[go: up one dir, main page]

JPS5842014B2 - Polyamide film - Google Patents

Polyamide film

Info

Publication number
JPS5842014B2
JPS5842014B2 JP3905175A JP3905175A JPS5842014B2 JP S5842014 B2 JPS5842014 B2 JP S5842014B2 JP 3905175 A JP3905175 A JP 3905175A JP 3905175 A JP3905175 A JP 3905175A JP S5842014 B2 JPS5842014 B2 JP S5842014B2
Authority
JP
Japan
Prior art keywords
stretching
film
longitudinal
transverse
relative viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3905175A
Other languages
Japanese (ja)
Other versions
JPS51114475A (en
Inventor
満男 河野
義彦 古屋
恒夫 五十嵐
昭夫 芝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3905175A priority Critical patent/JPS5842014B2/en
Publication of JPS51114475A publication Critical patent/JPS51114475A/en
Publication of JPS5842014B2 publication Critical patent/JPS5842014B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 本発明は、ポリカプラミドあるいはポリへキサメチレン
アジパミドより成り、すぐれた透明性、耐ピンホール性
、ガヌバリャー性、耐油性等の諸物性とともに、良好な
機械的性質を有する均一な二軸延伸フィルムを遂次延伸
法によって安定性よく製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention is made of polycapramide or polyhexamethylene adipamide, and has excellent physical properties such as excellent transparency, pinhole resistance, gun barrier properties, and oil resistance, as well as good mechanical properties. The present invention relates to a method for stably producing a uniform biaxially stretched film having the following properties by a sequential stretching method.

更に詳しくは、相対粘度が3.5以上で実質的に無定形
のポリカプラミドあるいはポリヘキサメチレンアジパミ
ドあるいはこれらの共重合体、混合体等よりなるボリア
□ドフイルム(原反)を先ず、70°C〜180℃で押
出方向と直角な方向(以下横方向と称す)に2.0倍か
ら4.5倍延伸したのち、70〜180℃にて1000
00%/分以上の延伸速度で押出方向(以下縦方向と称
す)に、ネッキング部が消失して均一なフィルムが得ら
れるまで、2.0〜6.0倍の延伸比で延伸することに
依り上述した良好な性質を有するフィルムを製造するも
のである。
More specifically, a boria □ film made of substantially amorphous polycapramide, polyhexamethylene adipamide, or a copolymer or mixture thereof with a relative viscosity of 3.5 or more is first heated at 70°. After stretching 2.0 to 4.5 times in the direction perpendicular to the extrusion direction (hereinafter referred to as the transverse direction) at C to 180°C, it was stretched to 1000°C at 70 to 180°C
The film was stretched in the extrusion direction (hereinafter referred to as the machine direction) at a stretching speed of 0.00%/min or more at a stretching ratio of 2.0 to 6.0 times until the necking part disappeared and a uniform film was obtained. Accordingly, a film having the above-mentioned good properties is produced.

ここで言う相対粘度とは96%硫酸を用いて、25°C
で測定したポリマーの相対粘度を意味するものであり、
この値が3.5以上のポリマーより得られたフィルム(
原反)を使用すると縦延伸時の安定性が著しく向上する
とともに、縦横バランスした性質を有する二軸延伸フィ
ルムを容易に製造できるという重要な利点がある。
The relative viscosity referred to here means 25°C using 96% sulfuric acid.
refers to the relative viscosity of the polymer measured at
A film obtained from a polymer with this value of 3.5 or more (
The use of the original film (original film) has the important advantage that the stability during longitudinal stretching is significantly improved, and that a biaxially stretched film with balanced properties in the longitudinal and lateral directions can be easily produced.

以下に本発明を一層具体的に説明する。The present invention will be explained in more detail below.

従来、工業的に有利な熱可塑性樹脂フィルムの二軸延伸
法として、ポリエステルに代表されるが如く、遂次二軸
延伸法が多く用いられている。
Conventionally, as an industrially advantageous biaxial stretching method for thermoplastic resin films, a sequential biaxial stretching method has often been used, as typified by polyester.

しかるにボリア□ドにおいてとの遂次二軸延伸を試みた
場合、最初の延伸で生じた分子配列と強固な分子間水素
結合により、次の延伸が不均一となったり、はなはだし
くは破断を生じる。
However, when successive biaxial stretching is attempted in a boria □ board, the subsequent stretching becomes uneven or even breaks due to the molecular alignment and strong intermolecular hydrogen bonds generated in the first stretching.

このためこの方法により均一なボリア□ドフィルムを得
ることは極めて困難であり、従ってポリアミドフィルム
は二段階で延伸するには適していiいというのが当業界
の常識として受は入れられてきた。
For this reason, it is extremely difficult to obtain a uniform polyamide film by this method, and it has been accepted as common knowledge in the art that polyamide films are not suitable for two-step stretching.

この点に関して特公昭37−2195号公報に示された
発明では、延伸性を改良するために、ポリアミドに可塑
剤を加えることによって遂次二軸延伸を可能ならしめて
いる。
Regarding this point, the invention disclosed in Japanese Patent Publication No. 37-2195 makes it possible to perform sequential biaxial stretching by adding a plasticizer to the polyamide in order to improve the stretchability.

しかしこの方法で製造されたフィルムは可塑性を用いる
ことによって生じるフィルム物性の低下その他の欠点が
あり、実用性の面で問題があった。
However, the film produced by this method has problems in terms of practicality, such as deterioration in film properties caused by the use of plasticity and other drawbacks.

更に、特公昭43−9399号公報には、遂次二軸延伸
により均一なボリア□ドフイルムを得ることは極めて困
難であるとの認識より、縦、横両方向に空間同時二軸延
伸して均一なフィルムを得る方法が、提案されている。
Furthermore, in Japanese Patent Publication No. 43-9399, recognizing that it is extremely difficult to obtain a uniform boria □ doped film by successive biaxial stretching, it is proposed that a uniform biaxial film be obtained by spatially simultaneous biaxial stretching in both the vertical and horizontal directions. A method of obtaining the film is proposed.

この方法はボリア□ドフイルムの二軸延伸法として工業
的に行なわれている唯一の方法ではあるが、複雑な同時
二軸延伸機でしか実施できず、しかも周知の様に、条件
設定の自由度が小さいこと、不均一に延伸された巾広い
両端部が生じて歩留りが悪いこと、またグリップによっ
て把持されない帯状縁部が過度に延伸されて引裂けが生
じ易い等の問題点を有している。
This method is the only biaxial stretching method for boria □ film that is used industrially, but it can only be carried out using a complicated simultaneous biaxial stretching machine, and as is well known, there is a great deal of freedom in setting conditions. There are problems such as a small width, a poor yield due to unevenly stretched wide ends, and a tendency to tear because the strip edge that is not gripped by the grip is overstretched. .

他方、特公昭47−3195号公報には上記同時二軸延
伸法の改良として、遂次二軸延伸法に依る延伸法に示さ
れており、最初の縦方向に延伸する際のロール条件等を
厳密に規定すれば、次の横方向の延伸も可能であるとし
て、縦→横の遂次二軸延伸方法が提案されている。
On the other hand, Japanese Patent Publication No. 47-3195 discloses a stretching method based on a sequential biaxial stretching method as an improvement of the above simultaneous biaxial stretching method, in which the roll conditions etc. during the initial longitudinal stretching are changed. Strictly defined methods allow for subsequent stretching in the transverse direction, and a sequential biaxial stretching method from longitudinal to transverse has been proposed.

しかし、この方法でも条件は極めて狭く、横延伸が均一
かつ安定に延びる自由度ははなはだ小さい。
However, even with this method, the conditions are extremely narrow, and the degree of freedom for uniform and stable lateral stretching is extremely small.

そこで本発明者らはこれら従来技術の欠点を十分検討し
た上で、生産性が高く、しかも最適条件範囲の広いポリ
アミドフィルムの遂次二軸延伸法について鋭意検討を重
ねた結果、実質的に無定形のポリアミドフィルムを70
〜180℃の温度範囲で、1ず横方向に2.0〜4.5
倍の延伸を行い、ついで70〜180℃にて縦方向に1
00000%/分以上の高延伸速度で、かつネッキング
部が消失して均一なフィルムが得られる唾で2.0〜6
.0倍の延伸比で延伸したのち、必要に応じて熱固定を
行うという方法によってはじめてこれらを満足したボリ
ア□ドニ軸延伸フィルムが得られることを見い出し、特
願昭49−123452号として先に出願した。
The inventors of the present invention have carefully considered the shortcomings of these conventional techniques and have conducted intensive studies on a method for sequential biaxial stretching of polyamide films that has high productivity and a wide range of optimal conditions. 70 pieces of regular polyamide film
2.0 to 4.5 in the lateral direction in the temperature range of ~180℃
Stretched twice as much, then 1x in the longitudinal direction at 70-180°C.
2.0 to 6 with a high stretching speed of 00000%/min or more and a uniform film with the necking disappearing.
.. It was discovered that a Boria□Don axially stretched film satisfying these requirements could only be obtained by stretching at a stretching ratio of 0 times, followed by heat setting if necessary. did.

その後、本発明者らがさらに上記延伸法について、ポリ
カプラミドおよびポリヘキサメチレンアジパミド等のポ
リアミドフィルムを用いて詳細に検討したところ、これ
らのフィルムの重合度を上げることによって延伸の安定
性が著しく向上するとともに、ポリアミドフィルムを横
→縦法で遂次二軸延伸する際の二段目縦延伸時にみられ
るネッキング現象が消失する倍率が低下する傾向にある
こと、つ1す、比較的低倍率の延伸でも均一なフィルム
が得られ易くなるという極めて興味ある事実を見い出し
、本発明をなすに至った。
Subsequently, the present inventors further investigated the above-mentioned stretching method in detail using polyamide films such as polycapramide and polyhexamethylene adipamide, and found that by increasing the degree of polymerization of these films, the stability of stretching was significantly improved. At the same time, there is a tendency that the magnification at which the necking phenomenon that occurs during the second stage longitudinal stretching when sequentially biaxially stretching a polyamide film from the transverse direction to the longitudinal direction disappears tends to decrease. The present inventors have discovered the extremely interesting fact that a uniform film can be easily obtained even by stretching the film, leading to the creation of the present invention.

すなわち、従来繊維用として用いられているような比較
的重合度の低いポリマー、具体的に言うならば、96%
硫酸を用いて25℃で測定した相対粘度が3.5より低
い値を示すポリマーより得られたフィルムを用いても、
特願昭49−123452号明細書に示された横→縦方
式の延伸法により十分均一な遂次二軸延伸が可能である
が、二段目の縦延伸を100000%/分以上という高
速度で行なう必要があるため、ややもするとこの縦延伸
時に破断が生じ易く、特にネッキングが消失する倍率付
近では応力が急激に増大するため破断に至る頻度が増加
し、;延伸の安定性の面で必ずしも十分満足できるもの
ではなかった。
In other words, polymers with a relatively low degree of polymerization, such as those conventionally used for fibers, specifically 96%.
Even with films obtained from polymers with a relative viscosity of less than 3.5, measured at 25° C. using sulfuric acid,
Sufficiently uniform sequential biaxial stretching is possible by the transverse to longitudinal stretching method shown in Japanese Patent Application No. 49-123452, but the second stage longitudinal stretching is carried out at a high speed of 100,000%/min or more. Because it is necessary to carry out longitudinal stretching, fractures tend to occur during this longitudinal stretching, and especially near the magnification where necking disappears, the stress increases rapidly and the frequency of fractures increases; It wasn't always completely satisfying.

ここで言う縦延伸速度とは、フィルムの送り込み速度を
V 1(m7分)引取り速度をv2(m7分)フィルム
が実際に延伸される延伸域をa(m)、延伸倍率をXと
すれば下記の式にて示される。
The longitudinal stretching speed mentioned here means that the feeding speed of the film is V1 (m7 minutes), the take-up speed is V2 (m7 minutes), the stretching area where the film is actually stretched is a (m), and the stretching ratio is X. It is shown by the following formula.

延伸速度(%/分) ここで高延伸速度を得るためには延伸倍率を上げるか、
■1 および■2を上げるか、あるいはaを小さくする
か、いずれかの方法によれば良い訳であるが、いずれの
場合においてもこのような高延伸速度故に、縦延伸時に
急激な応力がフィルムに加わると同時に、初期の延伸が
ネッキング延伸であるために局部的な応力集中が生じる
結果、低重合度フィルムではこの段階での延伸安定性が
必ずしも十分とは言えなかった。
Stretching speed (%/min) To obtain a high stretching speed, either increase the stretching ratio or
It is possible to increase (1) and (2) or decrease a, but in either case, due to such a high stretching speed, sudden stress is applied to the film during longitudinal stretching. At the same time, since the initial stretching is necking stretching, local stress concentration occurs, and as a result, it cannot be said that the stretching stability at this stage is necessarily sufficient for low polymerization degree films.

これに対し、相対粘度3.5付近を境に、これ以上上の
値のポリアミドのフィルムではこのような高延伸速度下
で急激な応力集中が生じても破断に至る頻度が著しく低
下する結果、延伸の安定性が飛躍的に向上するという事
実が見い出された。
On the other hand, polyamide films with a relative viscosity of around 3.5 or higher have a significantly lower frequency of breakage even if sudden stress concentration occurs under such high drawing speeds. It has been found that the stability of stretching is dramatically improved.

しかしながら、ここで重合度が上昇するに従って、溶融
成膜時の押出圧力が大きく上昇するために吐出量を上げ
られないという問題点のほか、高重合ポリマーを得る際
にも、高温で長時間の反応が必要となるために、熱劣化
、酸化劣化等を伴ない易くなるとともに、得られたチッ
プの品質管理を極めて厳重にする必要性が生じること等
の問題が発生する。
However, as the degree of polymerization increases, the extrusion pressure during melt film formation increases significantly, making it impossible to increase the output rate. In addition, when obtaining highly polymerized polymers, it is necessary to Since a reaction is required, problems such as thermal deterioration, oxidative deterioration, etc. are likely to occur, and the quality control of the obtained chips must be extremely strict.

そのために工業的に有利な重合度の範囲として、相対粘
度が5.0以下であるポリマーを使用することが実際上
は望ましい。
Therefore, it is practically desirable to use a polymer having a relative viscosity of 5.0 or less as an industrially advantageous range of polymerization degree.

フィルム相対粘度と延伸安定性についての詳細結果は実
施例1および2に示されている。
Detailed results on film relative viscosity and stretching stability are shown in Examples 1 and 2.

本発明の方法において発生するさらに有効なる延伸特性
として、重合度増大に伴って生じる縦延伸時のネッキン
グ消失倍率の低下現象が挙げられる。
A more effective stretching characteristic that occurs in the method of the present invention includes a phenomenon in which the necking disappearing ratio during longitudinal stretching occurs as the degree of polymerization increases.

ここでいうネッキング消失倍率とは、実質的に無定形の
ポリアミドフィルムを横→縦方式の遂次二軸延伸する場
合、最初の横延伸で生じた分子の配列と水素結合結果に
より、次の縦延伸の際、低倍率領域では分子が縦方向に
部分的に延伸(再配列)された状態で、つ1リネツキン
グを生じながら配列し、その後横方向に配列していた分
子鎖のうちで、与えられた変形力で再配列すべきすべて
の分子鎖が完全に縦方向に配列し終わるときの縦延伸倍
率のことを意味しており、均一な延伸フィルムを得るた
めにはこの倍率以上に延ばすことが必要である。
The necking disappearance magnification referred to here means that when a substantially amorphous polyamide film is sequentially biaxially stretched from horizontal to vertical, the next longitudinal stretching is During stretching, in the low magnification region, the molecules are partially stretched (rearranged) in the longitudinal direction, and are aligned with one-line linking, and then the molecular chains that were aligned in the transverse direction are This refers to the longitudinal stretching magnification at which all the molecular chains to be rearranged by the applied deformation force are completely aligned in the longitudinal direction, and in order to obtain a uniform stretched film, it is necessary to stretch the film beyond this magnification. is necessary.

またこのネッキングが消失する倍率は特願昭49−12
3452号明細書に記載されているように、一段目の横
延伸温度2倍率、並びに二段目縦延伸温度によって異っ
た値をとる。
Also, the magnification at which this necking disappears is
As described in the specification of No. 3452, different values are taken depending on the doubling ratio of the first-stage transverse stretching temperature and the second-stage longitudinal stretching temperature.

さらに詳しく言うならば、横延伸倍率を規定したときに
は横延伸温度が高いほど、また次の縦延伸温度が高いほ
どこの倍率は高くなり、他方、横延伸温度、縦延伸温度
を規定した場合には、最初の横延伸倍率が高いほどこの
倍率も高くなる傾向を有している。
To be more specific, when the transverse stretching ratio is specified, the higher the transverse stretching temperature and the higher the next longitudinal stretching temperature, the higher this magnification is.On the other hand, when the transverse stretching temperature and longitudinal stretching temperature are specified The higher the initial transverse stretching ratio, the higher this ratio tends to be.

この現象は、一段目の横延伸の際に分子間力が大きく働
き、配向結晶化が進むような条件、あるいはまた、二段
目縦延伸時の結晶化速度が犬なる条件下での延伸を行な
った場合に分子の再配列が円滑に行なわれにくいこと、
すなわちネッキング消失倍率が高くなるということを意
味して触り、同様の理由により、フィルム重合度を上げ
たときの縦延伸ネッキング消失倍率低下現象が説明でき
る。
This phenomenon occurs under conditions where intermolecular forces act strongly during the first stage of transverse stretching and oriented crystallization progresses, or under conditions where the crystallization rate during the second stage of longitudinal stretching is low. When this is done, it is difficult for the molecules to rearrange smoothly;
In other words, this means that the necking disappearing magnification increases, and the same reason can explain the phenomenon in which the longitudinal stretch necking disappearing magnification decreases when the degree of film polymerization is increased.

つ1り重合度の増大に従い、横延伸時の配向による結晶
化段が小さくなるとともに結晶化速度も遅くなるため、
縦延伸の際の分子再配列が低重合度フィルムに比べて、
より円滑に行なわれる結果、低倍率でネッキングが消失
するものと考えられる。
As the degree of polymerization increases, the crystallization stage due to orientation during transverse stretching becomes smaller and the crystallization speed becomes slower.
Compared to low polymerization degree films, molecular rearrangement during longitudinal stretching is
It is thought that necking disappears at low magnification as a result of smoother operation.

本発明に伴う効果の1つとして、このようなネッキング
消失倍率の低下により、縦、横両方向にバランスされた
性質を有するフィルム、あるいはまた横方向に強化され
たフィルムが、より容易に得られることである。
One of the effects of the present invention is that due to such a reduction in necking elimination magnification, it is easier to obtain a film that has properties that are balanced in both the vertical and horizontal directions, or a film that is strengthened in the horizontal direction. It is.

相対粘度が3.5未満であるような比較的重合度の低い
フィルムを用いても、特願昭49−123452号明細
書に示された条件から選ばれた適当な横延伸倍率と縦延
伸倍率とを組み合わせることによって、横方向が強いフ
ィルムから縦、横バランスした性質を有するフィルム、
さらには縦刃、向に強力化されたフィルム1で、用途に
応じたさ1ざ1な二軸延伸フィルムを得ることが可能で
あるが、ここで仮りに縦・横バランスした性質のフィル
ムあるいは横方向に強いフィルムを得ようとした場合に
は、縦延伸倍率を横延伸倍率とほぼ等しくするか、ある
いはそれ以下にする必要があるため、必然的にネッキン
グの消失倍率が十分小さいような条件を選ぶ必要性が生
じる。
Even if a film with a relatively low degree of polymerization such as a relative viscosity of less than 3.5 is used, an appropriate transverse stretch ratio and longitudinal stretch ratio selected from the conditions shown in Japanese Patent Application No. 123452/1980 can be used. By combining the
Furthermore, it is possible to obtain a biaxially stretched film with a uniform strength in the vertical and horizontal directions, depending on the application, by using the film 1 that is strengthened in the vertical and horizontal directions. When trying to obtain a film that is strong in the transverse direction, it is necessary to make the longitudinal stretch ratio approximately equal to or lower than the transverse stretch ratio, so it is necessary to create a condition in which the necking disappearing ratio is sufficiently small. There arises a need to choose.

そのような条件とは、横延伸温度、縦延伸温度について
は低い方が望1しく、また横延伸倍率は低い方が好まし
いのであるが、横延伸倍率が低すぎると原反に存在する
厚さムラが拡大され、横方向の厚みを揃えることが困難
となるばかりでなく、延伸による機械的物理的性質の向
上という目的からもその効果が小さいために満足なフィ
ルムは得られない。
Such conditions mean that it is preferable that the transverse stretching temperature and the longitudinal stretching temperature be lower, and that the transverse stretching ratio is lower. However, if the transverse stretching ratio is too low, the thickness existing in the original fabric Not only is the unevenness expanded and it becomes difficult to make the thickness uniform in the transverse direction, but also the effect of stretching on improving mechanical and physical properties is small, making it impossible to obtain a satisfactory film.

そこで縦・横両方向にバランスされた、あるいは横方向
に強く、しかも実用に耐えるだけの均一性と機械的物理
的性質とを有する遂次二軸延伸フィルムを得るためには
横延伸、縦延伸とも比較的低温度で延伸し、しかも延伸
の効果が十分上がる程度にまで倍率を上げる必要がある
ため、延伸の安定性はさらに悪くなる傾向を示した。
Therefore, in order to obtain a sequentially biaxially stretched film that is balanced in both the longitudinal and transverse directions, or is strong in the transverse direction, and has uniformity and mechanical and physical properties sufficient for practical use, both transverse and longitudinal stretching are necessary. Since it was necessary to stretch at a relatively low temperature and increase the magnification to a sufficient extent to obtain a sufficient stretching effect, the stability of stretching tended to worsen.

ここで縦延伸温度を上げることにより、延伸の安定性は
徐々に向上するものの、先にも述べたように十分満足で
きるほどではなく、しかもネッキング消失倍率が上昇す
るために、必然的に縦方向がむしろ強力化されたフィル
ムになりがちであるため、上記のようなバランスした性
質を有するフィルム、あるいは横方向に強いフィルムを
得る方法としてはあ1り有利とは言えなかった。
By increasing the longitudinal stretching temperature, the stability of stretching gradually improves, but as mentioned earlier, it is not sufficiently satisfactory, and moreover, because the necking elimination ratio increases, However, since this tends to result in a film that is rather strengthened, it cannot be said to be particularly advantageous as a method for obtaining a film with balanced properties as described above or a film that is strong in the lateral direction.

本発明による効果として、相対粘度が3.5以上の重合
度のフィルムを使用することにより、このような目的の
フィルムが容易に、しかも安定性よく得られることは勿
論、縦方向に強力化されたフィルムも同様に容易かつ安
定して得られることが確認された。
As an effect of the present invention, by using a film having a degree of polymerization with a relative viscosity of 3.5 or more, a film for such purposes can be easily obtained with good stability, and it can also be strengthened in the longitudinal direction. It was confirmed that a film obtained by the above method could also be easily and stably obtained.

なお本発明において使用される相対粘度3.5以上のフ
ィルムの延伸条件としては、特願昭49−123452
号明細書に示された範囲と同じく、横延伸が70〜18
0℃で2.0〜4.5倍、縦延伸が70〜180℃で2
.0〜6.0倍であるような範囲が選ばれ、かつ縦延伸
速度も同様に100000%/分以上であることが必要
である。
Note that the stretching conditions for the film with a relative viscosity of 3.5 or more used in the present invention are as described in Japanese Patent Application No. 123452/1983.
Same as the range shown in the specification, the horizontal stretching is 70 to 18
2.0 to 4.5 times at 0°C, 2 times longitudinal stretching at 70 to 180°C
.. A range of 0 to 6.0 times is selected, and the longitudinal stretching speed must also be 100,000%/min or more.

また本発明に用いられるポリアミドフィルム中に、実質
的にその性質を損わない範囲で各種の添加剤、例えば易
滑性付与剤、酸化防止剤、つや消し剤2着色顔料等を添
加することも同様に何ら差しつかえない。
It is also possible to add various additives, such as lubricating agents, antioxidants, matting agents, coloring pigments, etc., to the polyamide film used in the present invention within a range that does not substantially impair its properties. There is nothing wrong with that.

以下に本発明をさらに具体的に説明するために実施例の
いくつかを挙げる。
Some examples are listed below to further specifically explain the present invention.

実施例 1 96%硫酸を用いて、25℃で測定した相対粘度がそれ
ぞれ3.0. 3.5.3.9.4.5のポリカプラミ
ドから厚さ0.15mmの実質的に無定形のフィルムを
得た。
Example 1 The relative viscosity measured at 25°C using 96% sulfuric acid was 3.0. A substantially amorphous film with a thickness of 0.15 mm was obtained from the polycapramide of 3.5.3.9.4.5.

これらのフィルムをテンターにより、横方向に100℃
で3倍延伸したのち、テンタークリップ部を切り取った
These films were heated at 100°C in the transverse direction using a tenter.
After stretching the film 3 times with , the tenter clip portion was cut out.

このようにして得られた横延伸フィルムを次に述べる縦
延伸装置で延伸した。
The transversely stretched film thus obtained was stretched using a longitudinal stretching device described below.

即ち、5m/分の周速で回転している第10−ルと20
m/分の周速で回転している第20−ルの間に、径が5
cmφ、温度が140℃の延伸ロールを配置し、フィル
ムの接触巾を2cmとして上記横延伸フィルムを縦に延
伸した。
That is, the 10th and 20th wheels are rotating at a circumferential speed of 5 m/min.
Between the 20th wheel rotating at a circumferential speed of m/min, a diameter of 5
A stretching roll having a diameter of cmφ and a temperature of 140° C. was arranged, and the horizontally stretched film was stretched vertically with a film contact width of 2 cm.

このときの延伸速度は約1.9X105%分で延伸は均
一に行なわれた。
The stretching speed at this time was approximately 1.9 x 105%, and the stretching was uniform.

このようにして、各々の重合度のフィルムをそれぞれ8
時間縦延伸したときのフィルム相対粘度と破断回数の関
係を第1表に示した。
In this way, films of each degree of polymerization were
Table 1 shows the relationship between the relative viscosity of the film and the number of breaks when longitudinally stretched for a time.

実施例 2 96%硫酸を用いて、25℃で測定した相対粘度がそれ
ぞれ2.8.3.4.4.0.4.5のポリヘキサメチ
レンアジパミドから厚さ0.15mmの実質的に無定形
のフィルムを得た。
Example 2 Substantially 0.15 mm thick polyhexamethylene adipamide having a relative viscosity of 2.8, 3, 4, 4, 0, 4.5, respectively, measured at 25° C. using 96% sulfuric acid. An amorphous film was obtained.

これらのフィルムを実施例1と明−装置、同一条件にて
横→縦遂次二軸延伸を行なった。
These films were sequentially biaxially stretched in the transverse direction and in the longitudinal direction under the same conditions as in Example 1 using the bright apparatus.

同様に8時間縦延伸したときのフィルム相対粘度と破断
回数の関係を第2表に示した。
Similarly, Table 2 shows the relationship between the relative viscosity of the film and the number of breaks when longitudinally stretched for 8 hours.

実施例 3 実施例2に示した4種類の未延伸ポリヘキサメチレンア
ジパミドフィルムを用いて、同じ装置にて横方向に10
0℃で3.0倍延伸した後、縦延伸を約1.9X10’
%/分の速度で140℃にて行なった。
Example 3 Using the four types of unstretched polyhexamethylene adipamide films shown in Example 2, 100% of the unstretched polyhexamethylene adipamide films in the transverse direction were used in the same apparatus.
After stretching 3.0 times at 0°C, longitudinal stretching was carried out to approximately 1.9X10'
%/min at 140°C.

このときのフィルム相対粘度と縦延伸時のネッキング消
失率との関係を第3表に示した。
Table 3 shows the relationship between the relative viscosity of the film and the necking disappearance rate during longitudinal stretching.

実施例 4 96%硫酸を用いて、25℃で測定した相対粘度が3.
0のポリヘキサメチレンアジパミドから厚さ0.15m
mの実質的に無定形のフィルムを得た。
Example 4 Relative viscosity measured at 25°C using 96% sulfuric acid is 3.
0.15m thick from polyhexamethylene adipamide
A substantially amorphous film of m was obtained.

このフィルムをテンターにより、横方向に80°Cで3
倍延伸したのち、テンタークリップ部を切り取り、これ
を実施例1と同一の装置にて縦延伸した。
This film was placed in a tenter at 80°C for 3
After double stretching, the tenter clip portion was cut out, and this was longitudinally stretched using the same device as in Example 1.

即ち、延伸温度を90°C1第10一ル速度を8m/分
とし、第20−ルとの間で3倍に延伸してほぼバランス
した性質を有する二軸延伸フィルムを得た。
That is, the stretching temperature was 90 DEG C., the 10th direction speed was 8 m/min, and the film was stretched three times as much as the 20th direction to obtain a biaxially stretched film having almost balanced properties.

このときの縦延伸速度は約1.6X105%/分であり
、縦延伸倍率的2.7倍にてネッキングが消失した。
The longitudinal stretching speed at this time was approximately 1.6×105%/min, and necking disappeared at a longitudinal stretching ratio of 2.7 times.

一方、同じ条件で測定した相対粘度が4.5のポリヘキ
サメチレンアジパミドより、同じく厚さ0.1.5mm
の無定形フィルムを得た。
On the other hand, from polyhexamethylene adipamide with a relative viscosity of 4.5 measured under the same conditions, the same thickness was 0.1.5 mm.
An amorphous film was obtained.

このフィルムを同様にして横方向に100°Cで3倍延
伸したのち、縦方向に140℃で3倍延伸した。
This film was similarly stretched 3 times in the transverse direction at 100°C and then 3 times in the machine direction at 140°C.

このときのネッキング消失倍率は約2.4倍であった。The necking elimination ratio at this time was approximately 2.4 times.

上記2種類のフィルムをそれぞれの条件で8時間縦延伸
したときのフィルム相対粘度と破断回数の関係を第4表
に示した。
Table 4 shows the relationship between the film relative viscosity and the number of breaks when the above two types of films were longitudinally stretched for 8 hours under the respective conditions.

またこのとき得られたフィルムの機械的性質を第5表に
示した。
Further, the mechanical properties of the film obtained at this time are shown in Table 5.

Claims (1)

【特許請求の範囲】[Claims] 1 本文中で規定する相対粘度が3.5以上の実質的に
無定形なポリカプラミドあるいはポリヘキサメチレンア
ジパミド等のポリアミドフィルム(原反)を先ず、70
〜180℃の温度範囲で押出方向と直角な方向に2,0
〜4,5倍の延伸を行ない、ついで70〜180℃にて
1oooooo%/分以上の延伸速度で押出方向に、ネ
ッキング部が消失して均一なフィルムが得られる昔で、
2.0〜6.0倍の延伸比で延伸したのち、必要に応じ
て二段目の延伸温度以上、融点以下の温度範囲で熱処理
することを特徴とする遂次二軸延伸フィルムの製造法。
1 First, a substantially amorphous polyamide film (original film) such as polycapramide or polyhexamethylene adipamide having a relative viscosity of 3.5 or more as defined in the text is heated to 70%
2,0 in the direction perpendicular to the extrusion direction in the temperature range ~180℃
In the olden days, the necking part disappeared and a uniform film was obtained by stretching ~4.5 times and then stretching at 70~180°C at a stretching rate of 1000%/min or more in the extrusion direction.
A method for producing a sequentially biaxially stretched film, which comprises stretching at a stretching ratio of 2.0 to 6.0 times, and then heat-treating the film at a temperature range of not less than the second-stage stretching temperature and not more than the melting point, if necessary. .
JP3905175A 1975-04-02 1975-04-02 Polyamide film Expired JPS5842014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3905175A JPS5842014B2 (en) 1975-04-02 1975-04-02 Polyamide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3905175A JPS5842014B2 (en) 1975-04-02 1975-04-02 Polyamide film

Publications (2)

Publication Number Publication Date
JPS51114475A JPS51114475A (en) 1976-10-08
JPS5842014B2 true JPS5842014B2 (en) 1983-09-16

Family

ID=12542316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3905175A Expired JPS5842014B2 (en) 1975-04-02 1975-04-02 Polyamide film

Country Status (1)

Country Link
JP (1) JPS5842014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650647A (en) * 1984-12-05 1987-03-17 Takuma Co., Ltd. Apparatus for removing acid constituents from waste-gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018528A1 (en) * 2006-08-09 2008-02-14 Toyo Boseki Kabushiki Kaisha Package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650647A (en) * 1984-12-05 1987-03-17 Takuma Co., Ltd. Apparatus for removing acid constituents from waste-gas

Also Published As

Publication number Publication date
JPS51114475A (en) 1976-10-08

Similar Documents

Publication Publication Date Title
US4042569A (en) Heat-setting process for polyester film
US3502766A (en) Process for the improvement of polyamide films
US4477407A (en) Machine direction orientation of nylon film
US4948544A (en) Process for the production of thin stretched films from polyolefin of ultrahigh molecular weight
JPS6212015B2 (en)
JPH0430905B2 (en)
JPS6212016B2 (en)
JPS5842433A (en) Polyvinyl chloride film having special property and its manufacture
JPS63261201A (en) Manufacturing method of oriented film
JPS5842014B2 (en) Polyamide film
US3794547A (en) Polyamide films
US4753842A (en) Heat-shrinkable biaxially drawn polyamide film and process for preparation thereof
US6743845B2 (en) Oriented high density polyethylene film, compositions and process suitable for preparation thereof
JP3505898B2 (en) Manufacturing method of sequential biaxially stretched polyamide film
JP3569989B2 (en) Method for producing biaxially oriented polyamide film
KR0134560B1 (en) Polyamide Film Manufacturing Method
JPS5843253B2 (en) Polyester fig film
JPH07290565A (en) Production of biaxially oriented polyamide film
JPH075758B2 (en) High density polyethylene film and method for producing the same
KR100544770B1 (en) Process for producing biaxially stretched polyamide film
JPS61273930A (en) Manufacturing method of low density polyethylene biaxially stretched film
JP2022010792A (en) Resin film and manufacturing method thereof
JP2797624B2 (en) Method for producing biaxially stretched polyamide film
JPH01188322A (en) Stretching molding method of polyester film
KR100572086B1 (en) Polyamide Tape and Manufacturing Method Thereof