JPS5844302B2 - Hybrid absorption heat pump - Google Patents
Hybrid absorption heat pumpInfo
- Publication number
- JPS5844302B2 JPS5844302B2 JP15399682A JP15399682A JPS5844302B2 JP S5844302 B2 JPS5844302 B2 JP S5844302B2 JP 15399682 A JP15399682 A JP 15399682A JP 15399682 A JP15399682 A JP 15399682A JP S5844302 B2 JPS5844302 B2 JP S5844302B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- evaporator
- condenser
- pressure
- pressure stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010521 absorption reaction Methods 0.000 title claims description 12
- 239000003507 refrigerant Substances 0.000 claims description 70
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 55
- 239000006096 absorbing agent Substances 0.000 claims description 30
- 239000000498 cooling water Substances 0.000 claims description 18
- 239000002826 coolant Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 description 16
- 238000004891 communication Methods 0.000 description 6
- 239000007921 spray Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】
本発明は高温水と冷水とを同時に生成することが可能な
ハイブリッド型吸収式ヒートポンプに関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid absorption heat pump capable of simultaneously producing high temperature water and cold water.
従来吸収冷凍サイクルにおいて冷房と同時に温水を得た
い場合は、例えば発生器において発生する蒸気の熱を利
用しての温水の生成を凝縮器や別途の専用温水熱交換器
などで行なわれていたが発生器での溶液加熱の熱源とし
て温水あるいは蒸気などを用いる場合、得られる温水の
温度は熱源温水あるいは蒸気などの温度よりも低く、特
に最近省エネルギー上、公害防止上問題になっている発
電所の温排水などの比較的低温の熱源温水を従来の吸収
式ヒートポンプに用いる場合には得られる温水の温度が
低く利用価値がないものであった。Conventionally, in an absorption refrigeration cycle, if you wanted to obtain hot water at the same time as cooling, you would use a condenser or a separate dedicated hot water heat exchanger to generate hot water using the heat of steam generated in a generator, for example. When hot water or steam is used as a heat source for heating a solution in a generator, the temperature of the hot water obtained is lower than the temperature of the heat source hot water or steam, which is particularly important in power plants, which have recently become a problem in terms of energy conservation and pollution prevention. When using relatively low-temperature heat source hot water such as heated wastewater in a conventional absorption heat pump, the temperature of the hot water obtained is so low that it has no value.
これを解決するために、中間圧の発生器と凝縮器の高圧
側に吸収器と蒸発器を含むヒートポンプサイクル、低圧
側に吸収器と蒸発器を含む冷凍サイクルを備え比較的低
温の熱源温水を用いて熱源温水より高温水の生成と、冷
却水より低温の冷水の生成とを同時に行なうことができ
かつ一体構成で構造が極めて簡単なハイブリッド型吸収
式ヒートポンプが考えられているが、本発明はその改良
に係わるものである。To solve this problem, we installed a heat pump cycle that includes an absorber and an evaporator on the high-pressure side of an intermediate-pressure generator and a condenser, and a refrigeration cycle that includes an absorber and evaporator on the low-pressure side. A hybrid absorption heat pump has been considered, which can simultaneously generate water at a higher temperature than the heat source hot water and cold water at a lower temperature than the cooling water, and has an extremely simple structure with an integrated structure. This is related to its improvement.
即ち、本発明の改良前のものの例を第1図に示して説明
すれば、Gは発生器、Cは凝縮器で発生器Gの方が僅か
に高いがほぼ同圧(これを中間圧と称す)に保たれてい
る。That is, to explain an example before the improvement of the present invention as shown in FIG. ) is maintained.
AHは高圧段吸収器、EHは高圧段蒸発器であり中間圧
より高圧、ALは低圧段吸収器、ELは低圧段蒸発器で
あり中間圧より低圧となっている。AH is a high-pressure stage absorber, EH is a high-pressure stage evaporator, and the pressure is higher than the intermediate pressure. AL is a low-pressure stage absorber, and EL is a low-pressure stage evaporator, which is lower than the intermediate pressure.
溶液側サイクルについては低圧段吸収器ALは溶液ポン
プ1、中間濃度溶液管2を経て高圧段吸収器AHと接続
し、高圧段吸収器AHは稀溶液管3、弁4を経て発生器
Gと接続し、発生器Gは濃溶液管5、弁6を経て低圧吸
収器ALに接続している。Regarding the solution side cycle, the low pressure stage absorber AL is connected to the high pressure stage absorber AH via the solution pump 1 and intermediate concentration solution pipe 2, and the high pressure stage absorber AH is connected to the generator G via the dilute solution pipe 3 and valve 4. The generator G is connected to the low pressure absorber AL via a concentrated solution pipe 5 and a valve 6.
冷媒側サイクルについては、低圧蒸発器ELは冷媒ポン
プT1冷媒管8、弁9,10を経て高圧蒸発器EHに接
続している。Regarding the refrigerant side cycle, the low-pressure evaporator EL is connected to the high-pressure evaporator EH via a refrigerant pump T1, a refrigerant pipe 8, and valves 9 and 10.
また低圧段蒸発器EL内の冷媒液を循環せしめるために
弁11を有する分岐管12が冷媒管8に接続している。Further, a branch pipe 12 having a valve 11 is connected to the refrigerant pipe 8 in order to circulate the refrigerant liquid in the low-pressure stage evaporator EL.
凝縮器Cと低圧段蒸発器ELとは減圧弁29、戻り管3
0により接続している。The condenser C and the low pressure stage evaporator EL have a pressure reducing valve 29 and a return pipe 3.
Connected by 0.
溶液側と冷媒側とを接続するものとして高圧段吸収器A
Hと高圧段蒸発器EHとを接続する蒸気管13、発生器
Gと凝縮器Cとを接続する蒸気管14、低圧段吸収器A
Lと低圧段蒸発器ELとを接続する蒸気管15とが備え
られている。High pressure stage absorber A connects the solution side and refrigerant side.
Steam pipe 13 connecting H and high pressure stage evaporator EH, steam pipe 14 connecting generator G and condenser C, and low pressure stage absorber A
A steam pipe 15 is provided to connect L and the low pressure stage evaporator EL.
外部との熱の受授の関係としては熱源としての温水管1
6.17がそれぞれ発生器G、高圧段蒸発器EHに装備
されており、温水管160入ロ部18には弁19を有し
三方弁20への分岐を有する入口管21が接続され出口
部22は三方弁20と接続し、三方弁20は他の三方弁
23と連絡管24により接続している。Hot water pipe 1 as a heat source in relation to receiving and receiving heat from the outside
6.17 are respectively installed in the generator G and the high pressure stage evaporator EH, and the inlet pipe 21 having a valve 19 and branching to a three-way valve 20 is connected to the hot water pipe 160 inlet part 18, and the outlet part 22 is connected to a three-way valve 20, and the three-way valve 20 is connected to another three-way valve 23 through a communication pipe 24.
三方弁23の一つの口は温水管1Tの入口部26に、他
の口は出口部27に連なる出口管28に接続してさらに
熱交換器X8に接続している。One port of the three-way valve 23 is connected to the inlet portion 26 of the hot water pipe 1T, and the other port is connected to an outlet pipe 28 connected to the outlet portion 27 and further connected to the heat exchanger X8.
凝縮器Cと低圧段吸収器ALには冷却水を通ずる冷却水
管31.32が装備されている。The condenser C and the low-pressure stage absorber AL are equipped with cooling water pipes 31, 32 through which cooling water flows.
冷却水管31の出口は熱交換器Xwに接続している。The outlet of the cooling water pipe 31 is connected to the heat exchanger Xw.
高圧段吸収器AHには所要の高温水を得るための高温水
管33が、低圧段蒸発器ELには所要の冷水を得るため
の冷水管34が装備されている。The high pressure stage absorber AH is equipped with a high temperature water pipe 33 for obtaining the required high temperature water, and the low pressure stage evaporator EL is equipped with a cold water pipe 34 for obtaining the required cold water.
制御関係としては高温水関係としては高温水管33の出
口に温度検出器35が備えられ三方弁23と信号切換器
25を経て弁20を制御する。As for the control related to high temperature water, a temperature detector 35 is provided at the outlet of the high temperature water pipe 33 and controls the valve 20 via the three-way valve 23 and the signal switch 25.
冷水管34の出口には温度検出器36が設けられ、信号
切換器25を経て三方弁20を制御する。A temperature detector 36 is provided at the outlet of the cold water pipe 34 and controls the three-way valve 20 via a signal switch 25.
37.38は液面検出計でそれぞれ弁10あるいは弁6
を制御する。37 and 38 are liquid level detectors for valve 10 or valve 6, respectively.
control.
熱交換器X8.Xwにより冷媒が加熱され熱の有効利用
をはかり効率が増大する。Heat exchanger X8. The refrigerant is heated by Xw, and the efficiency is increased by effectively utilizing the heat.
本従来例の作用、効果を説明するに、熱源温水の系統は
、外部から例えば発電所の排温水が入口管21に供給さ
れ弁19は開き、三方弁20は入口管21側は閉じ出口
部22と連絡管24とが連通ずる状態に置かれ、弁25
は閉じ、三方弁23は連絡管24と入口部26とが連通
ずる状態に置かれ、熱源温水は温水管16、連絡管24
、温水管17を経て出口管28より外部に排出されてい
る。To explain the operation and effect of this conventional example, in a heat source hot water system, waste water from a power plant, for example, is supplied from the outside to the inlet pipe 21, the valve 19 is opened, and the three-way valve 20 is closed on the inlet pipe 21 side and the outlet part is 22 and the communication pipe 24 are placed in communication with each other, and the valve 25
is closed, the three-way valve 23 is placed in a state where the communication pipe 24 and the inlet part 26 are in communication, and the heat source hot water is connected to the hot water pipe 16 and the communication pipe 24.
, and is discharged to the outside from the outlet pipe 28 via the hot water pipe 17.
勿論、温水管16.17には直列でなく並列に温水を通
水することあるいは別個の温水源から別々に通水するこ
とも可能である。Of course, it is also possible to supply hot water to the hot water pipes 16, 17 not in series but in parallel, or separately from separate hot water sources.
低圧段蒸発器ELの冷媒液は冷媒ポンプ7により冷媒管
8、弁9.10を経て高圧段蒸発器EHに入り温水管1
Tの温水により加熱されて蒸発し蒸気管13を経て高圧
段吸収器AHに入る。The refrigerant liquid in the low pressure stage evaporator EL enters the high pressure stage evaporator EH via the refrigerant pipe 8 and the valve 9.10 by the refrigerant pump 7 and into the hot water pipe 1.
It is heated by the hot water of T and evaporates, and enters the high pressure stage absorber AH through the steam pipe 13.
一方低圧段吸収器ALから中間濃度溶液は溶液ポンプ1
、中間濃度溶液管2を通り低圧段および高圧段熱交換器
XLおよびXHを経て加熱され高圧段吸収器AHに入り
前述の冷媒蒸気を吸収する。On the other hand, the intermediate concentration solution is transferred from the low pressure stage absorber AL to the solution pump 1.
, passes through the intermediate concentration solution tube 2, passes through the low-pressure stage and high-pressure stage heat exchangers XL and XH, is heated, enters the high-pressure stage absorber AH, and absorbs the above-mentioned refrigerant vapor.
この際吸収熱により沸点上昇に相当する温度まで溶液が
加熱され高温水管33を加熱し、熱源温水より高い温度
の高温水を得ることができる。At this time, the solution is heated by the absorbed heat to a temperature corresponding to an increase in the boiling point, heating the high temperature water pipe 33, and high temperature water having a higher temperature than the heat source hot water can be obtained.
冷媒を吸収して希薄となった稀溶液は稀溶液管3、弁を
経て発生器Gに入り、温水管16の温水により加熱され
て蒸気を発生し濃縮され、濃溶液は濃溶液管5、弁6を
経て低圧段吸収器ALに入り冷却水管32の冷却水に冷
やされ再び溶液ポンプ1にて送られサイクルを繰り返す
。The dilute solution that has absorbed the refrigerant enters the generator G through the dilute solution pipe 3 and the valve, is heated by hot water in the hot water pipe 16, generates steam, and is concentrated, and the concentrated solution passes through the dilute solution pipe 5, The solution enters the low-pressure stage absorber AL via the valve 6, is cooled by the cooling water in the cooling water pipe 32, and is sent again by the solution pump 1 to repeat the cycle.
一方発生器Gにて発生した冷媒蒸気は蒸気管14を経て
凝縮器Cに達し冷却水管31の冷却水により冷やされて
凝縮し戻り管30減圧弁29を経て低圧段蒸発器ELに
入り冷水管34の冷水の熱により一部蒸発しその蒸気は
、蒸気管15を経て低圧段吸収器ALに入り溶液に吸収
される。On the other hand, the refrigerant vapor generated in the generator G passes through the steam pipe 14, reaches the condenser C, is cooled and condensed by the cooling water in the cooling water pipe 31, passes through the return pipe 30, pressure reducing valve 29, enters the low pressure stage evaporator EL, and enters the chilled water pipe. Part of the vapor is evaporated by the heat of the cold water 34, and the vapor enters the low pressure stage absorber AL through the steam pipe 15 and is absorbed into the solution.
冷水管34内の冷水は冷媒蒸発により熱を奪われて低温
となり、出口からは冷却水より低温の冷水を得ることが
できる。The cold water in the cold water pipe 34 loses heat by evaporation of the refrigerant and becomes low temperature, and cold water at a lower temperature than the cooling water can be obtained from the outlet.
冷媒ポンプ7により送られる冷媒のうち一部は分岐管1
2に入り再び低圧段蒸発器ELに戻り蒸発が促進される
。Some of the refrigerant sent by the refrigerant pump 7 is transferred to the branch pipe 1
2 and returns to the low pressure stage evaporator EL again to promote evaporation.
負荷の変動その他の熱的変動があった場合は出力端に設
けられた温度検出器35.36により検知し、三方弁2
0.23を操作し温水管16.17を通る熱源温水を制
御し高温水および冷水の温度を所要の値に保つようにな
っている。If there is a load fluctuation or other thermal fluctuation, it is detected by the temperature detector 35, 36 installed at the output end, and the three-way valve 2
0.23 to control the heat source hot water passing through the hot water pipes 16 and 17 to maintain the temperatures of hot water and cold water at required values.
しかし、上記の如き、第1図で示される従来のものの例
においては、凝縮器Cで凝縮した冷媒液を低圧段蒸発器
ELに送り、ここから必要個所に分配していたが、この
低圧段蒸発器ELは冷媒の温度レベルが冷媒サイクル中
で最も低く、冷媒液にとっては最も低エネルギーの個所
である。However, in the conventional example as shown in FIG. The evaporator EL has the lowest temperature level of the refrigerant in the refrigerant cycle and is the lowest energy point for the refrigerant liquid.
このため、凝縮器Cかも低圧段蒸発器ELに冷媒液を送
ると、まずそれ自身の液温を下げ低エネルギー状態とな
るためフラッシュして冷媒蒸気を発生し、低圧段吸収器
ALの負荷を増大している。Therefore, when refrigerant liquid is sent to the low-pressure stage evaporator EL, which may be the condenser C, it first lowers its own liquid temperature and enters a low-energy state, flashing and generating refrigerant vapor, reducing the load on the low-pressure stage absorber AL. It is increasing.
この低温となった冷媒液はポンプで高圧段蒸発器EHと
いう高い温度のエネルギー状態を要求される個所に揚液
されるので、冷媒液を予熱するために他の熱源からの加
熱を行なうとすればその熱源のエネルギーは損失となる
ので、その損失を防止する必要がある。This low-temperature refrigerant liquid is pumped to the high-pressure stage evaporator EH, a location that requires high-temperature energy state, so it is necessary to preheat the refrigerant liquid by heating it from another heat source. Since the energy of the heat source of grass is lost, it is necessary to prevent this loss.
また、発生器Gかもの過熱冷媒は高温の溶液中から分離
されるためかなり高温の状態で凝縮器Cに導かれ、その
まま凝縮器Cの冷却水に捨られている。Further, since the superheated refrigerant from the generator G is separated from the high-temperature solution, it is led to the condenser C in a considerably high temperature state, and is discarded as it is into the cooling water of the condenser C.
従来のものは上記の如き欠点を有するものであるが、本
発明は、凝縮器から低圧段蒸発器への高温の冷媒液を、
低圧段蒸発器から高圧段蒸発器に送る低温の冷媒液と熱
交換して冷却することにより、従来のものの上記の欠点
を除き、蒸発器におけるフラッシュ損失を最小とするこ
とができるハイブリッド型吸収式ヒートポンプを提供す
ることを目的とするものである。The conventional method has the above-mentioned drawbacks, but the present invention provides a method for transferring high-temperature refrigerant liquid from the condenser to the low-pressure stage evaporator.
By exchanging heat with the low-temperature refrigerant liquid sent from the low-pressure stage evaporator to the high-pressure stage evaporator for cooling, this hybrid absorption type eliminates the above-mentioned drawbacks of conventional methods and can minimize flash loss in the evaporator. The purpose is to provide a heat pump.
さらに本発明は、発生器からの過熱冷媒蒸気と、低圧側
蒸発器から高圧側蒸発器に送る冷媒液との間で熱交換す
ることにより、凝縮器に放熱される熱をできるだけ回収
し、冷媒液の予熱に利用することができるハイブリッド
型吸収式ヒートポンプを提供することも目的とするもの
である。Furthermore, the present invention recovers as much of the heat radiated to the condenser as possible by exchanging heat between the superheated refrigerant vapor from the generator and the refrigerant liquid sent from the low-pressure side evaporator to the high-pressure side evaporator. Another object of the present invention is to provide a hybrid absorption heat pump that can be used to preheat liquids.
本発明は、吸収器、発生器、蒸発器、凝縮器、稀濃溶液
熱交換器およびこれらを接続する流体径路を有し、発生
器と凝縮器とを中間圧に保ち、これより高圧に保持され
た少くとも一段の吸収器および蒸発器を備え、かつ上記
中間圧より低圧に保持された少くとも一段の吸収器およ
び蒸発器を備え、発生器と高圧段蒸発器に熱源として温
水などの加熱媒体を導ひき、凝縮器と低圧段吸収器に冷
却水などの冷却媒体を導ひき、前記熱源よりも高温の高
温水などの熱エネルギー源の生成と、冷却水などの冷却
媒体よりも低温の冷水などの冷熱源の生成とを同時に又
は必要に応じて何れか一方の生成を行なうことができる
ようにしたハイブリッド型吸収式ヒートポンプにおいて
、前記低圧段蒸発器の冷媒を前記高圧段蒸発器に導く冷
媒径路を設け、該冷媒径路中の冷媒と、前記凝縮器から
前記低圧段蒸発器へ導かれる冷媒との間の熱交換を行な
う熱交換器を設けたことを特徴とする・・イブリッド型
吸収式ヒートポンプである。The present invention has an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these, and maintains the generator and the condenser at an intermediate pressure, and maintains the generator and the condenser at a higher pressure. The generator and the high-pressure stage evaporator are provided with at least one stage of absorber and evaporator which are maintained at a pressure lower than the above-mentioned intermediate pressure. A cooling medium such as cooling water is introduced into a condenser and a low-pressure stage absorber to generate a thermal energy source such as high-temperature water that is hotter than the heat source, and a thermal energy source that is lower temperature than the cooling medium such as cooling water. In a hybrid absorption heat pump that can generate a cold heat source such as cold water or either one at the same time or as necessary, the refrigerant in the low-pressure stage evaporator is guided to the high-pressure stage evaporator. A refrigerant path is provided, and a heat exchanger is provided for performing heat exchange between the refrigerant in the refrigerant path and the refrigerant guided from the condenser to the low-pressure stage evaporator. It is a type heat pump.
本発明を実施例につき図面を用いて説明すれば、第2図
は、冷媒系統の簡略化された線図であり、第1図と異な
るところは、熱交換器44及び45が備えられているこ
とであり、その他の部分は第1図のものと同様である。To explain the present invention with reference to the drawings, FIG. 2 is a simplified diagram of the refrigerant system, and the difference from FIG. 1 is that heat exchangers 44 and 45 are provided. The other parts are the same as those shown in FIG.
熱交換器45は、低圧段蒸発器ELの冷媒を高圧段蒸発
器EHに導く冷媒径路である冷媒管8中の冷媒と、凝縮
器Cかも低圧段蒸発器ELへ戻り管30により導かれる
冷媒との間の熱交換を行なうものである。The heat exchanger 45 combines the refrigerant in the refrigerant pipe 8, which is a refrigerant path that leads the refrigerant from the low-pressure evaporator EL to the high-pressure evaporator EH, and the refrigerant guided by the return pipe 30 to the condenser C or the low-pressure evaporator EL. It performs heat exchange between the
この熱交換器45により、戻り管30の冷媒は冷却され
てから低圧側蒸発器ELに入るので、フラッシュ損失を
小さくすることができる。The heat exchanger 45 cools the refrigerant in the return pipe 30 before entering the low-pressure side evaporator EL, so that flash loss can be reduced.
さらに、この熱交換器45により低温の低圧側蒸発器E
Lの冷媒は予熱された後高圧側蒸発器EHに送られるの
で熱の有効利用がはかれる。Furthermore, this heat exchanger 45 further increases the temperature of the low-pressure side evaporator E.
Since the refrigerant L is preheated and sent to the high pressure side evaporator EH, effective use of heat is achieved.
熱交換器44は、発生器Gから凝縮器C内までに至る冷
媒径路である蒸気管14の冷媒と、低圧段蒸発器ELか
も高圧段蒸発器EHへの冷媒管8中の冷媒との熱交換を
行なうものであり、凝縮器Cにおいて冷却水に無駄に捨
てられる熱を回収して冷媒の予熱を行ない、熱の有効利
用をはかることができる。The heat exchanger 44 exchanges heat between the refrigerant in the steam pipe 14, which is a refrigerant path from the generator G to the inside of the condenser C, and the refrigerant in the refrigerant pipe 8 to the low-pressure stage evaporator EL or the high-pressure stage evaporator EH. The heat that would be wasted in the cooling water in the condenser C is recovered and the refrigerant is preheated, making it possible to effectively utilize the heat.
冷媒ポンプ7は、冷媒液を蒸発器チューブ上に均一に散
布するためのスプレーポンプと兼用してもよい。The refrigerant pump 7 may also be used as a spray pump for uniformly distributing the refrigerant liquid onto the evaporator tube.
第3図は別の実施例で、第2図における熱交換器44が
凝縮器Cの中に設けられたものである。FIG. 3 shows another embodiment in which the heat exchanger 44 in FIG. 2 is installed in the condenser C.
上述の例について高圧段蒸発器EH又は低圧段蒸発器E
L何れの場合でもチューブの伝熱向上のために必要に応
じて第4図の如くスプレー用の冷媒ポンプT及びスプレ
ー管46を設けて冷媒液を循環せしめてスプレーを行な
うことができる。For the above example, the high pressure stage evaporator EH or the low pressure stage evaporator E
In either case, a spray refrigerant pump T and a spray pipe 46 may be provided as shown in FIG. 4 to circulate the refrigerant liquid and perform spraying, if necessary, in order to improve heat transfer through the tube.
本発明により、凝縮器から低圧側蒸発器に入る冷媒を冷
却して蒸発器におけるフラッシュ損失を最小に抑え、他
の熱源のエネルギーを必要とせず、冷媒液の予熱を行な
い、運転効率のよいハイブリッド型吸収式ヒートポンプ
を提供することができ、実用上、省エネルギー上極めて
犬なる効果を有するものである。The present invention cools the refrigerant entering the low-pressure side evaporator from the condenser to minimize flash loss in the evaporator, preheats the refrigerant liquid without requiring energy from other heat sources, and provides a highly efficient hybrid system. It is possible to provide a type absorption heat pump, which has an extremely effective effect in terms of practical use and energy saving.
第1図は従来のものの例のフローシート、第2図は本発
明の実施例の冷媒サイクルのフローシート、第3図、第
4図は本発明の実施例の冷媒サイクルのフローシートで
ある。
G・・・・・・発生器、C・・・・・・凝縮器、AH・
・・・・・高圧段吸収器、AL・・・・・・低圧段吸収
器、EH・・・・・・高圧段蒸発器、EL・・・・・・
低圧段蒸発器、XH・・・・・・高圧段熱交換器、XL
・・・・・・低圧段熱交換益、1・・・・・・溶液ポン
プ、2・・・・・・中間濃度溶液管、3・・・・・・稀
溶液管、4.6,9,10,11.19・・・・・・弁
、5・・・・・・濃溶液管、7,39・・・・・・冷媒
ポンプ、8,40゜41.42・・・・・・冷媒管、1
2・・・・・・分岐管、13゜14.15・・・・・・
蒸気管、16,17・・・・・・温水管、18.26・
・・・・・入口部、20,23・・・・・・三方弁、2
1・・・・・・入口管、22,27・・・・・・出口部
、24・・・・・・連絡管、28・・・・・・出口管、
29・・・・・・減圧弁、30・・・・・・戻り管、3
1,32・・・・・・冷却水管、33・・・・・・高温
水管、34・・・・・・冷水管、35.36・・・・・
・温度検出器、37,38・・・・・・液面検出計、4
4゜45・・・・・・熱交換器、46・・・・・・スプ
レー管。FIG. 1 is a flow sheet of a conventional example, FIG. 2 is a flow sheet of a refrigerant cycle according to an embodiment of the present invention, and FIGS. 3 and 4 are flow sheets of a refrigerant cycle according to an embodiment of the present invention. G... Generator, C... Condenser, AH.
...High pressure absorber, AL...Low pressure absorber, EH...High pressure evaporator, EL...
Low pressure stage evaporator, XH...High pressure stage heat exchanger, XL
...low pressure stage heat exchange gain, 1 ... solution pump, 2 ... intermediate concentration solution tube, 3 ... dilute solution tube, 4.6, 9 , 10, 11.19... Valve, 5... Concentrated solution tube, 7, 39... Refrigerant pump, 8, 40° 41.42... Refrigerant pipe, 1
2...Branch pipe, 13°14.15...
Steam pipe, 16, 17...Hot water pipe, 18.26.
...Inlet section, 20, 23... Three-way valve, 2
1... Inlet pipe, 22, 27... Outlet section, 24... Connection pipe, 28... Outlet pipe,
29...Reducing valve, 30...Return pipe, 3
1, 32... Cooling water pipe, 33... High temperature water pipe, 34... Cold water pipe, 35.36...
・Temperature detector, 37, 38...Liquid level detector, 4
4゜45...Heat exchanger, 46...Spray pipe.
Claims (1)
器およびこれらを接続する流体径路を有し発生器と凝縮
器とを中間圧に保ち、これより高圧に保持された少くと
も一段の吸収器および蒸発器を備え、かつ上記中間圧よ
り低圧に保持された少くとも一段の吸収器および蒸発器
を備え、発生器と高圧段蒸発器に熱源として温水などの
加熱媒体を導ひき、凝縮器と低圧段吸収器に冷却水など
の冷却媒体を導ひき、前記熱源よりも高温の高温水など
の熱エネルギー源の生成と、冷却水などの冷却媒体より
も低温の冷水などの冷熱源の生成とを同時に又は必要に
応じて何れか一方の生成を行なうことができるようにし
たハイブリッド型吸収式ヒートポンプにおいて、 前記低圧段蒸発器の冷媒を前記高圧段蒸発器に導く冷媒
径路を設け、該冷媒径路中の冷媒と、前記凝縮器から前
記低圧段蒸発器へ導かれる冷媒との間の熱交換を行なう
熱交換器を設けたことを特徴とするハイブリッド型吸取
式ヒートポンプ。 2 吸収器、発生器、蒸発器、凝縮器、稀濃溶液熱交換
器およびこれらを接続する流体径路を有し。 発生器と凝縮器とを中間圧に保ち、これより高圧に保持
された少くとも一段の吸収器および蒸発器を備え、かつ
上記中間圧より低圧に保持された少くとも一段の吸収器
および蒸発器を備え、発生器と高圧段蒸発器に熱源とし
て温水などの加熱媒体を導き、凝縮器と低圧段吸収器に
冷却水などの冷却媒体を導ひき、前記熱源よりも高温の
高温水などの熱エネルギー源の生成と、冷却水などの冷
却媒体よりも低温の冷水などの冷熱源の生成とを同時に
又は必要に応じて何れか一方の生成を行なうことができ
るようにしたハイブリッド型吸収式ヒートポンプにおい
て 前記低圧段蒸発器の冷媒を前記高圧段蒸発器に導(冷媒
径路を設け、該冷媒径路中の冷媒と、前記凝縮器から前
記低圧段蒸発器へ導かれる冷媒との間の熱交換を行なう
熱交換器を設け、かつ前記発生器から前記凝縮器内まで
に至る冷媒径路の冷媒と、前記低圧段蒸発器から前記高
圧段蒸発器へ導かれる冷媒との間の熱交換を行なう熱交
製器を設けたことを特徴とするハイブリッド型吸収式ヒ
ートポンプ。[Scope of Claims] 1. It has an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these, and maintains the generator and condenser at an intermediate pressure, and maintains the generator and the condenser at an intermediate pressure. and at least one stage of absorber and evaporator maintained at a pressure lower than the above-mentioned intermediate pressure. A heating medium such as cooling water is introduced into the condenser and a low-pressure stage absorber to generate a thermal energy source such as high-temperature water that is hotter than the heat source, and a cooling medium such as cooling water is produced. In a hybrid absorption heat pump that can generate a cold heat source such as low-temperature cold water at the same time or generate either one of them as necessary, the refrigerant in the low-pressure stage evaporator is transferred to the high-pressure stage evaporator. A hybrid suction type characterized by providing a refrigerant path leading to the refrigerant, and a heat exchanger for performing heat exchange between the refrigerant in the refrigerant path and the refrigerant led from the condenser to the low pressure stage evaporator. type heat pump. 2. It has an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these. The generator and condenser are maintained at an intermediate pressure, and at least one stage of absorber and evaporator is maintained at a higher pressure than the intermediate pressure, and at least one stage of absorber and evaporator is maintained at a pressure lower than the intermediate pressure. A heating medium, such as hot water, is introduced as a heat source to the generator and the high-pressure stage evaporator, and a cooling medium, such as cooling water, is guided to the condenser and the low-pressure stage absorber. In a hybrid absorption heat pump that can generate an energy source and generate a cold heat source such as cold water at a lower temperature than a cooling medium such as cooling water at the same time, or generate either one of them as necessary. The refrigerant in the low pressure stage evaporator is guided to the high pressure stage evaporator (a refrigerant path is provided, and heat exchange is performed between the refrigerant in the refrigerant path and the refrigerant led from the condenser to the low pressure stage evaporator). A heat exchanger that is provided with a heat exchanger and performs heat exchange between the refrigerant in the refrigerant path from the generator to the inside of the condenser and the refrigerant led from the low-pressure stage evaporator to the high-pressure stage evaporator. A hybrid absorption heat pump characterized by the provision of a heat pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15399682A JPS5844302B2 (en) | 1982-09-06 | 1982-09-06 | Hybrid absorption heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15399682A JPS5844302B2 (en) | 1982-09-06 | 1982-09-06 | Hybrid absorption heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5849870A JPS5849870A (en) | 1983-03-24 |
JPS5844302B2 true JPS5844302B2 (en) | 1983-10-03 |
Family
ID=15574633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15399682A Expired JPS5844302B2 (en) | 1982-09-06 | 1982-09-06 | Hybrid absorption heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5844302B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6243692A (en) * | 1985-08-21 | 1987-02-25 | 株式会社タツノ・メカトロニクス | Display for gasoline station |
-
1982
- 1982-09-06 JP JP15399682A patent/JPS5844302B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5849870A (en) | 1983-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4070870A (en) | Heat pump assisted solar powered absorption system | |
US7827817B2 (en) | Absorption heat pump | |
JPS5913670B2 (en) | Dual effect absorption refrigeration equipment | |
KR20030001257A (en) | Heat exchanger for high stage generator of absorption chiller | |
JP2782555B2 (en) | Absorption heat pump | |
US4470269A (en) | Absorption refrigeration system utilizing low temperature heat source | |
JPS5849781B2 (en) | Absorption heat pump | |
JP3905986B2 (en) | Waste heat utilization air conditioning system | |
JPS5812507B2 (en) | Hybrid type absorption heat pump | |
JPS5844302B2 (en) | Hybrid absorption heat pump | |
JPS5818575B2 (en) | heat pump | |
CN110234941B (en) | absorption chiller | |
JPS6125987B2 (en) | ||
JPS5830515B2 (en) | Hybrid heat pump | |
JPH05280825A (en) | Absorption heat pump | |
JP2000088391A (en) | Absorption refrigerator | |
JP2575006Y2 (en) | Absorption refrigeration cycle system | |
JPS6148064B2 (en) | ||
JP2645948B2 (en) | Hot water absorption absorption chiller / heater | |
JPH0354378Y2 (en) | ||
KR0177715B1 (en) | High temperature water supply absorption type heating and cooling device | |
JPS5829424Y2 (en) | absorption cold water machine | |
JPH0429339Y2 (en) | ||
SU1688078A1 (en) | Absorption thermal transformer | |
JPH06108804A (en) | Power generating system |