JPS5839770A - Production of high-strength zinc hot dipped steel plate - Google Patents
Production of high-strength zinc hot dipped steel plateInfo
- Publication number
- JPS5839770A JPS5839770A JP13926781A JP13926781A JPS5839770A JP S5839770 A JPS5839770 A JP S5839770A JP 13926781 A JP13926781 A JP 13926781A JP 13926781 A JP13926781 A JP 13926781A JP S5839770 A JPS5839770 A JP S5839770A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- martensite
- bainite
- strength
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 39
- 239000010959 steel Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title abstract description 14
- 239000011701 zinc Substances 0.000 title abstract description 14
- 229910052725 zinc Inorganic materials 0.000 title abstract description 14
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 34
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 24
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 239000010960 cold rolled steel Substances 0.000 claims abstract description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims description 20
- 238000005246 galvanizing Methods 0.000 claims description 19
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 13
- 239000008397 galvanized steel Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 7
- 238000005098 hot rolling Methods 0.000 claims description 5
- 238000005097 cold rolling Methods 0.000 claims description 3
- 210000003205 muscle Anatomy 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 13
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 238000010583 slow cooling Methods 0.000 abstract description 2
- 238000007598 dipping method Methods 0.000 abstract 2
- 238000010304 firing Methods 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 230000009466 transformation Effects 0.000 description 9
- 238000007747 plating Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
- C23C2/405—Plates of specific length
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、低降伏比で強度−伸びバランス及び伸びフラ
ンジ性のすぐれた複合組織型の高強度亜鉛メッキ鋼板の
製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-strength galvanized steel sheet with a composite structure having a low yield ratio and excellent strength-elongation balance and stretch flangeability.
一般に鋼板の強度を増加させるためには国々の合金元素
の添加が行なわれるが、溶融亜鉛メッキ鋼板においては
再結晶温度以上で焼なまされるため強度が得られにくく
、また合金元素の添加に伴ない亜鉛メッキ性が劣化する
との問題がある。In general, alloying elements are added in various countries to increase the strength of steel sheets, but hot-dip galvanized steel sheets are annealed above the recrystallization temperature, making it difficult to obtain strength. There is a problem that the galvanizing properties deteriorate.
最近、加工性の良好な高強度鋼板としてフェライト素地
にマルテンサイトを分散させた複合組織銅板が注目され
ており、この鋼板は低降伏比で加工性及びプレス加工後
の時動硬化性がすぐれている。しかしながら、この複合
組織鋼板を溶融亜鉛メッキ鋼板として使用する場合には
、約500t″での溶融亜鉛メッキの際にフェライト素
地に分散したマルテンサイトが焼戻され、強度が低下し
また降伏比も上昇するという問題がある。Recently, a composite copper plate with martensite dispersed in a ferrite matrix has been attracting attention as a high-strength steel plate with good workability.This steel plate has a low yield ratio and excellent workability and time hardening after press forming. There is. However, when this composite structure steel sheet is used as a hot-dip galvanized steel sheet, martensite dispersed in the ferrite matrix is tempered during hot-dip galvanizing at approximately 500 tons, resulting in a decrease in strength and an increase in yield ratio. There is a problem with doing so.
本発明は、上述の事情に鑑み、高強度溶融亜鉛メッキ鋼
板の製造に際して、連続溶融亜鉛メツキライン通板時の
熱履歴を利用して、複合組織鋼の特徴である低降比、良
好な強度−伸びバランスを維持しつつ、更に伸びフラン
ジ性もすぐれた高強度冷延鋼板を製造する方法を提供す
ることを目的としてなされたものである。In view of the above-mentioned circumstances, the present invention utilizes the thermal history during continuous hot-dip galvanizing line passing during the production of high-strength hot-dip galvanized steel sheets to achieve low drop-down ratio and good strength, which are characteristics of composite structure steel. The purpose of this invention is to provide a method for manufacturing a high-strength cold-rolled steel sheet that maintains elongation balance and has excellent stretch flangeability.
すなわち本抛明は、c O,005−0,15% 、
st 1%以下。In other words, this formula is c O,005-0,15%,
st 1% or less.
Mm O,7〜2.5%、 P 0.1%以下及び必要
に応じてOr 0.5%以下を含む銅を熱間圧延して得
た冷間圧延鋼板を連続溶融亜鉛メツキラインにて亜鉛メ
ッキし、この工程を通じて鋼板組織をベイナイト面積率
6〜60%、マルテンサイト面積率1〜2096& 含
むフェライト+ベイナイト+マルテンサイト8相複合組
織とすることを特徴とする低降伏比で強度−伸びバラン
ス及び伸びフランジ性のすぐれた高強度溶融亜鉛メッキ
鋼板の製造方法、である。A cold-rolled steel sheet obtained by hot rolling copper containing MmO, 7 to 2.5%, P 0.1% or less, and Or 0.5% or less as necessary, is coated with zinc on a continuous hot-dip galvanizing line. Through this plating process, the steel plate structure is made into an 8-phase composite structure with a bainite area ratio of 6 to 60% and a martensite area ratio of 1 to 2096 & ferrite + bainite + martensite, which is characterized by a low yield ratio and strength-elongation balance. and a method for producing a high-strength hot-dip galvanized steel sheet with excellent stretch flangeability.
本発明の対象となる溶融亜鉛メッキ鋼板の連続溶融亜鉛
メッキ工程における熱履歴は通常次の通りである。The thermal history in the continuous hot-dip galvanizing process of the hot-dip galvanized steel sheet that is the object of the present invention is usually as follows.
すなわち、熱間圧延、冷間圧延を経て製造された冷延鋼
板は、炉温が900’〜1100″Cの非酸化性雰囲気
の直火加熱炉と還元性雰囲気の輻射加熱炉により焼鈍さ
れた後、徐冷帯・急冷帯および冷却調整炉をへて、約5
00℃の亜鉛メッキ浴を通過するフェライトと面積率が
5〜70%のベーナイトおよび1〜2096のマルテン
サイトからなる混合組織を有する溶融亜鉛メッキ鋼板を
製造する場合、非酸化性雰囲気もしくは還元性雰囲気の
加熱炉において鋼板を(α+γ)域温度に加熱し、さら
に、γ相に0を十分濃縮せしめたのち、つぎに急冷帯に
おいて、ベーナイト変態のみを進行させ、γ相が残留し
ている間に亜鉛メッキを一終了、その残留rをM1点以
下まで急冷してマルテンサイト化する事が必要である。That is, a cold rolled steel sheet manufactured through hot rolling and cold rolling was annealed in a direct fire heating furnace in a non-oxidizing atmosphere and a radiant heating furnace in a reducing atmosphere at a furnace temperature of 900' to 1100''C. After passing through the slow cooling zone, rapid cooling zone, and cooling adjustment furnace, it cools for about 5 minutes.
When manufacturing a hot-dip galvanized steel sheet having a mixed structure consisting of ferrite, bainite with an area ratio of 5 to 70%, and martensite of 1 to 2096, which passes through a galvanizing bath at 00°C, a non-oxidizing atmosphere or a reducing atmosphere is used. After heating the steel plate to a temperature in the (α + γ) range in a heating furnace and further enriching the γ phase with 0, only bainite transformation proceeds in the quenching zone, and while the γ phase remains. After completing galvanizing, it is necessary to rapidly cool the residual r to below the M1 point and turn it into martensite.
このためには、溶融亜鉛メッキ性や混合組織化などによ
って規制される特定成分の鋼板を(α+γ)域加熱後の
冷却において、相の分解を極力おさえると共に、γ相と
共存するα相中の0鳳をできるだけ減するような条件で
冷却する事、および亜鉛メッキ1の温度国定が伸びフラ
ンジ性を改善するに必要十分かつ過度にならないような
ベーナイト変態鳳を得るに必要な時間保つ事が不可欠で
ある以上述べたように、本願発明では連続溶融亜鉛メツ
キラインにおける制約された条件の下で高強度溶融亜鉛
メッキ鋼板を製造するものであるが、銅板の組織をフェ
ライト、ベイナイト及びマルテンサイトを適当な割合に
形成せしめた8相液合組織とすることが重要である。To achieve this, it is necessary to suppress phase decomposition as much as possible when cooling a steel sheet with a specific composition regulated by hot-dip galvanizing property, mixed structure, etc. after heating in the (α + γ) region, and to suppress the decomposition of the phase in the α phase that coexists with the γ phase. It is essential to cool the galvanized steel under conditions that reduce the temperature as much as possible, and to maintain the temperature of the galvanized steel for a sufficient period of time to obtain bainite transformation that is sufficient to improve stretch flangeability but not excessive. As mentioned above, in the present invention, a high-strength hot-dip galvanized steel sheet is manufactured under restricted conditions in a continuous hot-dip galvanizing line, but the structure of the copper sheet is modified by adding ferrite, bainite, and martensite to appropriate layers. It is important to form an 8-phase liquid structure with a certain proportion.
すなわち第1〜8図は、実施例に示した種々の組織を有
する溶融亜鉛メッキ鋼板について引張強さと、全伸び、
降伏応力及び伸びフランジ性との関係を示した図である
が、まず、強度−伸びの関係は第1図に示す通り、ホリ
ゴナル、フェライト+ベーナイト+マルテンサイト組織
とすることによりフェライト+マルテンサイト組織鋼に
も増して良好な強度−伸びバランスとなる。That is, Figures 1 to 8 show the tensile strength, total elongation, and
This is a diagram showing the relationship between yield stress and stretch flangeability. First, as shown in Figure 1, the relationship between strength and elongation is as follows. It has a better strength-elongation balance than steel.
次に降伏比については、第2図から知られるように降伏
比はフェライト+マルテンサイト銅が最少であり、フェ
ライト上ベーナイト鋼は70LN前後でフェライト+パ
ーライト鋼と同程度である。そしてベーナイト量を減少
させ、更にマルテンサイトを導入してポリゴナルフエラ
イト+ベーナイト+マルテンサイトの8相組織とすると
降伏比が下がってフェライト+マルテンサイト組織鋼の
降伏比と近似した値となる。Next, regarding the yield ratio, as is known from FIG. 2, the yield ratio is the lowest for ferrite + martensitic copper, and the yield ratio for bainitic steel on ferrite is around 70LN, which is about the same as that for ferrite + pearlite steel. When the amount of bainite is reduced and martensite is further introduced to create an eight-phase structure of polygonal ferrite + bainite + martensite, the yield ratio decreases to a value similar to that of ferrite + martensitic steel.
また、強度と伸びフランジ性の関係を見ると、第8図か
ら知られるように、フェライト+マルテンサイト鋼の伸
びフランジ性は強度の上昇にともなって急激に劣化する
のに対して、フェライト上ベーナイト鋼のそれは強度上
昇にもかかわらず良好な値が得られる。そして、フェラ
イト+ベーナイト÷マルテンサイトの8相組織とすると
フェライト上ベーナイト鋼よりもやや劣るもののきわめ
て良好な伸びフランジ性となる。Furthermore, looking at the relationship between strength and stretch flangeability, as shown in Figure 8, the stretch flangeability of ferritic + martensitic steel deteriorates rapidly as the strength increases, whereas Good values can be obtained for steel despite the increased strength. If the steel has an eight-phase structure of ferrite + bainite / martensite, it will have extremely good stretch flangeability, although it is slightly inferior to bainite-on-ferrite steel.
このような結果から知られるように、フェライト+ベー
ナイト+マルテンサイトの8相組織鋼板はフェライト+
マルテンサイト鋼及びベーナイト組の優れた点のみが取
り入れられており、低降伏比であって、強度−伸びバラ
ンス、および、伸びフランジ性が共に優れた鋼板である
といえる。As is known from these results, a steel sheet with an eight-phase structure of ferrite + bainite + martensite has a ferrite + bainite + martensite structure.
It can be said that this steel plate incorporates only the advantages of martensitic steel and bainite steel, and has a low yield ratio, excellent strength-elongation balance, and excellent stretch flangeability.
そしてこれらの実施例から知られるように本発明の8相
組織鋼においてベーナイトの面積率は5〜60%とする
べきであり、 50%を越えると、マルテンサイト導入
による降伏比の低下効果が小さくなり、また6%未満で
はフェライト+マルテンサイト組織鋼と変らなくなって
しまう。なおこのベーナイトの面積率は望ましくは10
〜86g6とする。As is known from these examples, the area ratio of bainite in the eight-phase steel of the present invention should be 5 to 60%; if it exceeds 50%, the effect of reducing the yield ratio due to the introduction of martensite becomes small. If the content is less than 6%, the steel has a ferrite + martensitic structure. The area ratio of this bainite is preferably 10
~86g6.
次にマルテンサイトの面積率は1〜20%とすべきであ
り、2096を越えると穴拡り率が低下し降伏比が上っ
てくる現象が生じ、一方1%未満ではマルテンサイトの
導入効果が小さい、なおマルテンサイトの面積率は望ま
しくは8〜15%とする。Next, the area ratio of martensite should be 1 to 20%; if it exceeds 2096, the hole expansion rate will decrease and the yield ratio will increase, while if it is less than 1%, the effect of introducing martensite will increase. The area ratio of martensite is preferably 8 to 15%.
尚、本発明においてフェライトは主にポリゴナルフエラ
イトを意味し、またマルテンサイトには一部残留オース
テナイトを含む。In the present invention, ferrite mainly means polygonal ferrite, and martensite includes a portion of retained austenite.
次に本発明における対象鋼の化学成分について述べる。Next, the chemical composition of the target steel in the present invention will be described.
Cは必要な強度維持およびベーナイート、マルテンサイ
トなどの低温変態生成物を形成させるうえで必須な元素
である。とくに本発明の場合には(α+r)城に加熱し
たときのγ相の体積率は鋼中o1とその加熱温度により
決まり、ひいては変態後のマルテンサイト、ベーナイト
鳳にも影響するため重要である。そして強度などの機械
的性質はこれら低温変態生成物の分率とその硬度に大き
く左右される。0は0.005mより少ないと精錬コス
トがかかるばかりか強化および焼入性向上効果が発揮し
えず、一方、0.16%を越えると鋼板のスポット溶接
性が著しく劣化し、また鋼板中のマルテンサイト分率が
増加して加工性とくに伸びフランジ性が低下すると共に
降伏比も0.7以上に増加するので0.005AJ0.
15%範囲内にする必要がある。C is an essential element for maintaining the necessary strength and forming low-temperature transformation products such as bainiite and martensite. In particular, in the case of the present invention, the volume fraction of the γ phase when heated to (α+r) is determined by o1 in the steel and its heating temperature, and is important because it also affects martensite and bainite after transformation. Mechanical properties such as strength are greatly influenced by the fraction of these low-temperature transformation products and their hardness. If 0 is less than 0.005 m, not only will refining costs increase, but the effect of improving strengthening and hardenability will not be exhibited. As the martensite fraction increases, workability, especially stretch flangeability, decreases, and the yield ratio also increases to 0.7 or more, so 0.005AJ0.
It is necessary to keep it within the 15% range.
8iはα相中の固溶0量を減少させることにより伸びな
どの延性を向上させる元素であるが、196を越えると
亜鉛メツキネ良を起こすので1%以下にする必要がある
。8i is an element that improves ductility such as elongation by reducing the amount of solid solution in the α phase, but if it exceeds 196, zinc cracking occurs, so it must be kept at 1% or less.
地は固溶強化元素であり、さらに混合組織においてフェ
ライト変態を抑制し、γ相を安定させるために重要であ
る。とくに本発明のごとく連続溶融亜鉛メツキラインに
おいてかかる8相混合組織鋼板を製造せんとした場合、
亜鉛メッキを施仁すための熱サイクル的な制約条件は除
外できないため8相混合組織が得がたい、例えば再結晶
焼鈍した後、亜鉛メッキされる直前には鋼板温度を50
0 t’曲後に保持する必要があり、マルテンサイト変
態はその後の冷却によらねばならない、このため、亜鉛
メッキ前の冷却条件と温度保定をフェライト変態を抑制
し、ベーナイト変態のりが進行するように制御せねばな
らないが、M!1量が0,7%以下では亜鉛メツキライ
ン構造上の制約のなかでいかに組み合わせても8相混合
組織は得られない、すなわち0.796M nではいか
に急冷してγ相の安定化を計っても必然的に亜鉛メッキ
前温度保定時間が長くなるため残留しているオーステナ
イトが全てベーナイトに変態してしまいマルテンサイト
が慢もれなくなる。一方、Mnが2.54より多いと亜
鉛メッキ性の劣化が許容限界を越えるので、Mnは0.
7〜2.596の範囲内にする必要がある。Earth is a solid solution strengthening element and is also important for suppressing ferrite transformation and stabilizing the γ phase in the mixed structure. In particular, when such an 8-phase mixed structure steel sheet is to be manufactured on a continuous hot-dip galvanizing line as in the present invention,
It is difficult to obtain an 8-phase mixed structure because thermal cycle constraints for galvanizing cannot be excluded. For example, after recrystallization annealing, immediately before galvanizing, the steel sheet temperature is lowered to 50°C.
It is necessary to maintain the temperature after 0 t' bending, and the martensitic transformation must be carried out by subsequent cooling. Therefore, the cooling conditions and temperature maintenance before galvanizing are set to suppress the ferrite transformation and promote the bainite transformation. I have to control it, M! If the amount of zinc is less than 0.7%, an eight-phase mixed structure cannot be obtained no matter how many combinations are made within the constraints of the zinc plated line structure.In other words, at 0.796Mn, no matter how rapidly the γ phase is stabilized, no matter how rapidly the γ phase is stabilized. Inevitably, the temperature holding time before galvanizing becomes longer, so all remaining austenite transforms into bainite, and martensite no longer suffocates. On the other hand, if Mn is more than 2.54, the deterioration of galvanizing properties exceeds the permissible limit, so Mn is more than 0.
It must be within the range of 7 to 2.596.
Pは固溶強化元素であり、さらに冷却途中においてγ相
の分解を抑制するため重要な元素であるが、Pは0.1
4より多いと延性が劣化するので、Pは0.1%以下に
する必要がある。P is a solid solution strengthening element and is also an important element for suppressing the decomposition of the γ phase during cooling, but P is 0.1
If it exceeds 4, the ductility deteriorates, so P needs to be 0.1% or less.
この他本発明においては必要に応じてOr%含有せしめ
ることができる。Orは焼入硬化性の強い元素であり、
その含有鳳に比例してγ相の安定度を増してその分解を
抑制するが、 0.54より多いと亜鉛メッキ性や、片
面メッキの場合のリン酸皮腓性を劣化させるので最大0
.54とするのが望ましい。In addition, in the present invention, Or% can be contained as necessary. Or is an element with strong quench hardenability,
The stability of the γ phase is increased in proportion to the amount of iron contained, and its decomposition is suppressed, but if the amount exceeds 0.54, the zinc plating properties and the phosphoric acid peel properties in the case of single-sided plating deteriorate, so the maximum
.. It is desirable to set it to 54.
次に本発明の実施例を比較例と共に示す。Next, examples of the present invention will be shown together with comparative examples.
第1表に示す化学成分を有する鋼を転炉で溶製した。そ
して、分塊法によってスラブにした後通常の条件で熱延
し、 2.8mm板厚のホットコイルとした。なお熱延
仕上温度は850〜900″C9捲取温度は約600
tであった。このホットコイルは酸洗後、板厚Q1gm
m に冷面圧延し、第2表の条件で連続溶融亜鉛メッキ
を行なった。Steel having the chemical composition shown in Table 1 was melted in a converter. Then, it was formed into a slab by the blooming method and hot rolled under normal conditions to form a hot coil with a thickness of 2.8 mm. The hot rolling finishing temperature is 850~900″C9 winding temperature is approximately 600″
It was t. This hot coil has a plate thickness of Q1g after pickling.
The specimens were cold-rolled to a length of 100 m and subjected to continuous hot-dip galvanizing under the conditions shown in Table 2.
コイルA1からA6は鉛ムについて亜鉛メッキ後の冷却
条件を一定として(a+ 、)域温度から亜鉛メッキま
での冷却速度を順次変化させた場合で必然的にメッキ前
温度保定時間が変化する。なおコイルA6はその温度保
定せず連続冷却したものである。For the coils A1 to A6, the pre-plating temperature holding time inevitably changes when the cooling conditions after zinc plating for lead metal are constant and the cooling rate from the (a+,) range temperature to the zinc plating is sequentially changed. Note that the coil A6 was continuously cooled without maintaining its temperature.
コイルA7〜A9はCa+1)域温度から亜鉛メッキま
での冷却条件を一定にしてその後の冷却速度を順次変化
させた場合で、A9はコイルA9と同様、メッキ前の温
度国定を行なわなかった場合である。Coils A7 to A9 are the case where the cooling conditions from Ca+1) region temperature to zinc plating are kept constant and the cooling rate is sequentially changed after that, and A9 is the case where, like coil A9, the temperature was not determined before plating. be.
またコイル/1610〜12は地もしくはCv含有量を
変化させたものである。Coils /1610 to 12 are coils with varying ground or Cv content.
このようにして得られた溶融亜鉛メッキ鋼板は調質圧延
を行なう事なく引張試験および組織観察を行なった。こ
れらの結果を第2,8表に示す。The hot-dip galvanized steel sheet thus obtained was subjected to a tensile test and microstructural observation without being subjected to temper rolling. These results are shown in Tables 2 and 8.
第2,8表から明らかなように本発明に規定した面積率
のポリゴナルフェライトとベーナイトおよびマルテンサ
イト組織からなる溶融亜鉛メッキ1lN4根は本発明の
規制以外のものよりも全伸び、伸びフランジ性が良く、
低降伏比であり降伏伸びの発生もなく、すなわち加工性
が優れている。As is clear from Tables 2 and 8, the hot-dip galvanized 11N4 root consisting of polygonal ferrite, bainite, and martensite structures with the area ratio specified by the present invention has a higher total elongation and stretch flangeability than those other than those specified by the present invention. is good,
It has a low yield ratio and no yield elongation, meaning it has excellent workability.
第2表 製造条件及び組織
0& 亜鉛メッキまでの冷却速度(t′/−・・)OR
1〃 後の ” (t/s*s)Table 2 Manufacturing conditions and structure 0 & cooling rate to galvanization (t'/-...)OR
1 “After” (t/s*s)
第1図は種々の組織を有する鋼についての引張強さと全
伸びとの関係を示す図、第2図は同じく引張強さと降伏
応力との関係を示す図、第8図は同じく引張強さと伸び
7ランジ性(穴拡げ率)との関係を示す図である。図中
F+フェライト、B墨ベイナイト、MIフマルンサイト
、PIパーライトである。Figure 1 is a diagram showing the relationship between tensile strength and total elongation for steels with various structures, Figure 2 is a diagram showing the relationship between tensile strength and yield stress, and Figure 8 is also a diagram showing the relationship between tensile strength and total elongation. 7 is a diagram showing the relationship with lunge property (hole expansion rate). In the figure, they are F+ ferrite, B black bainite, MI fumarunsite, and PI pearlite.
Claims (2)
M鳳0.7−L5寿デ0.1%以下を含む鋼を熱間圧延
及び冷間圧延して得た冷間圧延鋼板を連続溶融亜鉛メツ
キラインにて亜鉛メッキし、この工程を通じて鋼板組織
をベイナイト面積率5〜50*+マルテンサイト面積亭
1〜20%を含むフェライト+ベイナイト+マルテンサ
イト8相複合組織とすることを特徴とする低降伏比で強
度−伸びバランス及び伸びフランジ性のすぐれた高強度
溶融亜鉛メッキ鋼板の製造方法。(1) 00.005A (1,15*, former 14 or less 1
A cold-rolled steel plate obtained by hot rolling and cold rolling a steel containing 0.1% or less of M-0.7-L5 Kotobuki is galvanized on a continuous hot-dip galvanizing line, and the steel plate structure is changed through this process. Featuring an 8-phase composite structure of ferrite + bainite + martensite containing a bainite area ratio of 5 to 50* + martensite area ratio of 1 to 20%, it has a low yield ratio and excellent strength-elongation balance and stretch flangeability. A method for manufacturing high-strength hot-dip galvanized steel sheets.
%以下、 Mu O,7〜筋%、pO,1%以下、
及びOr 0.5%以下を含む鋼を熱間圧延及び冷間圧
延して得た冷間圧延鋼板を連続溶融亜鉛メツキラインに
て亜鉛メッキし、仁の工程を通じて鋼板組織をベイナイ
ト面積率5〜50% 、マルテンサイト面積率1〜20
g6を含むフェライト+ベイナイト+マルテンサイト8
相複合組織とすることを特徴とする低降伏比で強度−伸
びバランス及び伸びフランジ性のすぐれた高強度溶融亜
鉛メッキ鋼板の製造方法。(2) CG, 005-0.15%, 81 1
% or less, Mu O, 7~muscle%, pO, 1% or less,
A cold-rolled steel sheet obtained by hot rolling and cold rolling a steel containing 0.5% or less of Or is galvanized on a continuous hot-dip galvanizing line, and the steel sheet structure is changed to a bainite area ratio of 5 to 50 through the galvanizing process. %, martensite area ratio 1-20
Ferrite including g6 + bainite + martensite 8
A method for producing a high-strength hot-dip galvanized steel sheet with a low yield ratio, excellent strength-elongation balance and stretch flangeability, characterized by having a phase composite structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13926781A JPS5839770A (en) | 1981-09-03 | 1981-09-03 | Production of high-strength zinc hot dipped steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13926781A JPS5839770A (en) | 1981-09-03 | 1981-09-03 | Production of high-strength zinc hot dipped steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5839770A true JPS5839770A (en) | 1983-03-08 |
JPH0543779B2 JPH0543779B2 (en) | 1993-07-02 |
Family
ID=15241299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13926781A Granted JPS5839770A (en) | 1981-09-03 | 1981-09-03 | Production of high-strength zinc hot dipped steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5839770A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62139848A (en) * | 1985-12-11 | 1987-06-23 | Kobe Steel Ltd | High strength and high ductility cold rolled steel sheet for automobile strengthening member |
US6306527B1 (en) | 1999-11-19 | 2001-10-23 | Kabushiki Kaisha Kobe Seiko Sho | Hot-dip galvanized steel sheet and process for production thereof |
JP2008280577A (en) * | 2007-05-10 | 2008-11-20 | Jfe Steel Kk | High-strength hot-dip galvanized steel sheet with excellent formability |
US7553380B2 (en) | 2001-10-03 | 2009-06-30 | Kobe Steel, Ltd. | Dual-phase steel sheet excellent in stretch flange formability and production method thereof |
CN114756065A (en) * | 2021-01-11 | 2022-07-15 | 宝钢日铁汽车板有限公司 | A kind of hot-dip galvanized strip steel plate temperature control method before entering the zinc pot |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5338873B2 (en) | 2011-08-05 | 2013-11-13 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more and its production method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54163719A (en) * | 1978-06-16 | 1979-12-26 | Nippon Steel Corp | Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability |
JPS55110735A (en) * | 1979-02-16 | 1980-08-26 | Nippon Steel Corp | Method and equipment for producing galvanized steel plate for deep drawing use |
JPS55122821A (en) * | 1979-03-15 | 1980-09-20 | Kawasaki Steel Corp | Manufacture of alloyed zinc-plated high tensile steel sheet with high workability |
JPS5637302A (en) * | 1979-08-16 | 1981-04-11 | Thorneburg Hosiery Co Inc | Athletic socks having integrally knitted arch cushion |
JPS5647555A (en) * | 1979-09-22 | 1981-04-30 | Nisshin Steel Co Ltd | Manufacture of high-tensile galvanized steel plate with low yield ratio |
JPS5651532A (en) * | 1979-10-03 | 1981-05-09 | Nippon Kokan Kk <Nkk> | Production of high-strength zinc hot dipped steel plate of superior workability |
-
1981
- 1981-09-03 JP JP13926781A patent/JPS5839770A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54163719A (en) * | 1978-06-16 | 1979-12-26 | Nippon Steel Corp | Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability |
JPS55110735A (en) * | 1979-02-16 | 1980-08-26 | Nippon Steel Corp | Method and equipment for producing galvanized steel plate for deep drawing use |
JPS55122821A (en) * | 1979-03-15 | 1980-09-20 | Kawasaki Steel Corp | Manufacture of alloyed zinc-plated high tensile steel sheet with high workability |
JPS5637302A (en) * | 1979-08-16 | 1981-04-11 | Thorneburg Hosiery Co Inc | Athletic socks having integrally knitted arch cushion |
JPS5647555A (en) * | 1979-09-22 | 1981-04-30 | Nisshin Steel Co Ltd | Manufacture of high-tensile galvanized steel plate with low yield ratio |
JPS5651532A (en) * | 1979-10-03 | 1981-05-09 | Nippon Kokan Kk <Nkk> | Production of high-strength zinc hot dipped steel plate of superior workability |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62139848A (en) * | 1985-12-11 | 1987-06-23 | Kobe Steel Ltd | High strength and high ductility cold rolled steel sheet for automobile strengthening member |
US6306527B1 (en) | 1999-11-19 | 2001-10-23 | Kabushiki Kaisha Kobe Seiko Sho | Hot-dip galvanized steel sheet and process for production thereof |
US7553380B2 (en) | 2001-10-03 | 2009-06-30 | Kobe Steel, Ltd. | Dual-phase steel sheet excellent in stretch flange formability and production method thereof |
JP2008280577A (en) * | 2007-05-10 | 2008-11-20 | Jfe Steel Kk | High-strength hot-dip galvanized steel sheet with excellent formability |
CN114756065A (en) * | 2021-01-11 | 2022-07-15 | 宝钢日铁汽车板有限公司 | A kind of hot-dip galvanized strip steel plate temperature control method before entering the zinc pot |
CN114756065B (en) * | 2021-01-11 | 2023-08-15 | 宝钢日铁汽车板有限公司 | Plate temperature control method for hot dip galvanized strip steel before entering zinc pot |
Also Published As
Publication number | Publication date |
---|---|
JPH0543779B2 (en) | 1993-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20250122590A1 (en) | Method for producing a coated steel sheet having improved strenght, ductility and formability | |
CN101688277B (en) | High-strength hot-dip zinc-coated steel sheet and manufacture method thereof | |
US11001904B2 (en) | Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet | |
JP6623183B2 (en) | Method for producing high strength coated steel sheet with improved strength, ductility and formability | |
US20210095357A1 (en) | Method for producing a high strength coated steel sheet having improved strength and ductility and obtained sheet | |
US10472692B2 (en) | Method for manufacturing a high strength steel sheet having improved formability and ductility and sheet obtained | |
WO2016001703A1 (en) | Method for manufacturing a high strength steel sheet and sheet obtained by the method | |
JPH0693340A (en) | Method and equipment for manufacturing high strength galvannealed steel sheet having stretch flanging formability | |
US4609410A (en) | Method for producing high-strength deep-drawable dual-phase steel sheets | |
JPS63293121A (en) | Production of high-strength cold rolled steel sheet having excellent local ductility | |
JPS5839770A (en) | Production of high-strength zinc hot dipped steel plate | |
JPH0673497A (en) | Baking hardening type high strength galvannealed steel sheet excellent in workability and its production | |
JPWO2019063081A5 (en) | ||
HUE029890T2 (en) | Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same | |
JPH05311244A (en) | Manufacture of galvannealed steel sheet excellent in stretch flanging property using high strength hot rolled original steel sheet | |
TWI751002B (en) | Hot dip galvanized steel material with high formability and method of manufacturing the same | |
JPS5848636A (en) | Production of high strength cold rolled steel plate for deep drawing having non-aging characteristic and excellent hardenability by baking of painting by continuous annealing | |
KR102395454B1 (en) | Method of manufacturing galvanized iron steel with controlling size of spangles and apparatus of manufacturing galvanized iron steel | |
JPS61246327A (en) | Manufacture of cold rolled steel sheet for extremely deep drawing | |
JPH0555571B2 (en) | ||
KR100276329B1 (en) | Manufacturing method of high strength cold rolled steel sheet with excellent zinc plating characteristics and shape freezing | |
US20210040578A1 (en) | High ductility zinc-coated steel sheet products | |
Pradhan et al. | Characteristics of high-strength cold-rolled sheet steels produced by continuous annealing | |
CA2972470A1 (en) | Dual phase steel with improved properties | |
JPS586934A (en) | Production of cold rolled-steel plate with composite structure of superior formability |