JPS5847159A - Method of controlling ignition time of multicylinder internal combustion engine - Google Patents
Method of controlling ignition time of multicylinder internal combustion engineInfo
- Publication number
- JPS5847159A JPS5847159A JP56144435A JP14443581A JPS5847159A JP S5847159 A JPS5847159 A JP S5847159A JP 56144435 A JP56144435 A JP 56144435A JP 14443581 A JP14443581 A JP 14443581A JP S5847159 A JPS5847159 A JP S5847159A
- Authority
- JP
- Japan
- Prior art keywords
- combination
- ignition timing
- ignition
- engine
- ignition time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000002485 combustion reaction Methods 0.000 title claims description 6
- 238000001514 detection method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 241000726103 Atta Species 0.000 description 1
- 241000600169 Maro Species 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 235000019892 Stellar Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 102200033028 rs587777512 Human genes 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/1455—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means by using a second control of the closed loop type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Ignition Timing (AREA)
Abstract
Description
【発明の詳細な説明】
零発、明社内燃機関において燃料消費率を向上させるべ
く*IImK点災時゛期の最適柵絢を行う方法に関する
゛。 ゛
内燃41INの点火時期状、一般に、出力を最大限に発
揮しかつ燃料消費率を最小とする平均的な値をエンsF
:/E転数と@気圧力(又は9!気流置)で定める。そ
して−関が多気筒のものでは、その平均的な共通の点火
時期を各気筒KN用するのが瞥過である。Cかしながら
、Ill待時バラツキ、経時変化IIIIIIcよ、う
て最大出力を与える点火時期は気筒毎に変化し前記し九
平均的な点火時期がその気筒にとつて常Kfi適と社隈
らず出力損失を招く原因となる。
3本発@紘かかる従来技術の欠点に鑑み、各I
IC11に最適の点火時期を与えるととKよつて常に出
力効率の最大を確保し、特にアク七μ操作等の点火時期
以外の要因の影響を受けることなく最適点火時期への点
火時期制御を可能にすることを1的とする。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for optimally arranging the fence during a *IImK disaster in order to improve the fuel consumption rate in an internal combustion engine.゛Internal combustion 41IN ignition timing, generally speaking, the average value that maximizes the output and minimizes the fuel consumption rate is the engine sF.
:/Determined by E rotation number and @atmospheric pressure (or 9! airflow position). In the case of a multi-cylinder engine, it is a common practice to use the average common ignition timing for each cylinder. However, due to variations in waiting time and changes over time, the ignition timing that provides the maximum output varies from cylinder to cylinder, and as mentioned above, the average ignition timing is always suitable for that cylinder. This will cause output loss.
In view of the shortcomings of the conventional technology, each I
By giving the optimum ignition timing to IC11, the maximum output efficiency is always ensured, and the ignition timing can be controlled to the optimum ignition timing without being affected by factors other than ignition timing, such as the actuator operation. The first goal is to make it happen.
以下図面によって説明すれば第1回状点火時期とエンジ
ン回転数(トμり)と1.の一般的な関係を示すもので
あシ、アク七μ操作量一定でエンジン回転数を最大8°
maxと、す轡最適点火時期#optを絢閲で変動があ
る゛のが、普通である。従うて、簡単のため最少の多気
一機関である2気筒機関について考えれば、第2図の如
く、夫々の気筒#142の点火時期を変化させ九場合に
、エンジン回転数は破線の如く等高線状rl・r′m、
rs・・・の如くi化する。それ故、エンジンの回転数
の山のを形成する夫々の気筒の点火時期の組合せ0・0
1)t、#・optがあ)、逆I/cMえばこの最適点
火時期の組合せで各気筒を駆動すれば最大の回転数が得
られるのである。The following will be explained with reference to the drawings: 1st round ignition timing, engine speed (torque), and 1. This shows the general relationship between
It is normal for there to be variations in max and optimum ignition timing #opt. Therefore, for the sake of simplicity, if we consider a two-cylinder engine, which is the minimum number of engines with a single engine, as shown in Figure 2, when the ignition timing of each cylinder #142 is changed, the engine speed will be contoured as shown by the broken line. rl・r′m,
Convert to i like rs... Therefore, the combination of ignition timing of each cylinder that forms the peak of engine speed is 0.0.
1) t, #・opt), and reverse I/cM, the maximum rotational speed can be obtained by driving each cylinder with this optimum ignition timing combination.
本発明では以下述べる手法によってエンジン最大回転数
を提供する各気筒の点火時期の組合せを検索するもので
ある。まず、この手法の原理を説明す五ば、第2図にお
いて、*19IC筒の点火時期を01Kまた#2気筒の
点火時期を01とし、この点火時期の組合せ(点L)で
運転してエンジンの回転数としてNIが得られ九とする
。(尚、ζζで#1@#llとは後の説明の便宜上、吸
入空気量(又は吸気圧力)及びエンジンの回転数によっ
て所まる基本進角0.に対・する補正量と考えられたい
。即ち、11112図における原点は点火時期進角でい
えば0てはなく0.であり、これに#収は#1を加え丸
ものが実際の進角値となる。)次に上記点りとは多少点
火時期を変えた点H(例えば1111気筒の点火時期を
Δ01だけ僅かに増し、一方#2気筒の点火時期01は
そのtまとする)での点火時期の組合せ(#1+Δ01
・#l)で運転しそのときの回転数をN1とする。The present invention uses the method described below to search for a combination of ignition timings for each cylinder that provides the maximum engine speed. First, to explain the principle of this method, in Figure 2, the ignition timing of the *19 IC cylinder is set to 01K and the ignition timing of the #2 cylinder is set to 01, and the engine is operated with this ignition timing combination (point L). NI is obtained as the rotational speed of , and is assumed to be 9. (Note that #1@#ll in ζζ should be considered as a correction amount for the basic advance angle 0, which is determined by the intake air amount (or intake pressure) and engine rotational speed, for convenience of later explanation. In other words, the origin in Figure 11112 is not 0 but 0 in terms of ignition timing advance, and #1 is added to this for #yield, and the circle is the actual advance value.)Next, the above point and is a combination of ignition timings (#1+Δ01) at point H where the ignition timing is slightly changed (for example, the ignition timing of cylinder 1111 is slightly increased by Δ01, while the ignition timing of #2 cylinder is set to t).
・Operate at #l) and set the rotation speed at that time to N1.
更に別の点S(例えば#2の気筒の点火時期をΔ−麿だ
け僧かに増し、一方#lの気筒の点火時期は#1とする
)での組合せ(a jj ffi+Δ#1)で運転し得
、られる回転数をN1とする。そして、再び最初の点乙
の組合せで運転して得られる回転数をIn’とする。つ
ま62gIC筒の″場合の点火時期の組合せを表とすれ
ば次のように&る。Furthermore, operation is performed at a combination (a jj ffi + Δ#1) at another point S (for example, the ignition timing of the #2 cylinder is increased by Δ-maru, while the ignition timing of the #l cylinder is set to #1). The number of rotations that can be achieved is N1. Then, the rotation speed obtained by operating again with the first combination of points B is set as In'. The ignition timing combinations for a 62g IC cylinder are shown in the table below.
表
次にこの最初の3つ(即ち気筒歓Klを加え丸もの)の
初期点火時期の組合せにおける各気筒の平均値iを求め
ると共k、点火時期のみの影響で回転数が最少となる点
火時期の組合せ(第2図の例では回転数NMとなるL)
を捜す、るこの場合、同じ点火時期の組合せLを時間を
おいて2回所史の期間運転し、2回の回転数N1゜N息
′の差が点火時期変化以外の原因1例えばアタ七μlI
&作等によゐ回転数変化とみなし、そOI@アクセA/
操作によ〉回転数は前記2つの回転数O閏を時間に比例
して直線的に変化し丸ものとする。Next, find the average value i for each cylinder in the combination of the initial ignition timings of the first three (i.e., the combination of initial ignition timings with Kl added to the cylinder). Combination of timings (in the example in Figure 2, L is the rotation speed NM)
In this case, the same ignition timing combination L is operated twice for a specified period of time, and the difference in rotational speed N1°N' between the two times is due to a cause other than a change in the ignition timing. μlI
&Accessories A/
Depending on the operation, the rotational speed varies linearly in proportion to time, making the two rotational speeds O intuitive.
そして、舗火時期の組合せH,8におけるアタ七
、tvlkf’1等による回転数を直纏補閤によ〕求め
、計測した回転数N L II sとの偏差を求めて、
この偏差から点火時期のみの影響で回転数が最小となる
点火時期の組合せムを求めてにる。Then, atta 7 in combination H, 8 of firing timing.
, tvlkf'1, etc., by direct compensation], and find the deviation from the measured rotation speed N L II s,
From this deviation, the combination of ignition timings that minimizes the rotation speed due to the influence of ignition timing alone is determined.
次に、この平均値0と最少回転数H1における点火時期
の組合せLとを結ぶ直線上において、−に関しLと反対
側(換言すれば回転数の増大する方向)KM九な点R1
を設定する。そして、この点R*QJ火時期の組合せ(
#*’、#s’)を計算し。Next, on the straight line connecting this average value 0 and the ignition timing combination L at the minimum rotational speed H1, a point R1 on the opposite side of L with respect to - (in other words, in the direction in which the rotational speed increases) is KM9.
Set. And this point R*QJ fire timing combination (
#*', #s').
この組合せで運転を行い回転数N4を得、I!に点Hの
点火時期の組合せで運転を行ない回転数HCを得て、仁
の回転数N4を最少回転機軸」と入れ換えると共に、N
諺とli Nの差から点8.R51Cおけるアクセμ操
作等による回転数を直線補i1によ〕求め、このl1l
iII値と実測値との偏差からN1・Ns及びN4の3
つの回転数のうち点火時期のみの影響で最小回転数(図
ではNm)となる点Hを求める0次に3つの点火時期の
組合せの平均値−′を求め、この平均IIl″と最少回
転数となる点Hとを結んだ直線において最少回転数とな
る点火時期の組合せHの反対備、(即ち回転数の増大す
る方向)に新たな点R■を設定する。Operate with this combination and obtain the rotation speed N4, I! Operate with the ignition timing combination of point H to obtain the rotation speed HC, replace the rotation speed N4 with the minimum rotating machine shaft, and set N
Point 8 from the difference between the proverb and li N. The number of rotations due to the access μ operation etc. in R51C is determined by linear interpolation i1, and this l1l
Based on the deviation between the iII value and the actual measurement value, calculate 3 of N1, Ns and N4.
Find the point H at which the minimum rotation speed (Nm in the figure) is due only to the influence of the ignition timing among the three rotation speeds. Next, find the average value -' of the three ignition timing combinations, and combine this average IIl'' with the minimum rotation speed. A new point R■ is set opposite the ignition timing combination H resulting in the minimum rotational speed (that is, in the direction in which the rotational speed increases) on the straight line connecting the point H.
以下これを繰返してゆけば、Rs−a−R雪→Rs −
R4−IIRI→R・mRv −mRaの様に点火時期
の組合せを回転数の増大方向に向は次々と修正してゆく
ことで回転数の山■を極めることができる・
第3図には基本の画点H,S、LK対し新たな点火時期
の組合せ#new (即ちR)の求め方が図示される。If you repeat this, Rs-a-R snow→Rs −
By modifying the ignition timing combination one after another in the direction of increasing rotation speed, such as R4-IIRI→R・mRv-mRa, you can reach the peak of rotation speed. Figure 3 shows the basics. The method for determining a new ignition timing combination #new (ie, R) for pixels H, S, and LK is illustrated.
この場合平均値はペクトμ表示で−H+S+L
a = −・・−−−・−−−−11)
となる、まえ、回転数が最小となる点火時期の輯合せ6
m1n(即ちL)と置きかえるべき新たな点を#new
とすれば。In this case, the average value is expressed in pect μ as −H+S+L a = −・・−−−・−−−−11)
Ignition timing alignment that minimizes the rotation speed 6
#new the new point that should be replaced with m1n (i.e. L)
given that.
#new = # −a (#min −# ) −−
−−−−−=−切a:定数
となる。#new = # -a (#min -#) --
-------=-cut a: Becomes a constant.
尚1以上紘説明の便宜上2気IIK−)vhて説明した
がこれ以上の気筒数のエンジンであうても同様の原In
よって回転数を最大とするよう各気筒の点火時期の修正
制御を行うことができる・第4回状点火詩期の組合せの
移シ変わシと回転数の変動を4気筒機関について示した
ものである。For convenience of explanation, the explanation was given as 2-ki IIK-)vh, but even if the engine has more cylinders than this, the same basic In
Therefore, the ignition timing of each cylinder can be corrected and controlled so as to maximize the rotational speed. ・This figure shows the changes in the combination of the fourth ignition period and the fluctuations in the rotational speed for a four-cylinder engine. be.
@)において、先づ■〜■の各点火時期の組合せ、およ
び■と同じ点火時期の組合せ■゛で機関を所定期間ずつ
運転し、■と■′の回転数N * a N鳳’を結ぶ直
線からの各点火時期の組合せ■・■・■・■の距離(回
転数差ΔN)を求め、このΔNが最も小さく、なる点火
時期の組合せ(図ではΔNmの■)を新丸な点火時期の
組合せ■’Ell正する。In @), operate the engine for a predetermined period of time using each of the ignition timing combinations from ■ to ■, and the same ignition timing combination ■゛ as ■, and connect the rotation speeds N * a N 鳳' of ■ and ■′. Find the distance of each ignition timing combination ■・■・■・■ (rotational speed difference ΔN) from the straight line, and select the combination of ignition timings where this ΔN is the smallest (in the figure, ΔNm ■) as the new round ignition timing. Combination ■'El Correct.
次に、4切において■・■・■、■′・■″O各点火時
期の組合せ、および■と同じ点火時期の組合せ■゛で機
関を運転し、上述同様にΔNが最も小さくなる組合せ■
を■″に鰻正し、そして切K > hて、■、■″、■
′・■′・■′および■と同じ点火時期の組合せ■′で
運転を行ない、ΔNが最も小さくなる組合せ■′を■″
に修正する。この操作を繰シ返すととによシ、点火時期
の組合せを愈適点火時期の組合せに正確に修正して行く
ことができる。なお、d)紘ΔNの直線補間による求め
方を示してシシ、to’−t
ΔN=閥−(li o’−−(11/ −N・月−−−
3)to’−t・
によシ求められる。Next, in the 4th cut, operate the engine with each ignition timing combination of ■・■・■, ■′・■″O, and the same ignition timing combination as ■゛, and as above, select the combination that gives the smallest ΔN.
Correct the eel to ■″, then cut K > h, ■, ■″, ■
′・■′・■′ and the same ignition timing combination ■′ as ■, and select the combination ■′ that gives the smallest ΔN.
Correct it to By repeating this operation, the ignition timing combination can be accurately corrected to the optimum ignition timing combination. In addition, d) Show how to obtain ΔN by linear interpolation.
3) It is determined by to'-t.
次に、本発明の方法を実現する装置について説明すれば
第5図において、1’ Oは内燃機関の本体で、この場
合は$1.12.13.14の4個の気筒を有している
。吸気マエホμド12から各気筒への吸入空気が導入さ
れ、フロy)μ弁14は°この吸入空気の流量コントロ
ー〃を行う、エアフローメータ16がスロットμ弁14
の上流に設けられて吸入空気量の計測を行う。尚、ニブ
フローメータ16によって吸入空気流量の測定を行う代
J)K吸気管内の圧力を計測してもよい、18は回転数
センサであシ、エンジンの回転数に応じた信号を発生す
る0回転数セン号とし′てはエンジンの成るクフンク角
毎のパルス信号を発生する周知σクランク角センナを使
月することができる。Next, to explain the apparatus for realizing the method of the present invention, in FIG. There is. Intake air is introduced into each cylinder from the intake manifold 12, and the flow μ valve 14 controls the flow rate of this intake air.
It is installed upstream of the air intake system and measures the amount of intake air. In addition, instead of measuring the intake air flow rate with the nib flow meter 16, the pressure inside the intake pipe may also be measured. 18 is a rotational speed sensor, which generates a signal according to the engine rotational speed. As the rotational speed sensor, a well-known σ crank angle sensor that generates a pulse signal for each angle of rotation of the engine can be used.
20紘点火装・置であ如、イグナイタと、デイストリビ
ーータと、イグエfv−ン・コイμと、を構、成要素と
するものであシ、線22を介して各気筒O点火栓電極に
接続している。20 The ignition system/equipment consists of an igniter, a distributor, and an ignition valve, and is connected to each cylinder O spark plug via a line 22. connected to the electrode.
点火制御回路26は点火装置20の作動信号を形成する
ものであ〕、後述の方法を実行すべくプログラムされた
コンビーータとしての機能を持っている。吸入空気゛量
セン?16・及び回転数センヤ五8は夫々線30及び3
2を介して制御回路26・に接続しているI#I制御回
路26は吸入空気量及び回転数の組合せで定まる点火時
期の演算を行い。The ignition control circuit 26 forms the activation signal for the ignition system 20 and functions as a combeater programmed to carry out the method described below. Intake air volume sensor? 16 and rotation speed sensor 58 are lines 30 and 3 respectively.
The I#I control circuit 26, which is connected to the control circuit 26 through 2, calculates the ignition timing determined by the combination of the intake air amount and the rotation speed.
この演、算結果に応じた点火時期信号を線34を介して
点火装置に出力する。An ignition timing signal corresponding to the result of this calculation is output to the ignition device via line 34.
第6図は点火制御回路26のプロツクダイヤグラムを示
すものでToOて、入力ボート42は吸入空気量センナ
16及び回転数センf18からや信号を受けとる。A/
Dコンバータ40は吸入空気量セン+16(又は吸気圧
力センサ)からのアナログ信号をデジタμ信号に変換す
る。出力ポート46は点火装置20への信号ゲートの役
割を行う。FIG. 6 shows a block diagram of the ignition control circuit 26, in which the input boat 42 receives signals from the intake air amount sensor 16 and the rotational speed sensor f18. A/
The D converter 40 converts the analog signal from the intake air amount sensor +16 (or intake pressure sensor) into a digital μ signal. Output port 46 serves as a signal gate to igniter 20.
入力ポート42及び出力II!−) 46は、コンピー
−It:)構tl要素でIb40PU48@ROM5G
。Input port 42 and output II! -) 46 is a compi-It:) structure tl element Ib40PU48@ROM5G
.
RAM52にパス54を介して接続し、クローク発生1
15gからのクロ゛!り信号に同期して信号のヤシとシ
を行う。Connect to RAM 52 via path 54 and generate cloak 1
Black from 15g! The signal changes in synchronization with the signal.
制御回路26蝶、前述した本1発明原珊による各気筒の
最適点火時期を得るべくプログラムされているが、この
大体のところを第”7図によJ72*簡の場合で説明す
れば、最初の計算ステップS1では点火時期は蛸、Hの
如く夫々#*、#嘗に設定される。この状態で運転する
ことkよシ(ハ)の如くエンジン回転数社変化し、(ホ
)の如く点火パルスが出る。このIIIステップS1の
終ル近くの所定点火パルス閲OfO〜0fendでり費
!クパρスをに)の如く取り込みその個数を計数し、辷
れを第1ステtプS1でのエンジン回転数11とする。The control circuit 26 is programmed to obtain the optimum ignition timing for each cylinder based on the invention described above. In the calculation step S1, the ignition timing is set to #* and #嘗, respectively, as in octopus and H.If you drive in this state, the engine speed will change as in (c), and as in (e). An ignition pulse is emitted.The predetermined ignition pulse near the end of this III step S1 is taken in as shown in OfO~0 fend!The number of ignition pulses is counted, and the number of ignition pulses is counted. The engine speed is 11.
g2回目のステップSmでは第1fi−は−1+八〇、
第2気筒は01そのままとし、同様に所定点火回数運転
し、0fo−Ofend間のクリックパ、J%/、X数
としての回転@!i黛を測定する。同様183のステッ
プSlでの回転数Nmを測定する。また第4のステップ
S4で第1のステップと同じ点火時期の組合せで運転し
1回転数N Nを測定する。仁のように測定された回転
数の平均をとIN諺とN?とを結ぶ直線からの距離をも
とに最小回転数となる点火時期0h#諺を求め、この反
対側に新点火時期θ、I、 l 11を第3因の計算に
よりてとシ、同様に所定点火運転し回転数N4をクロシ
クパルス数として計算する(第5のステップS&)、そ
して、第6のステップ(図示しない)として第2のステ
ップS2と同じ点火時期の組合せで運転し、回転数N
m’を計測し、前述同様にステップS ass sea
mの点火時期の組合せのうち点火時期のみの要因によ
シ回転数が最小となる点火時期の組合せを求め、この反
対側に新点火時期の組合せをと夛、以下これを繰返すの
である。gIn the second step Sm, the first fi- is -1 + 80,
The second cylinder is left at 01, and similarly operated for a predetermined number of ignitions, clicks between 0fo and Ofend, J%/, rotation as X number @! Measure the i yuzume. Similarly, in step 183, the rotation speed Nm is measured. Further, in a fourth step S4, the engine is operated with the same ignition timing combination as in the first step, and the one-rotation speed N N is measured. The proverb says that the average number of revolutions measured as IN and N? Find the ignition timing 0h# which gives the minimum rotation speed based on the distance from the straight line connecting the Perform a predetermined ignition operation and calculate the rotation speed N4 as the number of cross pulses (fifth step S&). Then, as a sixth step (not shown), operate with the same ignition timing combination as in the second step S2, and calculate the rotation speed N4.
m' is measured, and step S ass sea is performed in the same manner as described above.
Among m combinations of ignition timings, the combination of ignition timings that minimizes the engine speed based only on the ignition timing factor is found, a new ignition timing combination is created on the opposite side, and this process is repeated.
以上本発明における点火時期制御を実行する丸めのプロ
グラムの大まかなところを説明したので第8図の70−
チャートによって詳#llK説明する。The general outline of the rounding program for executing ignition timing control in the present invention has been explained above.
This will be explained in detail using a chart.
まず、内燃機関が起動すると、プログツムはステップ1
00よ〕この点火時期演算の割込み処11μmチンを実
行する0次いでステップ101では吸入空気量センサ1
6(又は吸気圧センサ)、回転数センt18で検出した
吸入空気量(又は吸気圧〕と回転数よ少基零点火時期O
1の算出を行う、具体的には、メモ9KFi吸入空気、
量と回転数との組合せに対する基本点火時期マツピング
がしてあシ、実測される吸入空気量と回転数とより基本
点火時期の演算が行われbのである。ステップ102で
は回転数および吸気負圧の変化状線からエンジンが定常
か否かの判定を行う、エンジンが定常でないときはN0
9C分岐しステ*flO3に行く。First, when the internal combustion engine starts, the program executes step 1.
00] This ignition timing calculation interrupt process 11 μm is executed.0 Next, in step 101, the intake air amount sensor 1 is
6 (or intake pressure sensor), the intake air amount (or intake pressure) detected at rotation speed cent t18 and the rotation speed, zero base ignition timing O
1. Specifically, Memo 9KFi intake air,
The basic ignition timing is mapped to the combination of the amount of intake air and the rotational speed, and then the basic ignition timing is calculated from the actually measured intake air amount and the rotational speed. In step 102, it is determined whether the engine is steady based on the change line of the rotation speed and intake negative pressure.If the engine is not steady, NO
Branch 9C and go to ST*flO3.
103ではステップカウンタをl;0、点火回数カウン
タを0f=O,クロッ・クパβスカウンタをnT2=Q
、後述するフラグをにE丁=Oと夫凌クリアする6次に
ステップ104で酸スタート点火時期を夫々第1.2.
3.−−M誉目Q気筒に対して、
Kセットする。ここに01.#鵞−・−8Mは第2図に
つき説明したように点火時期の修正量で吸入空気量(又
は吸気圧)と回転数とに応じて記憶されてお)、これに
ステW7”101で計算される基本点火時期を加えたも
のが点火時期と計算されるのである。ステップ105で
メインμmチンに復帰す、る。In 103, the step counter is l;0, the ignition number counter is 0f=O, and the clock/couple β counter is nT2=Q.
Then, in step 104, the flags to be described later are cleared to 1, 2, and 2, respectively.
3. --Set K for the M honorary Q cylinder. Here 01. #鵞-・-8M is the amount of correction of the ignition timing, which is stored according to the intake air amount (or intake pressure) and rotational speed, as explained with reference to Fig. 2), and is calculated using the step W7''101. The ignition timing is calculated by adding the basic ignition timing calculated.In step 105, the process returns to the main μm timing.
ステップ102で定常と判定されればYli:Sfc分
岐し上記の如く設定された点火時期■1.■!、−■、
の組合せで運転が行われ、第2図の最初の点L(即ち第
7図でいえは第1ステツプSs)で0回転数測定が行わ
れる。先ず、ステップ106では気筒数毎にクリアされ
るカウンタJの値を点火1回毎E1つ加算し、ステップ
107でJの値が気筒数Mに達したか否かを判別する。If it is determined to be steady in step 102, Yli:Sfc branches and the ignition timing is set as described above.■1. ■! ,−■,
An operation is performed using the combination of the following, and the zero rotation speed is measured at the first point L in FIG. 2 (that is, at the first step Ss in FIG. 7). First, in step 106, the value of the counter J, which is cleared for each number of cylinders, is incremented by one E for each ignition, and in step 107, it is determined whether the value of J has reached the number M of cylinders.
JO値が舖に達していなければステップ108でJ=I
Kクリアし、達していなければステップ109に移行す
る。このステシブ109では気筒毎に点火時期■1を基
本進角0.と点火時期の修正量θ1とを加算することに
よ)求める。ステップ110では点火回数カウンタat
が点火1(HiK 1つ加算されることを示す。ll’
lのステ、4プでは点火回数Ofが第7図−の0fen
d であるか否かの判定をする。最初紘当然NOK分岐
し、1−17で点火回数Ofが第7図−のCfoよル大
きいか否かの判定をする。NOであれに、回転数の測定
期間に入ってh’&いことを示すので、11Gでフィシ
μmチンKt[帰する。117で、点火回数OfがりQ
vクパfiIスの計測を始めるべき点火回数Ofoに達
していると認識すればTESK分紋し、118VcTh
iてクロツクパルスのカクシF開始をし要談、フィシμ
mチンに119で復帰する。ステf7’lllで点火回
数atが0fend−達したと判定し九も112で、こ
のときのりEft’クパ〃スOカウント値npをメ篭す
に格納する。このカウント値はメチツブS1てのエンレ
フ回転数謔凰を表わすのである。そして11Bで、点火
回数カウンタを0f=0.り騨シクパμスカtンタをn
p=OKクリヤし、ステ會プカウンタを1つ加算し次の
点火時期設定を行−1第2図の点Hでの運転を行い第7
図でいえば第2のステップ5nj(入る。If the JO value has not reached the limit, J=I in step 108.
K is cleared, and if it has not been reached, the process moves to step 109. In this Stesive 109, the ignition timing ■1 is set to the basic advance angle 0 for each cylinder. and the ignition timing correction amount θ1). In step 110, the ignition number counter at
indicates that 1 ignition (HiK) is added.ll'
In step 1 and step 4, the number of ignitions Of is 0fen in Figure 7.
d. At first, the NOK branch is taken, and it is determined at 1-17 whether or not the number of ignitions Of is greater than Cfo in FIG. Even if it is NO, it indicates that the rotational speed measurement period has started and h'& is reached, so at 11G, the rotation speed is set to 11G. At 117, the number of ignitions Off increases Q
When it recognizes that the number of ignitions Ofo that should start the measurement of
I then started the clock pulse F and discussed the main points.
Returns to m chin with 119. At step f7'll, it is determined that the number of ignitions at has reached 0fend-, and at 112, the count value np of the number of ignitions at this time is stored in the memory. This count value represents the engine reflex rotation speed of the engine S1. Then, at 11B, the ignition number counter is set to 0f=0. Rinshikupaμsukatnta n
Clear p=OK, add one to the step counter, and set the next ignition timing.
In the figure, the second step 5nj (enters).
先ず114では1≦Mか否かの判定が行われる。First, in 114, it is determined whether 1≦M.
このときi=1であるからygsに分岐し、115にお
いて各気筒の点火時期修正量は、
と設定される。(第2.7図では第2のステップにおい
て―#1気筒の点火時期をΔ#1厘=Δ−だけ動かし%
#2*llはそのまま即ちΔ#参mzQで説明している
が、Δ−■はOでなくても良−6)゛ステップ116で
メインルーチンに復帰する。再び10QOXfvpプか
ら割込みに入ると、I11ステ!デと同様106.10
7・109.110曹111−117・118.119
の手順でこの虞2ステ嘗1S麿におけるエンレフ回転数
Hmがクー9クパyス数として測定され、結果は112
のステップでメ毫替中に格納される。その後、113の
ステシブで、点火回数カウンタ(3f、りaツクパ〜ス
カウンタnpのクリヤ、及びステップカウンタ1の1つ
加−算が行われ第3ステツプに入浸。At this time, since i=1, the process branches to ygs, and in step 115, the ignition timing correction amount for each cylinder is set as follows. (In Figure 2.7, in the second step - the ignition timing of the #1 cylinder is moved by Δ#1 = Δ-.
#2*ll is explained as it is, that is, Δ# reference mzQ, but Δ−■ does not have to be O.-6) In step 116, the main routine is returned. When I enter the interrupt from 10QOXfvp again, I11 step! Same as de 106.10
7・109.110 111-117・118.119
The enref rotation speed Hm in this 2nd step 1S Maro is measured as Ku9 Kupays number by the following procedure, and the result is 112
Stored during message exchange in step . After that, in the step 113, the ignition number counter (3f, a counter to counter np is cleared, and the step counter 1 is incremented by one), and the third step is entered.
まず114では2気筒の場合も依然τESとして判定さ
れ、115で点火時期修正量をと設定する。その後11
6でメインルーチンに復帰後、looで再びこのプログ
ラムに割込み、前と同様106以降の処理を行い、この
第3ステ9プSsにおけるエンジン回転数N1の計測を
りpパスのカウント値npの形で行い、112でン°モ
リに格納する。First, in step 114, even in the case of two cylinders, it is still determined as τES, and in step 115, the ignition timing correction amount is set. then 11
After returning to the main routine at 6, interrupt this program again at loo, perform the processing from 106 onwards as before, and measure the engine rotation speed N1 at this third step 9 Ss in the form of the count value np of the p pass. and store it in memory at 112.
次f)1140子テツプで1噸≦MO判定が行゛われる
。2気筒の場合に社ζζで始めてNOに分岐し、ステッ
プ12Gで7フグKEY=0か否かを判定する。この場
合Km丁=Oであるため、Xテ9”f129に進み、K
EY=IK設定し良後1次のステラデー30″t’回転
数が比較される各魔界時期の組合せのうち最初の組゛合
せと同じ修正jl(この場合、ステップ104における
−1.−・−1であシ、2気筒の場合M;2)をセット
シてメインルーチンに復帰する。Next f) At sub-step 1140, a determination is made that 1st chapter ≦MO. In the case of two cylinders, the process starts at ζζ and branches to NO, and in step 12G it is determined whether or not 7 puffer key=0. In this case, since Km = O, proceed to XTE9”f129 and K
Set EY=IK and make the same correction jl as the first combination of the Makai period combinations to which the first-order Stellar Day 30''t' rotational speeds are compared (in this case, -1.-- in step 104). If the cylinder is 1, set M; 2) and return to the main routine.
次に1、再びステップ120に達すると、KEY=1で
あるためNOに分岐し、121でfcRiYま0に設定
した後、122のステップで第4図にて説明し九番点火
時−の組合せにおける回、転数変化ΔNを第13)式よ
シ算出する。ステップj23で扛回転数変化ΔNのうち
最小となるステ、IIデi=minを求める。Next, when step 120 is reached again, it branches to NO because KEY=1, and after setting fcRiY to 0 at step 121, at step 122, as explained in FIG. The rotational speed change ΔN is calculated according to equation 13). In step j23, the minimum value of the rotational speed change ΔN is determined.
次に124のステップで平均点火時期0の算出を@ 1
1)式。Next, in step 124, calculate the average ignition timing 0 @ 1
1) Equation.
、、、、、H−!−、19+、L 、、、、。,,,,,H-! -, 19+, L,,,,.
によって行う、この式はペクトμ表示であるから、第*
*)、 15)、 f+)の各式における気筒成分毎に
計算する。セして125のステップで紘この平均点火時
期を基に第2式
%式%)
によって回転数を増大させる新規な点火時期#new・
の算出を行う、この式もペクトμ表示であるから、第1
4)、 り、 (6)式の各成分毎に新点火時期の計算
を行う0次にステ!1126ではこの新点火時期#ne
wを最少回転数変化を構成する点火時期の組合せ#m:
Ln (即ち第(4)式における# 1@# s *
=・”w)と置き換える。そして、127のステ9デで
成分毎に点火時期修正量のセットを行い0!、θ曹*
+−ea、tls、ステップ128でフィシμmチンに
戻る。Since this formula is in pectoμ representation, the *th
*), 15), and f+) for each cylinder component. After setting, at step 125, Hiroko uses the second formula (%) to increase the rotation speed based on the average ignition timing.
Since this formula is also in pect μ representation, the first
4), Step 0 to calculate the new ignition timing for each component of equation (6)! 1126 has this new ignition timing #ne
Combination of ignition timings that constitutes the minimum rotational speed change #m:
Ln (i.e. #1@#s* in equation (4)
=・"w). Then, in Step 9 of 127, set the ignition timing correction amount for each component and set it to 0!, θ Ca *
+-ea, tls, step 128 returns to fisiμm tin.
かように新点火時期の組合せが設定されると、次の割込
みにて87図の第5のステップが第8図の106・10
7.109.110.111,117.11−5のμ−
チンによル寮行され、回転数N4の計測が行われる。そ
の後、ステップ111より分岐し、114120129
をへて1aoKて112のステップと同じ修正量をセッ
トシて運転を行な−、回転数1′の計測が行われ、そし
て、前述し丸ように回転数変化ΔNの最小の点火時期の
組合せが回転数増大方向の組合せに入れかえられる。以
後同様な処理が繰返され回転数の山が正1[K極められ
る。When the new ignition timing combination is set in this way, the fifth step in FIG. 87 is changed to 106/10 in FIG.
7.109.110.111, 117.11-5 μ-
The engine was taken to the dormitory and the rotational speed N4 was measured. After that, branching from step 111, 114120129
After 1 aoK, the same correction amount as in step 112 is set and the operation is carried out.The rotation speed 1' is measured, and as described above, the combination of the minimum ignition timing for the rotation speed change ΔN is determined. The rotation speed can be changed to a combination that increases the rotation speed. Thereafter, the same process is repeated and the peak of the rotational speed reaches a positive value of 1 [K].
以上述べたように本発明は1点火時期の各気筒毎の組合
せを複数設定し、この組合せからエンジン回転数が増加
方向となるように所定の演算を行うて点火時期の組合せ
の修正を行−1各運転状−においてエンvy@転数を最
大とする気筒毎の点火時期の組合せを得るものであ)、
特に、少なくとも一つの点火時期の組合せKおける運転
を2E行ない、仁の2回の運転KJ)ffる回′転数等
6R転状態信号の差から′各点火時期の組合せKかける
運転状611号を補正するようにしているので、アタ七
μ操作等の外的“要因の影響を受けることなく最−
適点火時期への制御が可能と′&夛、常に出′力効率の
最大を確保する仁とができるという優れ大効果がある。As described above, the present invention sets a plurality of combinations of one ignition timing for each cylinder, and performs a predetermined calculation to correct the combination of ignition timings so that the engine speed increases from these combinations. 1 to obtain the combination of ignition timing for each cylinder that maximizes the engine rotation speed in each operating state),
In particular, the operation with at least one ignition timing combination K is performed 2E, and from the difference in the 6R rotation state signal such as the rotation speed, etc., of the two times of operation KJ)ff, the operating condition 611 is calculated by multiplying each ignition timing combination K. Since the ignition timing is corrected, it is possible to control the optimum ignition timing without being affected by external factors such as external factors such as external operation, and this ensures maximum output efficiency at all times. It has a great effect of being able to create compassion.
!Ii1図は点火時期とエンジン回転数との関係を示す
特性図、
112図は2gIC筒の場合における点火時期組合せK
it′するエンレフ回転数変化を゛示す等高線図、11
3図は気筒数に1を加えた。A火時期組合せからエンジ
ン回転数を増加させる新点火時期の決定1114図t&
J、 (b)、 b>は点火時期の1組合せの変化を示
す図、第4図d)は回転数を算出する方法を示す図。
第5図は本発明に係る内燃機関の構成図、第61i1は
第4図中の制御回路の構成図、第7図は本発明における
演算処理の民意□を示すタイミング図、
第8回状本発明における点火時期演算処理手順を示すフ
ローチャートである。
10−・エンジン本体、* 5−91人空[1−にン号
。
18−エンジン回転数センt o 2 G 一点火装置
。
26−・制御回路・
代理人弁理士 関部 論
第1図
第2図
一1処1軒11角
第3図
#犠胃と丸昨翔
第5図
= A ! 号
!! Figure Ii1 is a characteristic diagram showing the relationship between ignition timing and engine speed, and Figure 112 is the ignition timing combination K in the case of a 2g IC cylinder.
Contour diagram showing the change in engine reflex rotation speed, 11
In Figure 3, 1 is added to the number of cylinders. Determination of new ignition timing to increase engine speed from A ignition timing combination 1114 Figure t&
J, (b), b> is a diagram showing a change in one combination of ignition timing, and FIG. 4 d) is a diagram showing a method for calculating the rotation speed. Fig. 5 is a block diagram of the internal combustion engine according to the present invention, Fig. 61i1 is a block diagram of the control circuit in Fig. 4, and Fig. 7 is a timing diagram showing the public opinion of the calculation processing in the present invention. It is a flowchart which shows the ignition timing calculation processing procedure in this invention. 10- Engine body, * 5-91 people [1-Nin. 18-Engine speed cent o 2 G one ignition system. 26-・Control circuit・Representative Patent Attorney Sekibe Theory Figure 1 Figure 2 11 Place 1 Corner Figure 3 #Sacrificial Stomach and Maruko Sho Figure 5 = A! issue!
Claims (1)
火時期の組合せを複数選択し、・この選択した点火時期
の各組合せにて次々に所定期間運転を行い、これらの各
運転中にエンジン回転数等の運転状態信号を検出し、上
4記各点火時期の組合せにおける検出信号を比較するこ
とにより最適の運転秩頗から最′4離れキ運転状態とな
る1M紀点火時期の組合せを求め、この点火時期の組合
せを新丸な点火時期の組合せに変更して、最lIO運転
状−が得られる方向に前記点火時期の組合せを修正する
点火時期制御方法であって、前記複数の点火時期の1合
せによる運転のうち少なくとも一つの点火時期の組合せ
における運転を2回行ない、この2回の運転における前
記運転状線信号の差を求め、この差から他の点火時期の
組合せにおける前記運転状aWI号を補正することを特
徴とする多気筒内燃機関の点火時期制御方法。 (2)前記−2Bの運転は、前記選択された複数の点火
時期の組合せにおける運転のうち最初と最後に行なうこ
とを特徴とする特許請求の範囲flcxlli記載の点
火時期制御方法。[Claims] Q) Select a plurality of combinations of ignition timings having predetermined values for each cylinder in the vicinity of the target ignition timing, and - Operate for a predetermined period one after another with each of the selected combinations of ignition timings. By detecting operating status signals such as the engine speed during each of these operations and comparing the detection signals for each of the above four ignition timing combinations, the optimum operating condition can be reached by as much as 4' away from the optimum operating condition. An ignition timing control method that obtains a combination of 1M period ignition timings, changes this combination of ignition timings to a new combination of ignition timings, and corrects the combination of ignition timings in a direction that provides the most IIO operating condition. Then, the operation with at least one ignition timing combination among the plurality of ignition timing combinations is performed twice, the difference in the operating condition line signal between these two operations is determined, and from this difference, the other ignition timings are determined. An ignition timing control method for a multi-cylinder internal combustion engine, comprising correcting the operating condition aWI in a combination of ignition timings. (2) The ignition timing control method according to claim 1, wherein the -2B operation is performed at the beginning and end of the operations in the selected combination of ignition timings.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56144435A JPS5847159A (en) | 1981-09-11 | 1981-09-11 | Method of controlling ignition time of multicylinder internal combustion engine |
US06/403,816 US4432322A (en) | 1981-08-01 | 1982-07-30 | Method and system for controlling ignition timing in a multicylinder internal combustion engine |
DE8282304034T DE3268810D1 (en) | 1981-08-01 | 1982-07-30 | Method and system for controlling ignition timing in a multicylinder internal combustion engine |
EP82304034A EP0072162B2 (en) | 1981-08-01 | 1982-07-30 | Method and system for controlling ignition timing in a multicylinder internal combustion engine |
US06/459,497 US4480615A (en) | 1981-08-01 | 1983-01-20 | Method and apparatus for controlling ignition timing in a multicylinder internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56144435A JPS5847159A (en) | 1981-09-11 | 1981-09-11 | Method of controlling ignition time of multicylinder internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5847159A true JPS5847159A (en) | 1983-03-18 |
JPS6331668B2 JPS6331668B2 (en) | 1988-06-24 |
Family
ID=15362131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56144435A Granted JPS5847159A (en) | 1981-08-01 | 1981-09-11 | Method of controlling ignition time of multicylinder internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5847159A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63236481A (en) * | 1987-03-25 | 1988-10-03 | Sony Corp | Television receiver |
US9243353B2 (en) | 2011-01-26 | 2016-01-26 | Asahi Kasei Fibers Corp. | Stent grafts |
-
1981
- 1981-09-11 JP JP56144435A patent/JPS5847159A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6331668B2 (en) | 1988-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0144356B1 (en) | Combustion abnormality detection device of internal combustion engine and control device of internal combustion engine | |
JPH04503387A (en) | System for monitoring and/or controlling the performance of a multi-cylinder engine | |
JPS639679A (en) | Control of ignition timing of internal combustion engine | |
CA2017523C (en) | Method and means for determining air mass in a crankcase scavenged two-stroke engine | |
JPS5847159A (en) | Method of controlling ignition time of multicylinder internal combustion engine | |
EP1439299B1 (en) | Engine control device | |
US4644784A (en) | Suction pipe pressure detection apparatus | |
US4510569A (en) | A/D Conversion period control for internal combustion engines | |
JPS58176468A (en) | Ignition timing controlling method for multi-cylinder internal-combustion engine | |
US5093793A (en) | Method of transferring signals within electronic control system for internal combustion engines | |
JP2018115966A (en) | Angle detection apparatus or angle detection method of rotary shaft | |
US20020120423A1 (en) | Engine speed calculating apparatus | |
US4432322A (en) | Method and system for controlling ignition timing in a multicylinder internal combustion engine | |
JPH029185B2 (en) | ||
JPS60190866A (en) | Apparatus for detecting abnormality of rotary speed | |
JPS6168533A (en) | Detection of max. combustion pressure generation timing for internal combustion engine | |
US4480615A (en) | Method and apparatus for controlling ignition timing in a multicylinder internal combustion engine | |
JPS6331666B2 (en) | ||
JPS61157741A (en) | Detecting device of intake air quantity | |
JPH0480226B2 (en) | ||
JP2586435B2 (en) | Knocking control device for internal combustion engine | |
JPS6331667B2 (en) | ||
JPS61232363A (en) | Electronic controller for internal-combustion engine | |
JPH0270961A (en) | Indicated average effective pressure computing device for engine | |
JPS58126464A (en) | Ignition timing control method for multi-cylinder internal-combustion engine |