-14 Furukawa Electric Co., Ltd. Pulsed laser device

Also Published As

Publication number Publication date
JPS6159574B2 (en) 1986-12-17

Similar Documents

Publication Publication Date Title
KR100225282B1 (en) Apparatus for and method of generating a comb of optical teeth of different wavelengths
JP3948598B2 (en) Method, apparatus and system for processing optical signals
JP3708607B2 (en) Soliton transmission method and apparatus using non-soliton source
JPH08204636A (en) Optical communication system
JPH1078595A (en) Wavelength conversion device, optical operation device, and optical pulse phase detection circuit
CN104330939B (en) A kind of SBS wideband adjustables optical fiber delay system
US6718142B1 (en) Optical signal generating circuit and optical transmission line
US4741587A (en) Optical communications system and method for the generation of a sequence of optical pulses by means of induced modulational instability
JP2009177641A (en) Optical signal processing apparatus, optical receiving apparatus, and optical repeater
JPS5848513A (en) Optical amplifier for wave shaping
JPS5885588A (en) Wavelength multiplex light amplifying device
JPH08288930A (en) Multi-wavelength light source and optical wavelength multiplex signal generating circuit using it
JP2000047274A (en) In-line reproducing apparatus for soliton optical signal by synchronous modulation, and transmission system including the apparatus
JPH03214123A (en) Photosoliton generating method and soliton transmitting method
JPH08286218A (en) Wavelength multiplex light soliton repeating transmission device
JP3381668B2 (en) Optical clock extraction circuit
JPH0530253B2 (en)
Ali et al. SBS-Based Tunable Microwave Photonic Notch Filter and Amplifier Simultaneously With Enhanced Gain, Bandwidth, and Polarization Control up to 50 GHz
JPH02264227A (en) Wavelength multiplex light soliton transmission system and transmitter
JP3322653B2 (en) Optical receiving device used for dark soliton optical communication system
JP3936178B2 (en) All-optical serial-parallel conversion circuit and all-optical TDM-WDM conversion circuit
JPH06268591A (en) Optical coherent communications equipment
JPH0422930A (en) Optical identification reproducer
JPS6157742B2 (en)
JP2000091711A (en) Optical relay circuit