JPS5838612B2 - internal combustion engine - Google Patents
internal combustion engineInfo
- Publication number
- JPS5838612B2 JPS5838612B2 JP51037439A JP3743976A JPS5838612B2 JP S5838612 B2 JPS5838612 B2 JP S5838612B2 JP 51037439 A JP51037439 A JP 51037439A JP 3743976 A JP3743976 A JP 3743976A JP S5838612 B2 JPS5838612 B2 JP S5838612B2
- Authority
- JP
- Japan
- Prior art keywords
- intake
- air
- internal combustion
- combustion engine
- intake passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M23/00—Apparatus for adding secondary air to fuel-air mixture
- F02M23/003—Particular shape of air intake
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B17/00—Engines characterised by means for effecting stratification of charge in cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/12—Engines characterised by precombustion chambers with positive ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/08—Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B47/00—Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
- F02B47/04—Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
- F02B47/08—Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D21/00—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
- F02D21/06—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D21/00—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
- F02D21/06—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
- F02D21/08—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/20—SOHC [Single overhead camshaft]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/14—Measures for saving energy, e.g. in green houses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Description
【発明の詳細な説明】
本発明は、自動車用内燃機関の燃焼改善、燃費低減を主
目的とする改良に関するもので、特にNOxの発生量を
所定の規準値以下に低減するために希薄混合気供給制御
、点火時期の遅角制御が行われ、あるいは排ガスの一部
を吸気系に還流する排ガス還流装置が付設される場合の
ドライバビリティ悪化、燃費劣化を減少せしめる場合に
大きな効果を奏するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement mainly aimed at improving combustion and reducing fuel consumption of an internal combustion engine for automobiles, and in particular, improves the combustion efficiency of an internal combustion engine for automobiles, and in particular, improves the combustion efficiency of an internal combustion engine for use in a vehicle, and in particular improves the combustion efficiency of an internal combustion engine for use in automobiles. This is highly effective in reducing drivability deterioration and fuel efficiency deterioration when supply control, ignition timing retard control is performed, or when an exhaust gas recirculation device is installed that recirculates part of the exhaust gas to the intake system. be.
すなわち自動車用内燃機関の排ガスに含まれる有害ガス
中の特にNOxの発生量は燃焼最高温度に略比例するこ
とは周知であり、この燃焼最高温度を低減するために、
点火時期遅角方式、希薄燃焼方式あるいは排ガス還流方
式等が種々の組合せにより採用されているが、一般に着
火性の悪化および火焔伝播速度の低下により、出力低下
を免れずドライバビリティの悪化、あるいは燃料消費量
(以下燃費と称す)の増大等の不具合が生じる。In other words, it is well known that the amount of NOx, in particular, generated among harmful gases contained in the exhaust gas of automobile internal combustion engines, is approximately proportional to the maximum combustion temperature, and in order to reduce this maximum combustion temperature,
Ignition timing retardation, lean burn, exhaust gas recirculation, etc. have been adopted in various combinations, but in general, they result in poor ignition performance and flame propagation speed, resulting in a decrease in output, deterioration in drivability, or loss of fuel. Problems such as an increase in consumption (hereinafter referred to as fuel efficiency) occur.
ところで、有害ガスの排出が特に問題視される都市内走
行において使用頻度の高い運転領域は、アイドリングお
よび低速低負荷の軽負荷運転領域であって、同運転領域
における有害ガスの排出量低減は重要で、同領域での有
害ガス排出量規制値は特に厳しくする必要があり、その
ためには、特にアイドリングあるいは軽負荷運転領域に
おける上記不具合の発生を解消しなければならない。Incidentally, the driving ranges that are frequently used in urban driving, where harmful gas emissions are particularly problematic, are idling and low-speed, low-load light-load driving, and it is important to reduce harmful gas emissions in these driving ranges. Therefore, it is necessary to make the harmful gas emission regulation value particularly strict in this region, and for this purpose, it is necessary to eliminate the occurrence of the above-mentioned problems especially in the idling or light load operation region.
特公昭47−24041号及び特公昭4743366号
に示される先行技術は、濃混合気と空気又は希薄混合気
とを別経路でシリンダ内に吸入し、両者は着火時点まで
混合されないようにして、着火直前には濃混合気を点火
プラグ周辺に導ひき、空気又は希薄混合気は点火プラグ
から離れた場所に導ひき、濃混合気に点火して着火燃焼
性を良好にし、総合の空燃比が犬の希薄燃焼を達成する
ものであるが、このような技術によれば運転状態に関係
なく常に良好な層状化を達成して点火プラグ付近に濃混
合気を導びくために装置及び制御が複雑になるという欠
点がある。The prior art shown in Japanese Patent Publication No. 47-24041 and Japanese Patent Publication No. 4743366 inhales a rich mixture and air or a lean mixture into a cylinder through separate routes, and prevents the two from being mixed until the point of ignition. Immediately before, a rich mixture is guided around the spark plug, and air or a lean mixture is guided away from the spark plug to ignite the rich mixture to improve ignition combustibility and improve the overall air-fuel ratio. However, such technology requires complicated equipment and control to always achieve good stratification and lead a rich mixture to the vicinity of the spark plug, regardless of the operating condition. It has the disadvantage of becoming.
本発明は、シリンダ内に気体を噴射する簡単な副吸気系
を付加する構成により着火燃焼性を改善するもので、し
かも上記層状燃焼とは全く異なる燃焼方式の改良に関す
るものである。The present invention improves ignition combustibility by adding a simple sub-intake system that injects gas into the cylinder, and moreover relates to an improvement in a combustion method that is completely different from the stratified combustion described above.
すなわち、点火プラグ付近の掃気、及び点火時における
プラグ付近での吸気の流動による着火性の向上、噴射気
体により吸入混合気に与えられる強力な過流あるいは乱
流の発生による燃焼性の改善により、ドライバビリティ
を悪化することなく希薄燃焼を達成して燃費を向上し、
有害ガスの排出量を低減する燃焼方式に関するものであ
る。In other words, the ignitability is improved by scavenging air near the spark plug and the flow of intake air near the plug during ignition, and the combustibility is improved by generating strong turbulence or turbulence given to the intake air-fuel mixture by the injected gas. Improves fuel efficiency by achieving lean burn without deteriorating drivability,
This relates to a combustion method that reduces the amount of harmful gas emissions.
本発明の内燃機関は上記に鑑みて提案されたものであっ
て、混合気生成装置により生成された混合気が主吸気通
路を介してシリンダヘッドに設けられた吸気ポートより
燃焼室に供給される内燃機関において、上記燃焼室内の
所定位置に火花間隙が配置されるように取付けられた点
火プラグと、シリンダヘッドに穿設されて上記燃焼室内
に直接開口し且つ上記火花間隙近傍に開口するとともに
該火花間隙近傍に指向する噴射孔と、同噴射孔に接続さ
れた副吸気通路と、軽負荷時にも充分な気体供給圧で上
記副吸気通路に気体を供給する気体供給源と、上記副吸
気通路を開閉する副吸気弁と、上記副吸気弁を吸気行程
期間に開く作動機構とを有することを特徴とする特にア
イドリング時および軽負荷運転時にはスロットル弁の絞
り作用により主吸気通路からの吸気量が少なく吸気行程
において燃焼室内は高負圧となり、圧力差によって噴射
孔より燃焼室内の設定方向に向かって吸気が噴射され、
燃焼室内に強力な過流あるいは乱流が発生して燃焼速度
が上昇し、燃費が改善され、また、燃焼室内に配置され
た点火プラグの火花間隙周辺に上記噴射孔からの噴流が
作用すると燃焼ガスの掃気が行われて希薄燃焼限界が伸
長される。The internal combustion engine of the present invention has been proposed in view of the above, and the air-fuel mixture generated by the air-fuel mixture generating device is supplied to the combustion chamber from an intake port provided in the cylinder head via the main intake passage. In an internal combustion engine, a spark plug is installed such that a spark gap is arranged at a predetermined position in the combustion chamber, and a spark plug is provided in a cylinder head and opens directly into the combustion chamber and in the vicinity of the spark gap. An injection hole oriented near the spark gap, an auxiliary intake passage connected to the injection hole, a gas supply source that supplies gas to the auxiliary intake passage at a sufficient gas supply pressure even under light load, and the auxiliary intake passage. It is characterized by having a sub-intake valve that opens and closes, and an operating mechanism that opens the sub-intake valve during the intake stroke.Especially during idling and light load operation, the amount of intake air from the main intake passage is reduced by the throttling action of the throttle valve. During the intake stroke, there is a high negative pressure inside the combustion chamber, and the pressure difference causes the intake air to be injected from the injection hole toward the set direction inside the combustion chamber.
A strong turbulent flow or turbulent flow occurs in the combustion chamber, increasing the combustion rate and improving fuel efficiency.In addition, when the jet from the injection hole acts around the spark gap of the ignition plug located in the combustion chamber, combustion increases. Gas scavenging is performed to extend the lean burn limit.
従って、混合気の分配性が悪く、シかも燃焼室壁温か低
くて燃焼性が悪いアイドリングあるいは軽負荷運転領域
において希薄混合気燃焼を行っても出力低下および燃費
増大が最小限に押えられ、また、空燃比増大により燃焼
最高温度が低下してNOxの発生量が極度に低減される
。Therefore, even if lean mixture combustion is performed in the idling or light load operation range where the air-fuel mixture distribution is poor and the combustion chamber wall temperature is low and combustibility is poor, the decrease in output and increase in fuel consumption can be kept to a minimum. By increasing the air-fuel ratio, the maximum combustion temperature is lowered, and the amount of NOx generated is extremely reduced.
また、本発明の内燃機関に排ガス還流装置を併用すれば
、制御性の悪い空燃比を燃焼限界に近い高い値に設定し
なくても、容易にNOxの発生量を低減することが可能
となり、排ガス還流による着火性および火焔伝播速度の
悪化も上記噴流により改善される。Furthermore, if an exhaust gas recirculation device is used in conjunction with the internal combustion engine of the present invention, the amount of NOx generated can be easily reduced without setting the air-fuel ratio, which is difficult to control, to a high value close to the combustion limit. Deterioration of ignitability and flame propagation velocity due to exhaust gas recirculation is also improved by the jet flow.
ところで、上記気体供給源より供給される気体は、空気
、混合気または排ガスの倒れであっても上記噴流による
燃焼性改善効果は生じるが、運転状態に応じてこれらを
選択的に切換供給するようにすれば、希薄燃焼および排
ガス還流を運転状態に応じて容易に制御することが可能
となり、燃焼性を悪化させることなくよりNOxの発生
率を低減することができる。Incidentally, even if the gas supplied from the gas supply source is air, mixture, or exhaust gas, the effect of improving combustibility due to the jet flow occurs, but it is necessary to selectively switch and supply these gases according to the operating conditions. By doing so, lean combustion and exhaust gas recirculation can be easily controlled according to the operating conditions, and the generation rate of NOx can be further reduced without deteriorating combustibility.
次に本発明を図面に示す実施例により詳細に説明する。Next, the present invention will be explained in detail with reference to embodiments shown in the drawings.
なお、各図中、同一または均等部分には同一符号を付し
た。In each figure, the same or equivalent parts are given the same reference numerals.
第1図〜第3図に示す本発明の第1実施例において1は
自動車用ガソリン内燃機関の木本、2はシリンダヘッド
、3はシリンダブロック、4はピストン、5は燃焼室、
6は点火プラグ、7は主吸気ポート、37は排気ポート
、8は主吸気弁、9は吸気マニホルド、10は気化器、
11はエアクリーナである。In the first embodiment of the present invention shown in FIGS. 1 to 3, 1 is a wood for an automobile gasoline internal combustion engine, 2 is a cylinder head, 3 is a cylinder block, 4 is a piston, 5 is a combustion chamber,
6 is a spark plug, 7 is a main intake port, 37 is an exhaust port, 8 is a main intake valve, 9 is an intake manifold, 10 is a carburetor,
11 is an air cleaner.
シリンダヘッド2には燃焼室5に開口する噴射孔12が
穿設され、同噴射孔12はピストン4方向に同ピストン
の頂面と設定角度を有して点火プラグ6の点火間隙6′
方向に指向され、また、同噴射孔12は副吸気弁13を
介して副吸気通路14に接続されている。The cylinder head 2 is provided with an injection hole 12 that opens into the combustion chamber 5, and the injection hole 12 has a set angle with the top surface of the piston in the direction of the piston 4, and has an ignition gap 6' of the spark plug 6.
The injection hole 12 is also connected to a sub-intake passage 14 via a sub-intake valve 13.
主吸気弁8および副吸気弁13は共に同一のロッカアー
ム15により駆動されるキノコ弁で、同ロッカアーム1
5はロッカシャフト16に嵌合され、機関により回動さ
れるカムシャフト17に設けられたカム18に当接して
揺動し、カム18への当接面とは反対側のアーム部は2
叉に分岐し、各分岐部にはそれぞれアジャストスクリュ
19゜20が螺着され、アジャストスクリュ19端面は
主吸気弁8の弁棒上端面に当接し、アジャストスクリュ
20端面は副吸気弁13の弁棒端面に当接している。Both the main intake valve 8 and the sub-intake valve 13 are mushroom valves driven by the same rocker arm 15.
5 is fitted onto a rocker shaft 16 and swings in contact with a cam 18 provided on a camshaft 17 that is rotated by the engine.
The adjustment screws 19 and 20 are screwed into each branch, respectively.The end surface of the adjustment screw 19 contacts the upper end surface of the valve stem of the main intake valve 8, and the end surface of the adjustment screw 20 contacts the valve stem of the sub-intake valve 13. It is in contact with the rod end surface.
なお、21.22はバルブスプリング、23゜24はス
プリングシート、25,26はバルブガイドである。In addition, 21 and 22 are valve springs, 23 and 24 are spring seats, and 25 and 26 are valve guides.
エアクリーナ11より気化器10および吸気マニホルド
9を介して吸気ポート7に連通ずる主吸気通路27の気
化器10部分にはベンチュリ28およびスロットル弁2
9が配置され、スロットル弁29の全閉位置近傍の吸気
通路内壁には主としてアイドル時あるいは軽負荷時に燃
料を供給するアイドルポート30およびスローポート3
1が穿設され、アイドルポート30にはアジャストスク
リュ32が設けられ、一方、ベンチュリ28には主とし
て中高負荷時に燃料を供給するメインノズル33が設け
られている。A venturi 28 and a throttle valve 2 are connected to the carburetor 10 portion of the main intake passage 27 that communicates from the air cleaner 11 to the intake port 7 via the carburetor 10 and the intake manifold 9.
An idle port 30 and a slow port 3 are arranged on the inner wall of the intake passage near the fully closed position of the throttle valve 29, and an idle port 30 and a slow port 3 are arranged to supply fuel mainly during idle or light load.
1 is bored, and the idle port 30 is provided with an adjustment screw 32, while the venturi 28 is provided with a main nozzle 33 that mainly supplies fuel during medium to high loads.
図示していない排気通路に一端が連通された排ガス還流
通路34は途中に機関の種々の駆動状態を検出して流量
制御する制御弁35を介して他端が吸気マニホルド9の
集合部に連結されている。One end of the exhaust gas recirculation passage 34 is connected to an exhaust passage (not shown), and the other end thereof is connected to a gathering part of the intake manifold 9 via a control valve 35 that detects various driving states of the engine and controls the flow rate. ing.
また、上記副吸気通路14はパイプ36を介してベンチ
ュリ28より上流側の主吸気通路27に連通されている
。Further, the auxiliary intake passage 14 is communicated with the main intake passage 27 upstream of the venturi 28 via a pipe 36.
上記構成によれば、エアクリーナ11より主吸気通路2
7に吸入された空気の大部分が気化器10において燃料
と所定の空燃比に混合されて吸気ポート7より燃焼室5
に吸入される一方、上記吸入空気の一部はパイプ36を
介した副吸気通路14より噴射孔12に導びかれ、同噴
射孔12より燃焼室5内に噴射される。According to the above configuration, the main intake passage 2 is
Most of the air taken into the combustion chamber 5 is mixed with fuel at a predetermined air-fuel ratio in the carburetor 10, and then flows through the intake port 7 into the combustion chamber 5.
Meanwhile, a part of the intake air is guided to the injection hole 12 through the sub-intake passage 14 via the pipe 36, and is injected from the injection hole 12 into the combustion chamber 5.
この噴射孔12からの噴射量および噴流の強さはスロッ
トル弁29の開度すなわち機関の負荷に応じて変化し、
スロットル開度が小さいアイドリング時あるいは軽負荷
時にはスロットル弁29の絞り作用により主吸気通路2
7より供給される混合気量が少なく、燃焼室5には吸気
行程時高負圧が発生し、ベンチュリ28上流側の主吸気
通路27は略大気圧であるため、圧力差により多量の空
気が噴射孔12より強力に噴出され、燃焼室5内の吸入
混合気はこの空気の噴出流により渦流あるいは乱流を生
じるとともに空気の混合により主吸気通路27より吸入
された混合気を不均質な班状態で希釈する。The amount of injection from the injection hole 12 and the strength of the jet flow vary depending on the opening degree of the throttle valve 29, that is, the load of the engine.
When idling with a small throttle opening or under light load, the throttle valve 29 throttles the main intake passage 2.
7, the amount of air-fuel mixture supplied from 7 is small, high negative pressure is generated in the combustion chamber 5 during the intake stroke, and the main intake passage 27 upstream of the venturi 28 is at approximately atmospheric pressure, so a large amount of air flows due to the pressure difference. The air-fuel mixture sucked into the combustion chamber 5 is powerfully injected from the injection hole 12, and the jet flow of this air creates a vortex or turbulent flow, and the mixture of air causes the air-fuel mixture sucked in from the main intake passage 27 to become inhomogeneous. dilute in condition.
又、上記噴射孔12から噴射される空気は、点火プラグ
6の点火間隙6′近傍の既燃ガスを強力に掃気し、着火
性を向上する。Furthermore, the air injected from the injection hole 12 strongly scavenges the burnt gas near the ignition gap 6' of the spark plug 6, thereby improving ignition performance.
従って、点火時において燃焼室5内の濃混合気と希薄混
合気が班状に分布した状態で渦流あるいは乱流を生起し
ているものと考えられ、実験によれば従来の機関に比較
して火焔伝播速度が向上し、燃費が改善されるとともに
混合気希薄化による出力低下が少なくドライバビリティ
が向上することを確認し得た。Therefore, at the time of ignition, it is thought that the rich mixture and lean mixture in the combustion chamber 5 are distributed in spots, creating a vortex or turbulent flow, and according to experiments, compared to conventional engines, It was confirmed that the flame propagation speed is improved, fuel efficiency is improved, and drivability is improved with less loss of output due to air-fuel mixture dilution.
なお、本実施例においては噴射孔12の内径が3〆程度
、副吸気通路14の内径が5〆程度に設定され、軽負荷
運転領域で副吸気通路14より供給される吸気量が主吸
気通路27より供給される吸気量の10〜20%程度に
設定され、主吸気通路27および副吸気通路14より供
給される吸気の総合の空燃比は第4図に示すごとき特性
を得るように気化器10が調整されている。In this embodiment, the inner diameter of the injection hole 12 is set to about 3 mm, and the inner diameter of the auxiliary intake passage 14 is set to about 5 mm, so that the amount of intake air supplied from the auxiliary intake passage 14 in the light load operation region is equal to that of the main intake passage. The overall air-fuel ratio of the intake air supplied from the main intake passage 27 and the auxiliary intake passage 14 is set to about 10 to 20% of the amount of intake air supplied from the main intake passage 27 and the auxiliary intake passage 14. 10 has been adjusted.
なお、第4図は縦軸にエンジン出力線、横軸にエンジン
回転数をとったエンジン出力線図であって、実線Aはス
ロットル弁29全開出力線、実線Bはアイドル開度にお
ける出力線、実線Cは平担路走行曲線、一点鎖線は吸気
マニホルド9に発生する吸気マニホルド負圧の等負圧線
、二点鎖線は等スロットル開度線、破線は等空燃比線、
ハツチング領域りは軽負荷運転領域を示す。In addition, FIG. 4 is an engine output diagram in which the vertical axis is the engine output line and the horizontal axis is the engine speed, where the solid line A is the throttle valve 29 fully open output line, the solid line B is the output line at the idle opening, The solid line C is a flat road running curve, the one-dot chain line is an equal negative pressure line of the intake manifold negative pressure generated in the intake manifold 9, the two-dot chain line is an equal throttle opening line, the broken line is an equal air-fuel ratio line,
The hatched area indicates the light load operation area.
上記ハツチング領域りで示す軽負荷運転領域においては
空燃比が15〜17程度に調整されている。In the light load operation region indicated by the hatched region, the air-fuel ratio is adjusted to about 15 to 17.
また、排ガス還流通路34を介して吸気マニホルド9内
に吸入される排ガス量は制御弁35により制御されるが
、この排ガス還流量はNOxの排出量を設定値以内に抑
えるように調整される。Further, the amount of exhaust gas sucked into the intake manifold 9 through the exhaust gas recirculation passage 34 is controlled by the control valve 35, and the amount of exhaust gas recirculation is adjusted so as to suppress the amount of NOx discharged within a set value.
一方、スロットル開度が大きい高負荷運転領域において
は、スロットル弁29による絞り作用が小さく、主吸気
通路27を介して多量の混合気が燃焼室5内に吸入され
るため、副吸気通路14からの噴射量および噴出力は低
下するが、この場合には吸気効率が大で、しかも混合気
が吸気ポート7より燃焼室5に流入する時強力な渦流あ
るいは乱流を生じ、また燃焼室5の内壁の温度も上昇す
るため、特に噴射孔12からの噴流により渦流や乱流を
発生させなくても火焔伝播速度が上昇して燃焼性は向上
する。On the other hand, in a high-load operating region where the throttle opening is large, the throttling action by the throttle valve 29 is small and a large amount of air-fuel mixture is drawn into the combustion chamber 5 through the main intake passage 27. Although the injection amount and the injection force are reduced, in this case, the intake efficiency is high, and when the air-fuel mixture flows into the combustion chamber 5 from the intake port 7, a strong vortex or turbulent flow is generated, and the combustion chamber 5 is Since the temperature of the inner wall also rises, the flame propagation speed increases and the combustibility improves even without generating swirl or turbulence, especially by the jet flow from the injection holes 12.
以上より明らかなごとく、本実施例によれば、燃焼室5
内壁温度が比較的低く、吸入効率が悪い等の燃焼条件の
悪い軽負荷運転領域において、排ガスの一部を混入した
混合気にさらに燃焼室5内において噴射孔12より流入
する空気を混合して総合の空燃比が15〜17程度の希
薄混合気とした燃焼性の悪い混合気燃焼を行うにもかか
わらず、噴射孔12からの強力な空気噴射より点火プラ
グ6の点火間隙6′が有効に掃気され、さらに強力な渦
流または乱流が発生するとともに、噴射された空気が主
吸気通路27より吸入された混合気に適度な班状態で混
合されることにより、NOxの発生量が増大することな
く着火性及び燃焼速度が向上して燃焼完了時間が短縮さ
れ、燃費が低減されるとともにドライバビリティが向上
し、しかも、HC、CO等の未燃焼ガスの排出量も低減
されるという効果を奏する。As is clear from the above, according to this embodiment, the combustion chamber 5
In a light load operation region with poor combustion conditions such as relatively low inner wall temperature and poor intake efficiency, air flowing into the combustion chamber 5 from the injection holes 12 is further mixed with the mixture containing part of the exhaust gas. Even though the air-fuel ratio is a lean mixture with a total air-fuel ratio of about 15 to 17, and the mixture is combusted with poor combustibility, the ignition gap 6' of the spark plug 6 becomes effective due to the powerful air injection from the injection hole 12. The scavenged air generates a stronger vortex or turbulent flow, and the injected air is mixed with the air-fuel mixture taken in from the main intake passage 27 in an appropriate clump state, resulting in an increase in the amount of NOx generated. This has the effect of improving ignition performance and combustion speed, shortening the combustion completion time, reducing fuel consumption, improving drivability, and reducing the amount of unburned gas emissions such as HC and CO. .
第5図に示す本発明の第2実施例は上記第1実施例にお
いて、副吸気通路14のパイプ36の途中に空気と排ガ
スとの切換弁38が介装された構成であって、上記切換
弁38の弁体39はロッド40を介してダイヤフラム装
置41のダイヤフラム42中央部に連結され、ダイヤフ
ラム42により隔絶された2室のうち、一方の室43は
大気開放され他方の室44はパイプ45を介して吸気マ
ニホルド9内の主吸気通路27に連通され、室44には
ダイヤフラム42を第5図の上方に押圧するスプリング
46が内蔵され、弁体39を内蔵する室47の土壁には
パイプ36の吸気通路側が連通開口され、室47の側壁
にはパイプ36の燃焼室側が連通開口され、室47はロ
ッド40を貫通する下壁透孔48を介して室49に連通
され、同室49の側壁には排ガス還流通路34の分岐管
50が連通開口されている。A second embodiment of the present invention shown in FIG. 5 has a configuration in which an air/exhaust gas switching valve 38 is interposed in the middle of the pipe 36 of the auxiliary intake passage 14 in the first embodiment. The valve body 39 of the valve 38 is connected to the central part of the diaphragm 42 of the diaphragm device 41 via the rod 40, and of the two chambers separated by the diaphragm 42, one chamber 43 is open to the atmosphere and the other chamber 44 is connected to the pipe 45. The chamber 44 is connected to the main intake passage 27 in the intake manifold 9, and the chamber 44 has a built-in spring 46 that presses the diaphragm 42 upward in FIG. The intake passage side of the pipe 36 is opened for communication, and the combustion chamber side of the pipe 36 is opened for communication in the side wall of the chamber 47, and the chamber 47 is communicated with the chamber 49 through a lower wall through hole 48 penetrating the rod 40. A branch pipe 50 of the exhaust gas recirculation passage 34 is opened to communicate with the side wall of the exhaust gas recirculation passage 34 .
上記弁体39はダイヤフラム装置41の作動により上下
動し、上昇するとパイプ36の開口を閉塞し、下降する
と透孔48を閉塞する。The valve body 39 moves up and down by the operation of the diaphragm device 41, and when it rises, it closes the opening of the pipe 36, and when it descends, it closes the through hole 48.
なお、51はパイプ36に介装され、主吸気通路27よ
り室47方向にのみ空気の流通が可能な逆止弁であり、
ダイヤフラム装置41は室44に設定負圧例えば300
imHg以上の負圧が導通されるとスプリング46の押
圧力に抗してダイヤフラム42が下方に吸引され、下降
するように設定されている。Note that 51 is a check valve that is installed in the pipe 36 and allows air to flow only in the direction of the chamber 47 from the main intake passage 27;
The diaphragm device 41 sets a negative pressure in the chamber 44, e.g.
When a negative pressure of imHg or higher is applied, the diaphragm 42 is sucked downward against the pressing force of the spring 46 and is set to descend.
上記構成によれば、スロットル開度が小さいアイドリン
グあるいは軽負荷運転領域において、吸気マニホルド負
圧が設定負圧以上になると、ダイヤフラム42が下降し
て、弁体39は透孔48を閉じ、噴射孔12には主吸気
通路27のベンチュリ28より上流側の空気が供給され
、スロットル開度が犬の高負荷運転領域において吸気マ
ニホルド負圧が設定負圧以下になると、ダイヤフラム4
2が上昇して弁体39はパイプ36の開口を閉じ、噴射
孔12には排ガス還流通路34内の排ガスが分岐管50
、室49、透孔48、室47、燃、焼室側パイプ36お
よび副吸気通路14を介して導ひかれる。According to the above configuration, when the intake manifold negative pressure exceeds the set negative pressure during idling or light load operation with a small throttle opening, the diaphragm 42 descends, the valve body 39 closes the through hole 48, and the injection hole 12 is supplied with air from the upstream side of the venturi 28 of the main intake passage 27, and when the intake manifold negative pressure becomes less than the set negative pressure in the high-load operating range of the throttle opening, the diaphragm 4
2 rises, the valve body 39 closes the opening of the pipe 36, and the exhaust gas in the exhaust gas recirculation passage 34 flows into the injection hole 12 through the branch pipe 50.
, the chamber 49 , the through hole 48 , the chamber 47 , the combustion chamber side pipe 36 and the sub-intake passage 14 .
従って、噴射孔12からの噴流が強力な軽負荷運転領域
においては空気を噴射して点火間隙6′の掃気を行ない
、かつ混合気の班状希薄化と渦流または乱流の発生が生
起され 上記第1実施例と同様な効果が得られるととも
に、噴射孔12からの噴流が弱い高負荷運転領域におい
ては噴射孔12からも排ガスを還流して排ガス還流量を
高負荷域において増大せしめ、希薄燃焼では限界のある
NOxの発生量低減効果が向上する。Therefore, in a light load operating region where the jet flow from the injection hole 12 is strong, air is injected to scavenge the ignition gap 6', and the air-fuel mixture is diluted in spots and a vortex or turbulent flow is generated. The same effect as the first embodiment can be obtained, and in a high-load operation region where the jet flow from the injection hole 12 is weak, exhaust gas is also recirculated from the injection hole 12 to increase the amount of exhaust gas recirculation in the high-load region, thereby achieving lean combustion. In this case, the effect of reducing the amount of NOx generated, which is limited, is improved.
第6図に示す本発明の第3実施例は、上記第1実施例に
おいて、ベンチュリ28より上流側の主吸気通路27に
接続したパイプを、未燃焼ガスの再燃焼を目的としてエ
アポンプ51より排気系に供給される二次空気の通路5
2の途中に接続するとともに、3〆程度の小径の噴射孔
12を副吸気弁13のバルブシート部のシリンダ径と同
一の大径の噴射孔12′に構成したものであって、この
場合には吸気行程においてエアポンプ51の吐出圧と燃
焼室5の負圧差が大きく、しかも噴射孔12′の孔径が
犬のため多量の空気が燃焼室5内に噴射されることにな
り、多量の空気噴射が要求される場合に効果的である。A third embodiment of the present invention shown in FIG. 6 differs from the first embodiment in that the pipe connected to the main intake passage 27 on the upstream side of the venturi 28 is evacuated by an air pump 51 for the purpose of re-combusting unburned gas. Passage 5 for secondary air supplied to the system
2, and the injection hole 12 with a small diameter of about 3 is configured as an injection hole 12' with a large diameter that is the same as the cylinder diameter of the valve seat part of the sub-intake valve 13. In the intake stroke, the difference between the discharge pressure of the air pump 51 and the negative pressure of the combustion chamber 5 is large, and since the diameter of the injection hole 12' is small, a large amount of air is injected into the combustion chamber 5, resulting in a large amount of air injection. effective when required.
第7図に示す本発明の第4実施例は、上記第1実施例に
おいて、ベンチュリ28より上流側の主吸気通路27に
接続したパイプ36をベンチュリ28とスロットル弁2
9との間の主吸気通路27に連通した構成であり、本実
施例によればスロットル弁29の開度が小で主としてア
イドルポート30およびスローポート31のスロー系か
ら燃料が供給され、メインノズル33からの燃料供給が
少ない軽負荷運転領域において、メインノズル33より
噴射された燃料を含む希薄混合気が噴射孔12より燃焼
室5内に噴射され、高負荷運転領域においては噴射孔1
2からも主吸気通路27より吸入される混合気と同様の
混合気が噴射される。A fourth embodiment of the present invention shown in FIG. 7 differs from the first embodiment in that the pipe 36 connected to the main intake passage 27 on the upstream side of the venturi 28 is
According to this embodiment, the opening degree of the throttle valve 29 is small and fuel is mainly supplied from the slow system of the idle port 30 and the slow port 31, and the main nozzle 33, a lean mixture containing fuel injected from the main nozzle 33 is injected into the combustion chamber 5 from the injection hole 12, and in a high load operation area, the injection hole 1
The air-fuel mixture similar to the air-fuel mixture taken in from the main intake passage 27 is also injected from the main intake passage 27.
従って、上記のような混合気を噴射孔12より噴出する
場合には、燃焼室15内に強力な渦流あるいは乱流を発
生させて燃焼速度を上げる作用の外に、噴射孔12を点
火プラグ6の火花間隙6′周辺に向けて指向させており
、点火プラグ6周辺の燃焼ガスの掃気作用を兼用させる
ためより燃焼性が改善されるものである。Therefore, when the air-fuel mixture as described above is injected from the injection hole 12, in addition to generating a strong vortex or turbulent flow in the combustion chamber 15 to increase the combustion speed, the injection hole 12 is connected to the spark plug 6. The spark plug 6 is directed toward the vicinity of the spark gap 6', and also serves as a scavenging function for the combustion gas around the spark plug 6, thereby further improving combustibility.
第8図に示す本発明の第5実施例は、上記第1実施例に
おいて、副吸気弁13およびその動弁機構を廃し、単に
副吸気通路14に燃焼室5内に発生する負圧により開く
逆止弁53を副吸気弁として介装した構成であって、同
逆止弁53はパイプ36の取付けねじ溝54内に設けら
れ、55は弁体、56はスプリングであり、逆止弁53
周辺のシリンダヘッド1には逆止弁冷却用の冷却水通路
57が形成されている。A fifth embodiment of the present invention shown in FIG. 8 eliminates the sub-intake valve 13 and its valve operating mechanism in the first embodiment, and simply opens the sub-intake passage 14 by the negative pressure generated in the combustion chamber 5. The check valve 53 is interposed as an auxiliary intake valve, and the check valve 53 is provided in the mounting screw groove 54 of the pipe 36, 55 is a valve body, and 56 is a spring.
A cooling water passage 57 for cooling the check valve is formed in the peripheral cylinder head 1 .
また、本実施例においても噴射孔12が点火プラグ6の
火花間隙6′周辺に向けて指向されている。Also in this embodiment, the injection hole 12 is oriented toward the vicinity of the spark gap 6' of the spark plug 6.
本実施例によれば、吸気行程において燃焼室5に負圧が
発生すると、逆止弁53が開いて空気がパイプ36、副
吸気通路14を通って噴射孔12より燃焼室5内に噴射
され、点火プラグ6の点火間隙6′周辺の掃気を行うと
ともに、燃焼室5内の混合気に渦流または乱流を発生す
る。According to this embodiment, when negative pressure is generated in the combustion chamber 5 during the intake stroke, the check valve 53 opens and air is injected into the combustion chamber 5 from the injection hole 12 through the pipe 36 and the auxiliary intake passage 14. , scavenges air around the ignition gap 6' of the spark plug 6, and generates a vortex or turbulence in the air-fuel mixture in the combustion chamber 5.
第9図に示す本発明の第6実施例は、シリンダヘッド1
の燃焼室5上部に円筒状の噴射室58が形成され、同噴
射室58は底部に開口する噴射孔12を介して燃焼室5
に連通され、上記噴射室58に副ピストン59が嵌設さ
れ、同副ピストン59はカムシャフト17の回動により
駆動される動弁機構により噴射室58内を上下動され、
副吸気通路14は専用のエアクリーナ60を介して大気
開放されるとともに、上記噴射室58の内周面に開口さ
れ、上記副ピストン59の摺動面が上記副吸気通路14
の開口を開閉する構成である。A sixth embodiment of the present invention shown in FIG.
A cylindrical injection chamber 58 is formed in the upper part of the combustion chamber 5, and the injection chamber 58 is connected to the combustion chamber 5 through an injection hole 12 that opens at the bottom.
A sub-piston 59 is fitted into the injection chamber 58, and the sub-piston 59 is moved up and down within the injection chamber 58 by a valve mechanism driven by rotation of the camshaft 17.
The auxiliary intake passage 14 is opened to the atmosphere through a dedicated air cleaner 60 and is opened to the inner circumferential surface of the injection chamber 58, so that the sliding surface of the auxiliary piston 59 is connected to the auxiliary intake passage 14.
It is configured to open and close the opening.
なお、61はロッカアーム、62はスプリングシート、
63はリターンスプリング、64はカムシャフト17に
設けられたカムで、同カム64のカムプロフィルは副ピ
ストン59が第10図に示すごとく変位するように設定
されている。In addition, 61 is a rocker arm, 62 is a spring seat,
63 is a return spring, and 64 is a cam provided on the camshaft 17. The cam profile of the cam 64 is set so that the sub piston 59 is displaced as shown in FIG.
なお、第10図におけるX期間は副吸気通路14の開口
が開いている期間、Y期間は副ピストン59が噴射室5
8内の空気を圧縮する期間であって、副吸気通路14と
噴射孔12とは吸気行程から圧縮行程初期にかけて連通
されている。Note that the X period in FIG. 10 is a period in which the opening of the auxiliary intake passage 14 is open, and the Y period is a period in which the auxiliary piston 59 is in the injection chamber 5.
8, the sub-intake passage 14 and the injection hole 12 are in communication from the intake stroke to the early stage of the compression stroke.
本実施例によれば、X期間内において燃焼室5に発生す
る負圧により空気が噴射孔12から燃焼室5内に噴射さ
れ、さらに、Y期間内において、副ピストン59の圧縮
により上記噴射が継続され、噴射孔12より噴出される
噴流は上記各実施例における場合よりも強力なものとな
り、渦流、乱流の発生作用が増大する。According to this embodiment, air is injected from the injection hole 12 into the combustion chamber 5 by the negative pressure generated in the combustion chamber 5 within the X period, and furthermore, the air is injected into the combustion chamber 5 by compression of the auxiliary piston 59 within the Y period. The jet flow continued and ejected from the injection hole 12 becomes stronger than in each of the above embodiments, and the effect of generating eddy currents and turbulent flows increases.
また、本実施例において、噴射孔12の噴射方向を点火
プラグ6の火花間隙6′周辺に指向しているため、特に
点火直前の噴流により強力に掃気されて希薄燃焼限界が
さらに拡大される。Furthermore, in this embodiment, since the injection direction of the injection hole 12 is directed toward the vicinity of the spark gap 6' of the spark plug 6, air is strongly scavenged especially by the jet immediately before ignition, further expanding the lean burn limit.
なお、上記各実施例において、主吸気通路27および副
吸気通路14より供給される吸気の総合の空燃比は噴射
孔12または12′からの噴射が強力な軽負荷運転領域
において15〜19の範囲にある時上記噴射による燃費
向上等の効果が有効に現出し、特に15〜17の範囲に
ある時その効果が顕著であり、また上記副吸気通路14
より供給される最適の吸気量は機関の種類によって相違
するが上記主吸気通路27より供給される吸気量の5〜
30%の範囲内において設定されることが好ましく、特
に10〜20%の範囲にある時に効果が顕著である。In each of the above embodiments, the overall air-fuel ratio of the intake air supplied from the main intake passage 27 and the auxiliary intake passage 14 is in the range of 15 to 19 in the light load operating region where the injection from the injection holes 12 or 12' is strong. When the fuel injection is in the range of 15 to 17, the effect of improving fuel efficiency etc. by the injection becomes effective, and the effect is particularly remarkable when the injection is in the range of 15 to 17.
The optimum amount of intake air supplied from the main intake passage 27 varies depending on the type of engine, but it is 5 to 50% of the amount of intake air supplied from the main intake passage 27.
It is preferable to set it within the range of 30%, and the effect is particularly remarkable when it is within the range of 10 to 20%.
第1図は本発明の第1実施例を示す断面図、第2図は第
1図のA−A矢視図、第3図は第1図のB矢視図、第4
図は上記第1実施例の作用説明に供されるエンジン出力
線図、第5図は本発明の第2実施例を示す断面図、第6
図は本発明の第3実施例を示す要部断面図、第7図は本
発明の第4実施例を示す要部断面図、第8図は本発明の
第5実施例を示す要部断面図、第9図は本発明の第6実
施例を示す要部断面図、第10図は上記第6実施例の作
動説明図である。
1・・・・・・機関本体、2・・・・・・シリンダヘッ
ド、3・・・・・・シリンダブロック、4・・・・・・
ピストン、5・・・・・・燃焼室、6・・・・・・点火
プラグ、7・・・・・・吸気ポート、8・・・・・・主
吸気弁、9・・・・・・吸気マニホルド、10・・・・
・・気化器、11・・・・・・エアクリーナ、12,1
2′・・・・・・噴射孔、13・・・・・・副吸気弁、
14・・・・・・副吸気通路、15・・・・・・ロッカ
アーム、17・・・・・・カムシャフト、27・・・・
・・主吸気通路、28・・・・・・ベンチュリ、29・
・・・・・スロットル弁、34・・・・・・排ガス還流
通路、35・・・・・・制御弁、36・・・・・・パイ
プ、38・・・・・・切換弁、41・・・・・・ダイヤ
フラム装置、45・・・・・・パイプ、50・・・・・
・分岐管、51・・・・・・エアポンプ、52・・・・
・・二次空気通路、53・・・・・・逆止弁、57・・
・・・・冷却水通路、58・・・・・・噴射室、59・
・・・・・副ピストン、60・・・・・・エアクリーナ
、61・・・・・・ロッカアーム、64・・・・・・カ
ム。FIG. 1 is a sectional view showing the first embodiment of the present invention, FIG. 2 is a view taken along the line A-A in FIG. 1, FIG.
The figures are an engine output diagram used to explain the operation of the first embodiment, FIG. 5 is a sectional view showing the second embodiment of the present invention, and FIG.
The figure is a sectional view of a main part showing a third embodiment of the invention, FIG. 7 is a sectional view of a main part showing a fourth embodiment of the invention, and FIG. 8 is a sectional view of a main part showing a fifth embodiment of the invention. 9 are sectional views of essential parts showing a sixth embodiment of the present invention, and FIG. 10 is an explanatory view of the operation of the sixth embodiment. 1... Engine body, 2... Cylinder head, 3... Cylinder block, 4...
Piston, 5... Combustion chamber, 6... Spark plug, 7... Intake port, 8... Main intake valve, 9... Intake manifold, 10...
... Carburetor, 11 ... Air cleaner, 12,1
2'...Injection hole, 13...Sub-intake valve,
14...Sub-intake passage, 15...Rocker arm, 17...Camshaft, 27...
...Main intake passage, 28...Venturi, 29.
... Throttle valve, 34 ... Exhaust gas recirculation passage, 35 ... Control valve, 36 ... Pipe, 38 ... Switching valve, 41 ... ...Diaphragm device, 45...Pipe, 50...
・Branch pipe, 51... Air pump, 52...
...Secondary air passage, 53...Check valve, 57...
... Cooling water passage, 58 ... Injection chamber, 59.
... Sub-piston, 60 ... Air cleaner, 61 ... Rocker arm, 64 ... Cam.
Claims (1)
路を介してシリンダヘッドに設けられた吸気ポートより
燃焼室に供給される内燃機関において、上記燃焼室内の
所定位置に火花間隙が配置されるように取付けられた点
火プラグと、シリンダヘッドに穿設されて上記燃焼室内
に直接開口し且つ上記火花間隙近傍に開口するとともに
該火花間隙近傍に指向する噴射孔と、同噴射孔に接続さ
れた副吸気通路と、軽負荷運転時にも充分な気体供給圧
で上記副吸気通路に気則を供給する気体供給源と、上記
副吸気通路を開閉する副吸気弁と、上記副吸気弁を吸気
行程期間に開く作動機構とを有することを特徴とする内
燃機関。 2 上記混合気生成装置が気化器であることを特徴とす
る特許請求の範囲第1項所載の内燃機関。 3 上記副吸気弁と作動機構が燃焼室に吸気行程期間生
する負圧により開くばね負荷の逆止弁機構である特許請
求の範囲第1項記載の内燃機関。 4 上記作動機構が上記吸気ポートを開閉する吸気弁駆
動用カムシャフトの回動に連動されて上記副吸気弁を開
閉する動弁機構である特許請求の範囲第1項記載の内燃
機関。 5 上記副吸気弁がキノコ弁である特許請求の範囲第4
項記載の内燃機関。 6 上記気体供給源が上記気化器のベンチュリ部より上
流側の吸気通路である特許請求の範囲第2項記載の内燃
機関。 7 上記気体供給源が上記気化器のベンチュリ部とスロ
ットル弁との間の吸気通路である特許請求の範囲第2項
記載の内燃機関。 8 上記気体供給源が排ガス通路である特許請求の範囲
第1項記載の内燃機関。 9 上記副吸気弁がシリンダヘッドに形成された筒孔内
を往復動する副ピストンで、上記筒孔内周面に上記副吸
気通路が開口され、上記筒孔端面に上記噴射孔が開口さ
れ、上記副ピストンの摺動面が上記副吸気通路の開口を
開閉するとともに、上記副ピストンは燃焼室の圧縮行程
期間中に上記筒孔内の気体を圧縮して噴射孔より噴射さ
せる特許請求の範囲第4項記載の内燃機関。 10上記気体供給源がエアポンプにより吐出される排ガ
ス浄化用二次空気の通路である特許請求の範囲第1項記
載の内燃機関。 11 少くとも軽負荷運転領域の大部分において上記主
吸気通路および副吸気通路より供給される吸気の総合の
空燃比が15〜19である特許請求の範囲第1項記載の
内燃機関。 12軽負荷運転領域で上記副吸気通路より供給される吸
気量を上記主吸気通路より供給される吸気量の5〜30
%に設定した特許請求の範囲第1項記載の内燃機関。 13上記気本供給源を空気、混合気あるいは排ガスを供
給する複数の気体供給源とし、同複数の気体供給源から
の気体供給を機関の運転状態に応じて選択的に切換える
切換弁を上記副吸気に介装した特許請求の範囲第1項記
載の内燃機関。[Scope of Claims] 1. In an internal combustion engine in which the air-fuel mixture generated by the air-fuel mixture generating device is supplied to the combustion chamber from an intake port provided in the cylinder head via the main intake passage, an ignition plug installed in such a way that a spark gap is disposed therein; and an injection hole drilled in a cylinder head that opens directly into the combustion chamber, opens in the vicinity of the spark gap, and is oriented in the vicinity of the spark gap; a sub-intake passage connected to the injection hole; a gas supply source that supplies air to the sub-intake passage with sufficient gas supply pressure even during light load operation; a sub-intake valve that opens and closes the sub-intake passage; An internal combustion engine comprising: an actuation mechanism that opens a sub-intake valve during an intake stroke. 2. The internal combustion engine according to claim 1, wherein the air-fuel mixture generating device is a carburetor. 3. The internal combustion engine according to claim 1, wherein the auxiliary intake valve and the operating mechanism are spring-loaded check valve mechanisms that open due to negative pressure generated in the combustion chamber during the intake stroke. 4. The internal combustion engine according to claim 1, wherein the operating mechanism is a valve operating mechanism that opens and closes the auxiliary intake valve in conjunction with rotation of an intake valve driving camshaft that opens and closes the intake port. 5. Claim 4, wherein the sub-intake valve is a mushroom valve.
Internal combustion engine as described in section. 6. The internal combustion engine according to claim 2, wherein the gas supply source is an intake passage upstream of the venturi section of the carburetor. 7. The internal combustion engine according to claim 2, wherein the gas supply source is an intake passage between a venturi section of the carburetor and a throttle valve. 8. The internal combustion engine according to claim 1, wherein the gas supply source is an exhaust gas passage. 9. The auxiliary intake valve is a auxiliary piston that reciprocates in a cylindrical hole formed in a cylinder head, the auxiliary intake passage is opened on the inner peripheral surface of the cylindrical hole, and the injection hole is opened on the end surface of the cylindrical hole, The sliding surface of the auxiliary piston opens and closes the opening of the auxiliary intake passage, and the auxiliary piston compresses the gas in the cylindrical hole and injects it from the injection hole during the compression stroke of the combustion chamber. Internal combustion engine according to paragraph 4. 10. The internal combustion engine according to claim 1, wherein the gas supply source is a passage for exhaust gas purifying secondary air discharged by an air pump. 11. The internal combustion engine according to claim 1, wherein the total air-fuel ratio of the intake air supplied from the main intake passage and the auxiliary intake passage is 15 to 19 at least in most of the light load operating region. 12 In the light load operating range, the amount of intake air supplied from the auxiliary intake passage is 5 to 30 times the amount of intake air supplied from the main intake passage.
%. 13 The main gas supply source is a plurality of gas supply sources that supply air, mixture, or exhaust gas, and the switching valve that selectively switches the gas supply from the plurality of gas supply sources according to the operating state of the engine is used as the secondary gas supply source. An internal combustion engine according to claim 1, wherein the internal combustion engine is provided with an intake air.
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51037439A JPS5838612B2 (en) | 1976-04-02 | 1976-04-02 | internal combustion engine |
AU16106/76A AU501307B2 (en) | 1976-04-02 | 1976-07-21 | Internal combustion engine |
ZA764372A ZA764372B (en) | 1976-04-02 | 1976-07-21 | Internal combustion engine |
NLAANVRAGE7608366,A NL178995C (en) | 1976-04-02 | 1976-07-28 | COMBUSTION ENGINE. |
SE7608595A SE435949B (en) | 1976-04-02 | 1976-07-29 | DEVICE FOR COMBUSTION Piston Engines |
GB28184/78A GB1549969A (en) | 1976-04-02 | 1976-07-29 | Internal combustion engine |
GB31587/76A GB1549387A (en) | 1976-04-02 | 1976-07-29 | Internal combustion engine |
DE2634334A DE2634334C2 (en) | 1976-04-02 | 1976-07-30 | Internal combustion engine with additional intake port |
BE169411A BE844719A (en) | 1976-04-02 | 1976-07-30 | INTERNAL COMBUSTION ENGINE |
SU762386540A SU910129A3 (en) | 1976-04-02 | 1976-07-30 | Internal combustion engine |
CA258,140A CA1055337A (en) | 1976-04-02 | 1976-07-30 | Internal combustion engine |
MX766007U MX3669E (en) | 1976-04-02 | 1976-07-30 | IMPROVEMENTS IN INTERNAL COMBUSTION ENGINE |
IT50703/76A IT1073404B (en) | 1976-04-02 | 1976-07-30 | INTERNAL COMBUSTION ENGINE |
FR7623435A FR2346559A1 (en) | 1976-04-02 | 1976-07-30 | INTERNAL COMBUSTION ENGINE |
BR4987/76A BR7604987A (en) | 1976-04-02 | 1976-07-30 | IMPROVEMENT IN INTERNAL COMBUSTION ENGINE |
PL1976191568A PL118483B1 (en) | 1976-04-02 | 1976-07-31 | Internal combustion engine |
ES450839A ES450839A1 (en) | 1976-04-02 | 1976-07-31 | IMPROVEMENTS IN INTERNAL COMBUSTION ENGINES. |
SU772504486A SU976858A3 (en) | 1976-04-02 | 1977-07-18 | Internal combustion engine |
CA299,703A CA1056239A (en) | 1976-04-02 | 1978-03-23 | Device for producing strong swirls in air-fuel mixture within combustion chamber for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51037439A JPS5838612B2 (en) | 1976-04-02 | 1976-04-02 | internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52121104A JPS52121104A (en) | 1977-10-12 |
JPS5838612B2 true JPS5838612B2 (en) | 1983-08-24 |
Family
ID=12497533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51037439A Expired JPS5838612B2 (en) | 1976-04-02 | 1976-04-02 | internal combustion engine |
Country Status (16)
Country | Link |
---|---|
JP (1) | JPS5838612B2 (en) |
AU (1) | AU501307B2 (en) |
BE (1) | BE844719A (en) |
BR (1) | BR7604987A (en) |
CA (1) | CA1055337A (en) |
DE (1) | DE2634334C2 (en) |
ES (1) | ES450839A1 (en) |
FR (1) | FR2346559A1 (en) |
GB (2) | GB1549969A (en) |
IT (1) | IT1073404B (en) |
MX (1) | MX3669E (en) |
NL (1) | NL178995C (en) |
PL (1) | PL118483B1 (en) |
SE (1) | SE435949B (en) |
SU (2) | SU910129A3 (en) |
ZA (1) | ZA764372B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2489883B1 (en) * | 1980-09-05 | 1985-09-13 | Suzuki Motor Co | FOUR-TIME INTERNAL COMBUSTION ENGINE |
JPS5762919A (en) * | 1980-09-29 | 1982-04-16 | Suzuki Motor Co Ltd | Internal combustion engine |
JPS5783631A (en) * | 1980-11-13 | 1982-05-25 | Suzuki Motor Co Ltd | Internal combustion engine |
WO1996013655A1 (en) * | 1994-10-29 | 1996-05-09 | Peter Andresen | Process for improving the efficiency and emissions of an internal combustion engine |
DE10012588A1 (en) * | 2000-03-15 | 2001-09-20 | Mann & Hummel Filter | Exhaust gas return feed has a branch channel opening into each cylinder with a non-return valve integrated into the fuel injection assembly to match the motor conditions without retarding the motor |
DE102005041992A1 (en) | 2005-09-05 | 2007-03-15 | Schabinger, Günter Wilhelm | Internal combustion engine |
RU2727952C1 (en) * | 2019-12-09 | 2020-07-27 | Андрей Сергеевич Космодамианский | Internal combustion engine |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2807250A (en) * | 1955-11-22 | 1957-09-24 | Mallory Marion | Gasoline engine |
FR89404E (en) * | 1964-12-23 | 1967-06-23 | Inst Francais Du Petrole | Process for the combustion of lean mixtures in spark ignition engines |
FR1464586A (en) * | 1965-03-27 | 1967-01-06 | Inst Francais Du Petrole | Process allowing the combustion of globally lean mixtures in positive-ignition engines and devices for its implementation |
US3359958A (en) * | 1966-08-29 | 1967-12-26 | Seggern Ernest A Von | Excess air cycle engine and air supply means and method of operating same |
FR1560334A (en) * | 1967-12-04 | 1969-03-21 | ||
FR1558434A (en) * | 1967-12-14 | 1969-02-28 | ||
FR1576335A (en) * | 1968-04-19 | 1969-07-25 | ||
FR2219689A5 (en) * | 1973-02-22 | 1974-09-20 | Snecma | |
FR2236378A5 (en) * | 1973-07-06 | 1975-01-31 | Peugeot & Renault |
-
1976
- 1976-04-02 JP JP51037439A patent/JPS5838612B2/en not_active Expired
- 1976-07-21 AU AU16106/76A patent/AU501307B2/en not_active Expired
- 1976-07-21 ZA ZA764372A patent/ZA764372B/en unknown
- 1976-07-28 NL NLAANVRAGE7608366,A patent/NL178995C/en not_active IP Right Cessation
- 1976-07-29 GB GB28184/78A patent/GB1549969A/en not_active Expired
- 1976-07-29 SE SE7608595A patent/SE435949B/en not_active IP Right Cessation
- 1976-07-29 GB GB31587/76A patent/GB1549387A/en not_active Expired
- 1976-07-30 MX MX766007U patent/MX3669E/en unknown
- 1976-07-30 BE BE169411A patent/BE844719A/en not_active IP Right Cessation
- 1976-07-30 SU SU762386540A patent/SU910129A3/en active
- 1976-07-30 CA CA258,140A patent/CA1055337A/en not_active Expired
- 1976-07-30 BR BR4987/76A patent/BR7604987A/en unknown
- 1976-07-30 IT IT50703/76A patent/IT1073404B/en active
- 1976-07-30 FR FR7623435A patent/FR2346559A1/en active Granted
- 1976-07-30 DE DE2634334A patent/DE2634334C2/en not_active Expired
- 1976-07-31 ES ES450839A patent/ES450839A1/en not_active Expired
- 1976-07-31 PL PL1976191568A patent/PL118483B1/en unknown
-
1977
- 1977-07-18 SU SU772504486A patent/SU976858A3/en active
Also Published As
Publication number | Publication date |
---|---|
AU501307B2 (en) | 1979-06-14 |
GB1549969A (en) | 1979-08-08 |
IT1073404B (en) | 1985-04-17 |
FR2346559B1 (en) | 1982-07-16 |
SE435949B (en) | 1984-10-29 |
BR7604987A (en) | 1978-02-14 |
CA1055337A (en) | 1979-05-29 |
NL178995C (en) | 1986-06-16 |
SU976858A3 (en) | 1982-11-23 |
MX3669E (en) | 1981-04-20 |
NL7608366A (en) | 1977-10-04 |
SE7608595L (en) | 1977-10-03 |
SU910129A3 (en) | 1982-02-28 |
ZA764372B (en) | 1977-07-27 |
DE2634334A1 (en) | 1977-10-27 |
GB1549387A (en) | 1979-08-08 |
BE844719A (en) | 1976-11-16 |
PL118483B1 (en) | 1981-10-31 |
DE2634334C2 (en) | 1984-02-02 |
JPS52121104A (en) | 1977-10-12 |
NL178995B (en) | 1986-01-16 |
AU1610676A (en) | 1978-01-26 |
FR2346559A1 (en) | 1977-10-28 |
ES450839A1 (en) | 1977-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4317438A (en) | High power output engine | |
CA1134686A (en) | Low throttled volume engine | |
JPS6060010B2 (en) | Intake system for multi-cylinder internal combustion engine | |
JPS59122725A (en) | Suction device of engine | |
US4211189A (en) | Internal combustion engine with dual induction system and more particularly to combustion chamber design thereof | |
US9062598B2 (en) | Internal combustion engine operable in homogeneous-charge compression mode | |
US4133322A (en) | Internal combustion engine | |
US4350129A (en) | Spark-ignition internal combustion engine capable of preventing noxious gas emissions | |
US4167161A (en) | Directional auxiliary intake injection for internal combustion engine | |
US4178903A (en) | Internal combustion engine with an auxiliary combustion chamber | |
JPS5838612B2 (en) | internal combustion engine | |
US4132197A (en) | Jet-stream control combustion engine | |
JPS6056247B2 (en) | fuel injected engine | |
JPH0348334B2 (en) | ||
CA1044967A (en) | Internal combustion engine | |
JPS5821090B2 (en) | air injection gasoline engine | |
JPS5947126B2 (en) | 2 cycle engine | |
JPS59231120A (en) | Three-valve head type internal-combustion engine | |
JPS5930892B2 (en) | internal combustion engine | |
KR810001659B1 (en) | Internal combustion engine | |
JPS589250B2 (en) | internal combustion engine | |
CA1056239A (en) | Device for producing strong swirls in air-fuel mixture within combustion chamber for internal combustion engine | |
US4178889A (en) | Internal combustion engine | |
JPS5821089B2 (en) | Automotive jet-controlled combustion engine | |
JPS5941009B2 (en) | engine |