JPS5846550A - Manufacture of oxidized cathode structural body - Google Patents
Manufacture of oxidized cathode structural bodyInfo
- Publication number
- JPS5846550A JPS5846550A JP14461481A JP14461481A JPS5846550A JP S5846550 A JPS5846550 A JP S5846550A JP 14461481 A JP14461481 A JP 14461481A JP 14461481 A JP14461481 A JP 14461481A JP S5846550 A JPS5846550 A JP S5846550A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- oxide
- base metal
- metal
- reducing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/04—Manufacture of electrodes or electrode systems of thermionic cathodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、電子管用陰極構体、特にカラーブラウン管等
の隘極線管I:使用して好適な長寿命かつ為性能の酸化
物陰極構体の製造法に−する0通常、ll化物陰極構体
を構成する鯖体金Mは、ニッケル(Ml)を主体として
、還元剤として黴蓋のマグネシウム(Mt) vケイ素
(81) Iアル建ニウム(ム1)、ジルコニウムCZ
r) Iタング哀テン(W)を含有せしめたlli−M
y 、lIi −810Mi −4−81゜N1−ムj
elii−1,)Ii−ムj W 、 Mi−
W−N7゜Mi −Zr等の合金が使用される。この合
金C二より構成された基体金属Fi、 陰極スリーブの
先端に同定され、かつ、この基体金属上には、バリウム
(B、)。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing an oxide cathode assembly suitable for use in cathode assemblies for electron tubes, particularly for cathode ray tubes such as color cathode ray tubes, having a long life and long performance. , the molten gold M constituting the llide cathode structure is mainly composed of nickel (Ml), and the reducing agents are magnesium (Mt), silicon (81), aluminum (M1), and zirconium CZ.
r) lli-M containing I-Tung-Ai-Ten (W)
y, lIi -810Mi -4-81°N1-muj
elii-1,) Ii-muj W, Mi-
An alloy such as W-N7°Mi-Zr is used. A base metal Fi consisting of this alloy C2 is identified at the tip of the cathode sleeve, and on this base metal is barium (B).
ストロンチウム(sr) *カルシウム(0,)等のア
ルカリ土類金属炭酸塩(Ba、 8r+ ca)cog
が塗布され、この炭酸塩は、カラーテレビジョン受像管
等C二組み込まれた後、真空中で所定の温度I:加熱す
るこ 。Strontium (sr) *Alkaline earth metal carbonates such as calcium (0,) (Ba, 8r+ ca) cog
After this carbonate is incorporated into a color television picture tube, etc., it is heated to a predetermined temperature in a vacuum.
とC二より、アルカリ土類金属酸化物(Ba I B
r+ Oa )OI:分解される。このアルカリ土類金
属酸化物のうちBaOが電子放射に最も寄与する。and C2, an alkaline earth metal oxide (Ba I B
r+ Oa) OI: Decomposed. Among these alkaline earth metal oxides, BaO contributes most to electron emission.
このBaOなる酸化物は酸化物陰極の動作中に基体金属
中を拡゛散してくる上述し九My* 81.ム4 Zr
w W郷の還元剤により、基体金属と酸化物の境界で還
元され、例えばMtを還元剤として用いた場合、次式の
反応I:より電子放射の原因となる遊離B4が形成され
る。This BaO oxide diffuses into the base metal during the operation of the oxide cathode. M4 Zr
It is reduced at the boundary between the base metal and the oxide by the reducing agent of wW. For example, when Mt is used as the reducing agent, free B4, which causes electron emission, is formed from reaction I of the following formula.
Ba0(s) + MIt(in Ni)→B’(1n
Bad) ” MyO(@)−−−−(1)
従ってかような飯化*陰極においては、上述した様に還
元剤と電子放射物質である酸化物との反応が基体金属と
酸化物との界面で進行する為、好むと好まざるに拘らず
、両者の中間に中間層と絆ばれる化合物層を形成する。Ba0(s) + MIt(in Ni) → B'(1n
Bad) ”MyO(@)---(1) Therefore, in such a metal cathode, as mentioned above, the reaction between the reducing agent and the oxide, which is an electron emitting substance, is caused by the reaction between the base metal and the oxide. Because it proceeds at the interface, whether we like it or not, a compound layer is formed between the two that is bonded to the intermediate layer.
さて最近特にテレビジョン受g#管l二対[7て超連動
化、高精細度化、高輝度化等の嶽求がなきれ、酸化物陰
極の高性能化が望まれている。この様な要求を満たす1
つの方向として基体金属の薄肉化、還元剤の添加量の増
量が検討されてきたが、上述してきた様な中間層を有す
る酸化v!J陰極ではその反応に限界があった。Recently, there has been a growing demand for ultra-interlocking, high definition, and high brightness for television receivers, and higher performance oxide cathodes are desired. 1 that meets these requirements
Two approaches have been considered, such as thinning the base metal and increasing the amount of reducing agent added. There was a limit to the reaction with the J cathode.
しかしながら、本発明者らは酸イL物@極孔関する幾つ
かの詳細な研究の結果、(1)電子放射物質からの酸車
の解離反応と、この酸素と還元剤との反応の場所(サイ
ト)を分離させることが可能であること、さらに(11
)両反応サイトの間に#素および還元剤の拡#(:対す
る制御層を形成し得ることを見出した。However, as a result of several detailed studies on acidic L compounds @ polar pores, the present inventors found (1) the dissociation reaction of acid wheels from electron-emitting substances and the location of the reaction between this oxygen and the reducing agent ( site) can be separated, and furthermore, (11
) It has been found that a control layer for the diffusion of # element and reducing agent can be formed between both reaction sites.
本発明者らは、以上の発見≦二基づき#11図あるいは
第2図に示したような断面構造を有する基体金属を用い
皮酸化物陰極構体を作成し、力2−ブラウン管に電子銃
として組込んでエミッション寿命試験を実施し好結果を
得た。Based on the above findings≦2, the present inventors created a skin oxide cathode structure using a base metal having a cross-sectional structure as shown in Figure #11 or Figure 2, and assembled it into a cathode ray tube as an electron gun. We conducted extensive emission life tests and obtained good results.
第1図C二おいて(ロ)は電子放出物質、(胸は基体金
属であり、(Elは還元剤の酸化物粒子である。この−
1;示した還元剤の酸化物粒子の分布状態は光学顯黴鏡
およびIPMAによって観察される。陰極基体(ロ)内
で酸化物粒子(至)が存在する領域においては還元剤は
すべてこの酸化物粒子asjとなっており実負的には無
還元剤領域を形成している。このような断面構造を有す
るl!11極基体は例えば次のようにして作製【7た0
すなわち微量の還元剤を含有するM1基合金製の薄板(
例えば犀さ150.am )をCOと003との混合気
体・(・分圧比1 : 20 )の気流中で1000℃
、1時間保持することによって内部酸化処理を施し、所
望の断面構造を得た後、円板に打抜いて基体金属として
用いる方法である。In Figure 1C2, (b) is an electron-emitting substance, (the chest is the base metal, and (El is the oxide particle of the reducing agent.
1; The distribution state of the oxide particles of the reducing agent shown is observed by optical microscopy and IPMA. In the region where the oxide particles (to) are present in the cathode substrate (b), all the reducing agent is the oxide particles asj, forming a practically non-reducing agent region. l! having such a cross-sectional structure! For example, the 11-pole substrate is manufactured as follows [7
In other words, a thin plate made of M1-based alloy containing a trace amount of reducing agent (
For example, Rhinoceros 150. am) at 1000°C in an air stream of a mixed gas of CO and 003 (partial pressure ratio 1:20).
This is a method in which internal oxidation treatment is performed by holding the material for 1 hour to obtain a desired cross-sectional structure, which is then punched out into a disk and used as a base metal.
第1図に示したような構造を有する酸化物陰極構体では
、陰極製造工程及び陰T#、動作時におけるM2C剤の
酸化反応が陰極基体の内部でおこることを見出した。す
なわち陰極製造工程において電子放出物質は通常、アル
カリ土類金屑の炭酸塩の形で塗布される。その後、例え
はカラーブラウン管の電子fl−組込まれて、排気工性
で加熱され炭酸塩から酸化物ヘメ分解され、真窒に刺止
される。It has been found that in the oxide cathode structure having the structure shown in FIG. 1, the oxidation reaction of the M2C agent occurs inside the cathode substrate during the cathode manufacturing process, cathode T#, and operation. That is, in the cathode manufacturing process, the electron-emitting material is usually applied in the form of a carbonate of alkaline earth gold dust. Thereafter, it is incorporated into, for example, an electronic flash tube of a color cathode ray tube, heated in an exhaust system to decompose carbonates into oxides, and then pierced with nitrogen.
この分解反応は例えば(2)式のようC:示めされる゛
が、この際C−発生する00gガスの一部は(81式%
式%(2)
)(31
せる。本反応(8)は基体金属の表面で生じるもめであ
る。61述したように基体金属の表面直下灯無還剤領域
であるため、固溶したrR素は基体金属の内、部へ拡散
した後、例えば還元剤がM9の場合Cij (4)式≦
2示したような酸化反応を起す。一方酸化物陰極の動作
時においても、電子放出物質の電子放出に寄寿する遊離
Baの生成が、迭の2つの反応に分離して生ずる。ここ
で反応(6)は陰極基体と電子放出物質との界面で生じ
、一方反応(梢は前述したと同様に陰極基体内部で生じ
る。以上のことは陰極基体の断面の金属組織C一対する
検討で確認した。This decomposition reaction is shown, for example, as shown in equation (2), but at this time, a part of the 00g gas generated is (81%
Formula % (2) ) (31) This reaction (8) is a conflict that occurs on the surface of the base metal. 61 As mentioned above, since the lamp is in the non-reducing agent region directly below the surface of the base metal, the solid-dissolved rR element After diffusing into the base metal, for example, if the reducing agent is M9, Cij (4) formula ≦
2 An oxidation reaction as shown occurs. On the other hand, even during operation of the oxide cathode, the production of free Ba, which is parasitic to the electron emission of the electron-emitting substance, occurs separately into two reactions. Here, the reaction (6) occurs at the interface between the cathode substrate and the electron-emitting substance, while the reaction (reaction (6) occurs inside the cathode substrate as described above. I confirmed it.
このように炭酸塩の分解時も、陰極動作時も還元剤a量
化物は陰極基体内部で生成するため、陰極基体と電子放
出物質との界面C二、陽極の電子放出特性を損うような
中間層を形成することはない。In this way, both during the decomposition of carbonates and during cathode operation, the quantified reducing agent a is generated inside the cathode substrate, so that the interface C2 between the cathode substrate and the electron-emitting substance may impair the electron-emitting properties of the anode. No intermediate layer is formed.
また無還元剤領域の陰極基体表面からの厚さを規定する
ことで゛酸素の拡散距離をある栓度制御することができ
る。これは(6)式の遊離バリウム生成反応の進行の制
御を可能にするものである。以上勾よう1ニして電子放
出特性の優れた、かつ長寿命の陰極を得る仁とができる
。Furthermore, by defining the thickness of the non-reducing agent region from the surface of the cathode substrate, the diffusion distance of oxygen can be controlled to a certain degree. This makes it possible to control the progress of the free barium production reaction of formula (6). As a result of the above steps, a cathode with excellent electron emission characteristics and long life can be obtained.
第2図1−おいて韓)は電子放出物質、−はに極基体、
−は還元剤の酸化物粒子、mtt拡散制御層である。こ
こで拡散制御層−とは、基体金属の表面近傍の結晶粒界
に還元剤が酸化され連続して存在し、結果として基体金
属表面−t thぼ半行な酸化物層を形成しているもの
である。第2図にボした一極基体の断面構成の内拡散制
御層−以外は第1図と同様である。このような断面構造
を有する一極基体は例えば次のようにして作製した。酸
量の還元剤を含有するN1基合金の冷間圧延材を基体m
Mとして用い−、COとCo11との混合気体(分圧比
1:20 )の気流中で1000℃、1時間保持するこ
とによって内部酸化処理を施す方法である。この処理に
より内11S酸化と、圧姑時に基体戴楓中C二會執され
た加工歪に基く再結晶税象がrliJ時In時打n進行
シフ酸化層内C二存在する結晶粒#′i粒成安が抑制さ
れ、かつ粒界酸化し粒界がb!ilt足されて、所望の
ILlr面栴造を有する基体金属が得られた0第2嫡に
刀く[7た断固構造を有する陰極基体1−おいて、拡散
制御層1141Fi酸素、や還元剤の拡散感一対す不゛
障壁となることから、先に神)式で例示した還元剤の酸
化反応の反応サイトとなってその位置を規定する。″こ
れは電子放出特性を損うような中間層形成を防止する効
果、を、第1図g−示し九構造以上5二確実にするもの
である。同時5二表面からの酸素の拡散距離を明確に規
定することを可能とする。また拡散制御層−自体は、主
として還元剤の拡散を制御することで、。Fig. 2 1-Kan) is an electron-emitting substance, - is a polar substrate,
- is a reducing agent oxide particle and an mtt diffusion control layer. Here, the diffusion control layer is a layer in which a reducing agent is oxidized and exists continuously at the grain boundaries near the surface of the base metal, resulting in the formation of an oxide layer that is approximately half-column on the base metal surface. It is something. The cross-sectional structure of the unipolar substrate except for the internal diffusion control layer shown in FIG. 2 is the same as that in FIG. 1. A monopolar substrate having such a cross-sectional structure was produced, for example, in the following manner. A cold-rolled material of N1-based alloy containing an acid amount of reducing agent is used as the base m.
In this method, internal oxidation treatment is carried out by holding the sample as M at 1000° C. for 1 hour in an air flow of a mixed gas of CO and Co11 (partial pressure ratio 1:20). Through this treatment, the recrystallization phenomenon based on the internal 11S oxidation and the processing strain exerted on the substrate during compaction progresses during rliJ, and the crystal grains #'i present in the sifted oxidation layer. Grain formation is suppressed, grain boundaries are oxidized, and grain boundaries are b! ilt was added to obtain the base metal having the desired ILlr surface structure. Since it acts as a barrier to diffusion, it becomes a reaction site for the oxidation reaction of the reducing agent, as exemplified by the above equation, and its position is defined. ``This ensures the effect of preventing the formation of an intermediate layer that impairs the electron emission characteristics, and the diffusion distance of oxygen from the surface is at the same time 52. The diffusion control layer itself mainly controls the diffusion of the reducing agent.
還元剤の酸化反応の進行すなわち酸素の消費を規制して
おり、これらが相まって(5)式の反応1二よる遊離バ
リウムの生成を制御することを可能としている。以上の
各効果のために、第2図の断面構造を有する陰極基体を
用いることζ二よって電子放出特性の優れ友かつ長痔命
の一極を得ることができる0
ところで第xWAt是第2図響二示し丸断面構造を有す
る陰極基体の製造方法は、既にそれぞれ一例を述べ九が
、基体金属に内部酸化処理を施す方法が有効であり、4
常は独立した工程として、陰極基体6:電子放出物質を
塗布する以前のいづれかの゛段階I:おいて実施しなけ
ればならない。この場合内部酸化処理工程の後工程で一
1基体金属の所望する断面構造が、新たな加工歪の発生
を伴う工程や熱処理工程等1:よって損われぬように留
意する必畳があることは首うまでもない。The progress of the oxidation reaction of the reducing agent, that is, the consumption of oxygen, is regulated, and together these make it possible to control the production of free barium by reaction 12 of equation (5). For each of the above-mentioned effects, by using a cathode substrate having the cross-sectional structure shown in Fig. 2, it is possible to obtain an excellent electron emission property and a lifespan for long hemorrhoids. As for the manufacturing method of a cathode substrate having a round cross-sectional structure as shown in Hibiki 2, an example of which has already been described above, a method of subjecting the substrate metal to internal oxidation treatment is effective, and 4.
Usually, it must be carried out as a separate step at some point in step I, prior to applying the electron-emitting material to the cathode substrate 6. In this case, care must be taken to ensure that the desired cross-sectional structure of the base metal is not damaged in the process after the internal oxidation treatment process, such as in a process that involves the generation of new processing strain or a heat treatment process. I can't even stand my neck.
本発明の目的#′i、前記内部酸化処理工程を、アルカ
リ土類金属の炭酸塩の酸化物への分解工程で兼ねさせる
ことを可能とする酸化物陰極構体の製造方法を提供する
ことにあるo′#li子放出物質とし。Object #'i of the present invention is to provide a method for manufacturing an oxide cathode structure, which allows the internal oxidation treatment step to also be used as a decomposition step of an alkaline earth metal carbonate into an oxide. o′#li ion-emitting substance.
て塗布された前記炭酸塩を分解する工程は、通常の酸化
物陰極製造工程では不可欠のものである0本発明の要点
は、陰極構体の製造工程Cおいて、アルカリ土類金属の
炭酸塩の分解時C二発生するCogガスC二よる陰極基
体の内部酸化によって前述の第1図おるいは第2図−二
相当する所望の断面構造を有する陰極構体を得る方法と
して、炭酸塩の分解工程に先立って行われる。微量の還
元剤を含有するN1基合金から々る基体金属を900℃
以上に加熱して基体金属の加工歪を除去する工程、該基
体金属の電子放出物質を塗布する側の表面近傍C2新た
な加工歪を与える工程、該陰惨基体を750℃乃至95
0℃に加熱する工程、該陰極−jl−坏の表面C;電子
放出物質を炭酸塩の形で塗布する工程からなる−のであ
る。The step of decomposing the carbonate coated with carbonate is indispensable in the normal oxide cathode manufacturing process. As a method for obtaining a cathode structure having a desired cross-sectional structure corresponding to the above-mentioned FIG. 1 or FIG. is carried out prior to. The base metal, which is an N1-based alloy containing a small amount of reducing agent, is heated to 900°C.
A step of heating the base metal to remove processing strain from the base metal, a step of applying new processing strain to C2 near the surface of the base metal on the side to which the electron-emitting substance is applied, and a step of heating the gruesome base metal at 750°C to 95°C.
The method consists of heating the cathode to 0 DEG C. and applying an electron-emitting substance in the form of carbonate to the surface of the cathode.
こ\で発明を完成するまでのいくつかの基礎実験結果C
二ついて説明する。Some basic experiment results until the invention was completed C
Let me explain about two things.
まず従来の酸化物陰極構体の製造工程は次の通りである
。First, the manufacturing process of a conventional oxide cathode structure is as follows.
圧嬌により得られる微量の還元剤を含有したN1基体合
金か6なる基体金属をニクロム玉リーブに浩接し、ニジ
。ロムスリーブを選択酸化するために加湿水素中で#t
M900℃以上の熱処理を行う。次にスリーブにあらか
じめ設けられた支持体を介してカソードホ゛ルダと組合
わせること(二より陰極構体としての形ができる。さら
5二基体金属の表面を清浄するため1:研削を行い、加
工による汚れを除去するための熱処理をtl’N600
℃の水素気流中で行う。最後g二基体″金属の表面C二
電子放出物質を塗布することにより酸化物陰極構体が完
成する。A base metal of N1 base alloy or 6 containing a small amount of reducing agent obtained by compressing is brought into close contact with a nichrome ball rib, and then nicked. Rom sleeve #t in humidified hydrogen for selective oxidation
Heat treatment is performed at M900°C or higher. Next, the sleeve is combined with a cathode holder via a support provided in advance (2) to form a cathode structure. Heat treatment to remove tl'N600
Perform in a hydrogen stream at ℃. Finally, an oxide cathode structure is completed by applying a two-electron emitting substance to the surface of the two-substrate metal.
このような製造工@において発明者らは基体金属表面の
研削と最終の熱処理温度との関係C二ついて調べた。In such a manufacturing process, the inventors investigated two relationships C between the grinding of the base metal surface and the final heat treatment temperature.
まず前処理として1000℃じ加熱した基体金輌を−極
スリーブに婢接して一極栴体6二組立て、サンドベーパ
により基体金lI4表面を10μm研削したものを6つ
のグループわけな行い、これらを試料A=600℃、B
、=700℃、c = 750℃、D = 900℃、
IC= 950℃、? = 1000℃にそれぞれ加熱
し2、(Ba。First, as a pretreatment, a base metal heated to 1000°C was roughly contacted with a negative pole sleeve to assemble 62 monopolar bodies, and the base metal 4 surface was ground by 10 μm using a sand vapor and then divided into 6 groups, and these were sampled. A=600℃, B
, = 700℃, c = 750℃, D = 900℃,
IC=950℃,? = 1000°C respectively 2, (Ba.
Sr、 co)coo R酸塩を塗布し、ヒータを点火
してカソード分解を行った。各試料について基体−4W
+の断面を光学顕微鏡およびIIiPMAにより拡散制
御層の状態なri4察したところ、AおよびBは第3−
のように基体金属表面−二も非常≦二灸〈の拡散制御項
カ五見られ、Cは基体金属表面に平行な拡散制御層がは
ソ一層がわずかに見られ、DおよびEはほとんどの部分
が第2因のようC二表面に平行な拡散制御層が一層明確
に観察され一部は第1図のよう響二なっていた01は表
面に拡散制御)eilらしいものは殆んど見られなパか
った。尚第3図(二おける1llllt’!に子放i物
質、瞥は基体金属、−一は拡散制御層である。欠口これ
ら試料A−Fを13インチカラーブラウン管I−組込ん
だときの寿命試験の結果を絶4図に示す。図から最終熱
処理が750℃以上950℃以下の試料0〜!!のもの
は寿命試験成績が良好なことがわかる。Sr, co) coo R salt was applied and the heater was ignited to perform cathode decomposition. Substrate-4W for each sample
The state of the diffusion control layer was observed using an optical microscope and IIiPMA on the cross section of +, and it was found that A and B are the 3rd -
As shown in Figure 2, five diffusion control terms are observed on the base metal surface. The diffusion control layer parallel to the surface of C2, which seems to be the second cause, was more clearly observed, and some of the layers had echoes as shown in Figure 1.01 (Diffusion control layer on the surface) could hardly be seen. I couldn't help it. In addition, Fig. 3 (1llllt'! in 2 is the emissive material, 1 is the base metal, and 1 is the diffusion control layer. The lifespan when these samples A to F are installed in a 13-inch color cathode ray tube I) The results of the test are shown in Figure 4. It can be seen from the figure that samples 0~!! whose final heat treatment was 750°C or more and 950°C or less had good life test results.
この結果について考察すると、試料A−BFi加工歪が
残留した状態で炭酸塩の分解が行われたため還元剤の酸
化と歪解消による基体金属表面近傍の再結晶とが同時に
起こり、その結果拡散制御層が形成されるのであろうが
、中でも試料AおよびBの寿命試験成績不調の原因は、
加工歪の残留量が看しく多いため第3図に示すように表
面直下にも拡散制御層が発生しこのためB110がらの
MlAの基体金属内部への拡散が着るしく阻害され、そ
の結果遊離B−の生成速度が遅くなったためと考えられ
る。Considering this result, it is found that since the decomposition of carbonate was carried out in the state where sample A-BFi processing strain remained, oxidation of the reducing agent and recrystallization near the base metal surface due to strain relief occurred simultaneously, and as a result, the diffusion control layer However, the reason for the poor life test results of samples A and B is
Due to the surprisingly large amount of residual machining strain, a diffusion control layer is generated just below the surface as shown in Figure 3, which severely inhibits the diffusion of MlA from B110 into the base metal, and as a result, free B This is thought to be due to the slower production speed of -.
7一方試料0−1は加工歪が適度In、残留しているた
め第2図に示すようC−基体金属表面よりわずか内部に
表面C−平行な状態で一層として形成された。On the other hand, Sample 0-1 had moderate processing strain and residual In, so it was formed as a single layer slightly inside the C-substrate metal surface in a state parallel to the C-surface as shown in FIG.
この拡散制御層は前述したようI:適度な遊離Baの生
成を可能にしたと考えられる。It is believed that this diffusion control layer enabled the generation of I: an appropriate amount of free Ba as described above.
試料1は加工歪が熱処理により殆んど解消しているので
拡散制御層が生じなかったのであろう。In Sample 1, the processing strain was almost completely eliminated by heat treatment, so no diffusion control layer was likely formed.
同衾のため先の基礎実験の試料りの製造工程におけるサ
ンドペニノ幻:よる研削を行わず、その他の条件は試料
りと同−6二した酸化41!I陰極栴体の拡散制御層を
観察したところその状態は試料Fと同3じように拡散制
御−社見られなかった。For the same reason, the sandpenino illusion in the manufacturing process of the sample sample from the previous basic experiment: No grinding was performed, and the other conditions were the same as the sample sample -62 oxidation 41! When the diffusion control layer of the I cathode body was observed, the state was the same as that of sample F, and no diffusion control layer was observed.
本発明は以上説明したような基恍夾験g二おける結果と
その考察に基きなされたものである。The present invention has been made based on the results and considerations of the basic experiment g2 as explained above.
すなわち本発明の製造法I:よれば前述の諾1図あるい
は第2図に相当する所望の断面栴造を有する陰極基体を
得るために、特別の内s H比処理工程を必要とせず、
また炭酸塩の分解工程が、電子管製造工程の最終段階近
くで夾施されるため、得られた基体金属の断囲栴造が、
その後の工程で損われる危険がないという利点な廟する
ものである0゛次に本発明の実施例を第4図および第5
図により説明する。That is, according to the manufacturing method I of the present invention, in order to obtain a cathode substrate having a desired cross-sectional structure corresponding to the above-mentioned Figure 1 or Figure 2, no special internal S H ratio treatment step is required.
In addition, since the carbonate decomposition process is carried out near the final stage of the electron tube manufacturing process, the resulting substrate metal has a
Embodiments of the present invention are shown in FIGS.
This will be explained using figures.
実施例1
0.06重tSのマグネシウムと0.033Jiiチの
ケイ票とを含むニッケル基合金からなる厚さQ、15m
。Example 1 Thickness Q, 15 m made of a nickel-based alloy containing 0.06 weight tS of magnesium and 0.033 weight tS of silicon.
.
直径1.3smの円板を基体金属Mとしてスリーブm+
のi端に保持させた後、水素ガス気流中で1000”C
。Sleeve m+ with a disc with a diameter of 1.3 sm as the base metal M
After being held at the i-end of the
.
20分保持して、基体金属−I:残存する加工歪の除去
と結晶粒の成長を目的とする焼鈍を行わせた。After holding for 20 minutes, base metal-I was subjected to annealing for the purpose of removing residual processing strain and growing crystal grains.
次に陰極基体表面I:基体金属円板の一つの直径方向と
平行に走行する研削と、陰極基体の中心軸を中心に回転
する研削とを同時に行うことで陰極基体表面をttht
7均一に約1oμmの厚さだけ研削し加、丘歪を新友1
;与えた。次いで該スリーブを水素ガス気流中で900
℃に10分保持した後、アルカリ土類金属の三元系炭酸
塩(Ba、8r、 Cg )co@ 15111を塗布
する工程を経て傍熱形酸化物一極構体を製造し、これを
カラープ2ウン管の電子銃−二組込んだ。その後通常の
スケジュールで排気しながらヒーターにより陰極を加熱
して三元系炭酸塩の酸化物への分解を行2てから封止尋
、通常の工程を軽てカラープツウン管を作製し、工ンツ
ション寿命試験を行った。Next, the cathode substrate surface I: Grinding that runs parallel to the diameter direction of one of the substrate metal disks and grinding that rotates around the central axis of the cathode substrate are performed at the same time.
7. Grind uniformly to a thickness of about 1oμm, and remove the hill distortion with Shintomo 1.
;Gave. The sleeve was then heated for 900 minutes in a hydrogen gas stream.
After holding at ℃ for 10 minutes, a ternary carbonate of alkaline earth metal (Ba, 8r, Cg) co@15111 was applied to produce an indirectly heated oxide monopolar structure, which was then coated with Calap2. Two electron guns were installed. After that, the cathode is heated with a heater while being evacuated according to the normal schedule to decompose the ternary carbonate into oxides.2Then, the tube is sealed, and the normal process is repeated to fabricate a colored tube, and the tube has a long service life. The test was conducted.
この結果、このカラープツウン管の電子放出特性は、従
来の管球Cニルして特I−長時間の動作において優れて
いることが見い出された。本結果の代表的な例を第4−
に示した。図中の曲線Aは、従来の酸化物陰極構体6二
よるもので、曲線let笑施例1によって作製した酸化
物陰極一体によるものである。As a result, it has been found that the electron emission characteristics of this colored tube are superior to those of conventional tubes especially in long-term operation. A representative example of this result is shown in Section 4.
It was shown to. The curve A in the figure is based on the conventional oxide cathode assembly 62, and the curve A is based on the oxide cathode integrally produced according to Example 1.
エミ“ツション寿命試験開始前(管球製造直後)の陰極
基体の断面の金属組織&4!察によると隻実施例II−
よって製作した陰極構体の場合は、82−図の111面
構造が多く見られ、ご<−S第1図の状態が混在するも
のとなっていることが確められた。According to the metal structure of the cross section of the cathode substrate before starting the tube life test (immediately after the tube was manufactured) &4!
Therefore, in the case of the manufactured cathode structure, it was confirmed that the 111-plane structure shown in FIG. 82 was often observed, and the state shown in FIG.
実施例1においては加工森な4えるのI:#体金属を1
0μm研削する例を示したが、別の実験では研削量Fi
3μm以上20μm以下であればよ〈:5μm〜10μ
mの範囲が最もよいことを確認(7ている0又、加工φ
を与える別の手段としてガラス球、セラミツ″り、金属
球等によるショットピーニングあるいはドライ又はウェ
ットホーニングでもよい。In Example 1, the processing forest is 4 parts I: # body metal is 1
An example of 0 μm grinding was shown, but in another experiment, the grinding amount Fi
It should be 3 μm or more and 20 μm or less〈: 5 μm to 10 μm
Confirm that the range of m is the best (7 0 or more, machining φ
Another means for imparting this property is shot peening using glass balls, ceramic balls, metal balls, etc., or dry or wet honing.
第1図は本発明を説明するための基体金属内部の還元剤
の酸化物粒子の分散状態を説明する図。
鮪2図は本発@8により得られる散化物陰極栴体の概略
断面図、第3図は従来の酸化物−極病体の概略断面−1
第4図は本発明および従来の製造方法により得られる酸
化物陰極構体を力2−ブラウン管に使用したときの寿命
試験結果を示す図、1145図は本発明の一実施例を説
明する図である。
(7317) 代理人弁理士 則 近 憲 佑(はが
1名)第 1 図
第 2 図
第 3 図FIG. 1 is a diagram illustrating the state of dispersion of oxide particles of a reducing agent inside a base metal to explain the present invention. Figure 2 is a schematic cross-sectional view of the dispersion cathode body obtained by the present invention @8, and Figure 3 is a schematic cross-section of the conventional oxide-polar body -1.
Fig. 4 is a diagram showing the life test results when the oxide cathode structure obtained by the present invention and the conventional manufacturing method is used in a power 2-braun tube, and Fig. 1145 is a diagram explaining one embodiment of the present invention. . (7317) Representative Patent Attorney Noriyuki Chika (1 person) Figure 1 Figure 2 Figure 3
Claims (2)
基体金属を9(10℃以上砿二加熱する工程と、この9
00℃以上g−加熱した基体金属の電子放出物質を塗布
する側の表゛面6二新たな加工歪を与える工程と、この
加工歪を与えた基体金−を750℃乃塗布する工程を備
えることを%情とする酸化物陰極構体の製造方法。(1) A step of heating the base metal made of N1 base alloy containing a trace amount of reducing agent to 9 (10℃ or higher);
00° C. or above - a step of applying new processing strain to the surface 62 of the heated base metal on the side to which the electron-emitting substance is applied, and a step of applying the substrate metal to which the processing strain has been applied at 750° C. A method of manufacturing an oxide cathode structure taking into account the above circumstances.
ることであることを特徴とする特許1h求範囲第1項記
載の酸化物陰極構体の製造方法。(2) A method for manufacturing an oxide cathode structure according to item 1 of the scope of patent 1h, characterized in that the step of imparting processing strain is grinding the surface layer of the base metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14461481A JPS5846550A (en) | 1981-09-16 | 1981-09-16 | Manufacture of oxidized cathode structural body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14461481A JPS5846550A (en) | 1981-09-16 | 1981-09-16 | Manufacture of oxidized cathode structural body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5846550A true JPS5846550A (en) | 1983-03-18 |
JPH0114660B2 JPH0114660B2 (en) | 1989-03-13 |
Family
ID=15366119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14461481A Granted JPS5846550A (en) | 1981-09-16 | 1981-09-16 | Manufacture of oxidized cathode structural body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5846550A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5039547A (en) * | 1989-11-07 | 1991-08-13 | Samsung Electron Devices Co., Ltd. | Method for coating the cathode of an electron gun with a thermionic emissive substance by plasma spraying |
JP2009245711A (en) * | 2008-03-31 | 2009-10-22 | New Japan Radio Co Ltd | Magnetron, and manufacturing method thereof |
-
1981
- 1981-09-16 JP JP14461481A patent/JPS5846550A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5039547A (en) * | 1989-11-07 | 1991-08-13 | Samsung Electron Devices Co., Ltd. | Method for coating the cathode of an electron gun with a thermionic emissive substance by plasma spraying |
JP2009245711A (en) * | 2008-03-31 | 2009-10-22 | New Japan Radio Co Ltd | Magnetron, and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0114660B2 (en) | 1989-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9812279B2 (en) | Electrode material with low work function and high chemical stability | |
US5939149A (en) | Method of forming hydrogen-free diamond like carbon (DLC) films | |
KR930011964B1 (en) | Electron tube cathode | |
JP4167917B2 (en) | Method for forming an electron emitter | |
CN109804450A (en) | Electron beam device | |
JPS5846550A (en) | Manufacture of oxidized cathode structural body | |
KR100229555B1 (en) | Cathode member and electronic tube using it | |
US6060112A (en) | Color cathode ray tube and method of manufacturing the same | |
JP3957344B2 (en) | Discharge tube or discharge lamp and scandate-dispenser cathode | |
JPH08306301A (en) | Discharge tube,electric-discharge lamp,low temperatured cathode and its preparation | |
US1965582A (en) | Electric discharge device | |
JPH04232252A (en) | Sputtered scandium oxide coating for dispenser cathode and its manufacture | |
US1921066A (en) | Cathode for electron discharge devices and method of making the same | |
JP2004288547A (en) | Field emission type electron source, manufacturing method thereof and image display device | |
KR100246293B1 (en) | Electron Emission Cathode and Manufacturing Method Thereof | |
WO2020073511A1 (en) | Electron source manufacturing method | |
US2146099A (en) | Secondary electron emitter and method of making it | |
JPS61269828A (en) | Manufacture of electron tube cathode | |
JP2739966B2 (en) | Manufacturing method of thermal field emission electron source | |
US2453753A (en) | Method of manufacturing cathodes of electric discharge tubes | |
US1921065A (en) | Electron emitter and process of making same | |
US6641450B2 (en) | Method of making a cathode for an electron tube | |
KR20250045654A (en) | Method for manufacturing a hot cathode including a surface treatment process and a hot cathode manufactured thereby | |
JPS5840730A (en) | Oxide coated structure and its manufacture | |
JPS61208719A (en) | Cathode for electron tube |