JPS5837898A - Peak holding circuit - Google Patents
Peak holding circuitInfo
- Publication number
- JPS5837898A JPS5837898A JP56136809A JP13680981A JPS5837898A JP S5837898 A JPS5837898 A JP S5837898A JP 56136809 A JP56136809 A JP 56136809A JP 13680981 A JP13680981 A JP 13680981A JP S5837898 A JPS5837898 A JP S5837898A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- differential amplifier
- voltage
- emitter follower
- peak
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C27/00—Electric analogue stores, e.g. for storing instantaneous values
- G11C27/02—Sample-and-hold arrangements
- G11C27/024—Sample-and-hold arrangements using a capacitive memory element
- G11C27/026—Sample-and-hold arrangements using a capacitive memory element associated with an amplifier
Abstract
Description
【発明の詳細な説明】
本発明は、高速、高精度に動作するピークホールド回路
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a peak hold circuit that operates at high speed and with high precision.
アナログ波形のピーク値を保持するピークホールド回路
は、例えばMOS型のイメージセンナの出力をム/D変
換する等に際して有用である。つまシ、イメージセンナ
の出力はそれ自体では極めて細いパルス幅のパルス列で
あるから、各パルスのピーク値をデジタル値に変換して
メモリに記憶させる又は該ピーク値をテスタで表示させ
る等に際しては高速動作可能かつ高精度なピークホール
ド回路が必要である。第1図および第2図は従来のピー
クホールド回路の異なる例で、Al e AMは差動ア
ンプ、Cはピークホールド用のコンデンサ、SWはリセ
ット用(放電用)スイッチ、Dは出力インピーダンスが
低い差動アンプAI側へコンデンサCの電荷が放電する
のを阻止するダイオードである。A peak hold circuit that holds the peak value of an analog waveform is useful, for example, when performing MU/D conversion on the output of a MOS image sensor. Since the output of the image sensor itself is a pulse train with an extremely narrow pulse width, it is necessary to convert the peak value of each pulse into a digital value and store it in memory, or to display the peak value on a tester at high speed. An operable and highly accurate peak hold circuit is required. Figures 1 and 2 show different examples of conventional peak hold circuits, where Al e AM is a differential amplifier, C is a capacitor for peak hold, SW is a reset (discharge) switch, and D is a low output impedance. This is a diode that prevents the charge of the capacitor C from discharging to the differential amplifier AI side.
いずれの回路も第1の差動アンプ人!の非反転入力端(
ト)K入力電圧vtt−印加し、その出力でコンデンサ
Ct−充電し、さらに該コンデンサCの端子電圧¥r第
2の差動アンプAIの非反転入力端(ト)K与えて出力
電圧Voi得るようKしている点は同じであるが、嬉1
図の回路ではアンプAl e ANの反転入力端θに出
力電圧Vo k帰還している。差動アンプA!mA鵞の
利得を極めて大とすれば、反転、非反転両人刃端の電圧
はtlぼ郷しいから、第1図ではVi=V。Both circuits are the first differential amplifiers! non-inverting input terminal (
G) Apply the K input voltage vtt-, charge the capacitor Ct with its output, and further apply the terminal voltage of the capacitor C to the non-inverting input terminal of the second differential amplifier AI (g) K to obtain the output voltage Voi. The same thing is true, but I'm happy 1
In the circuit shown in the figure, the output voltage Vo k is fed back to the inverting input terminal θ of the amplifier Al e AN. Differential amplifier A! If the mA gain is extremely large, the voltage at both the inverting and non-inverting edges will be tl, so in Figure 1, Vi=V.
となるが出力段Mから入力段AIへの帰還がかかつてい
るので安定した高速動作を期し難い。これに対し第2図
の回路は各アンプAl e AIが個々に帰還ループを
構成しているだけであるので高速動作は可能であるが、
AIの出力ははぼv11コンデンサCの充電電圧従って
んの入力電圧はほぼVi−VF、AIの出力VOもはぼ
そのVi−VFとなり、入力Viのピーク値と出力Vo
との間にダイオードDの順方向電圧VF分の誤差を生じ
る。従って高精度な動作を期−侍する場合には使用し難
い。このように第1図、第2図の回路は動作の高速化ま
たは高精度化の一方を犠牲にしたものである。However, since feedback is required from the output stage M to the input stage AI, it is difficult to expect stable high-speed operation. On the other hand, in the circuit shown in Fig. 2, each amplifier Al e AI only individually constitutes a feedback loop, so high-speed operation is possible.
The output of AI is approximately the charging voltage of v11 capacitor C, so the input voltage is approximately Vi-VF, and the output VO of AI is also approximately Vi-VF, and the peak value of input Vi and output Vo
An error corresponding to the forward voltage VF of the diode D occurs between the two. Therefore, it is difficult to use when high precision operation is expected. In this way, the circuits shown in FIGS. 1 and 2 sacrifice either speed-up or high-precision operation.
本発明は、簡単な構成によって高精度でしかも高速動作
−可能なピークホールド回路を提供するものであふ0本
発明は、エミッタホロワ接続された第1のトランジスタ
を通してピークホールド用のコンデンサを入力電圧で充
電し、そして該コンデンサの端子電圧を差動アンプの非
反転入力端に与え、ま几エミ、タホロワ接続された第2
のトラン圧t−該差動アンプの反転入力端に帰還する結
線を施こし、さらに該コンデンサの電荷を放電するリセ
ット用スイッチを設けてなることを特徴とするが、以下
図示の実施例を参照しながらこれを詳細に説明する。The present invention provides a peak hold circuit which is capable of high precision and high speed operation with a simple configuration. Then, the terminal voltage of the capacitor is applied to the non-inverting input terminal of the differential amplifier, and the second
The transformer pressure t of the differential amplifier is connected to be fed back to the inverting input terminal of the differential amplifier, and a reset switch is further provided to discharge the charge of the capacitor, see the embodiment shown below. This will be explained in detail.
第3図は本発明の一実施例で、正電圧をホールドする回
路例である。Qlは第1のnpn トランジスタで、そ
のコレクタは抵抗R1金通して正電源式例えば+15V
)K接続される。このトランジスタQIはエミッタホロ
ワとして使用され、コンデンサCはそのベース、エミッ
タ間を通して入力電圧ViKより充電される。コンデン
サCのアースに対する端子電圧は差動アンプAの非反転
入(カ一端(ト)K与えられる。この差動アンプAの出
力VOはエミッタホロワ接続されたtJIE2のopn
)ランジスタ(ht通して反転入力端θに帰還される
bよシ具体的には、トランジスタものベース、エミッタ
間を通して差動アンプAの出力端から直列抵抗VR,R
鵞に電流を流し、このとき可食抵抗VRの摺動端に発生
する電圧を該アンプの反転入力端θに印加する。尚、ト
ランジスタQ!のコレクタは正電源v”K*続され、ま
た可変抵抗VRと抵抗−はトランジスタものエミッタと
負電源v−(例えば−15v)との間に直列に接続され
る。そして、リセット用スイッチswはコンデンサCの
高電位側と負電源V−とのMJK*続され、リセットパ
ルスR8Tで周期的にオンオンされる。FIG. 3 is an embodiment of the present invention, which is an example of a circuit for holding a positive voltage. Ql is the first npn transistor, whose collector is connected to a positive power supply, e.g. +15V, through the resistor R1.
)K connected. This transistor QI is used as an emitter follower, and the capacitor C is charged by the input voltage ViK through its base and emitter. The terminal voltage of the capacitor C with respect to ground is given to the non-inverting input (K) of the differential amplifier A.The output VO of this differential amplifier A is applied to the open terminal of tJIE2 connected as an emitter follower.
)B is fed back to the inverting input terminal θ through the transistor (ht).Specifically, the series resistors VR and R are connected from the output terminal of the differential amplifier A through the base and emitter of the transistor.
An electric current is applied to the amplifier, and the voltage generated at the sliding end of the edible resistor VR is applied to the inverting input terminal θ of the amplifier. Furthermore, transistor Q! The collector of is connected to the positive power supply v''K*, and the variable resistor VR and the resistor - are connected in series between the emitter of the transistor and the negative power supply v- (for example, -15V).The reset switch sw is MJK* is connected between the high potential side of the capacitor C and the negative power supply V-, and is periodically turned on and off by the reset pulse R8T.
第4図は各部の波形図で、リセットパルスR8Tは入力
v1を得るクロ、りと同期して発生される。FIG. 4 is a waveform diagram of each part, and the reset pulse R8T is generated in synchronization with the clock signal that receives the input v1.
そしてパルスR8TがL(ロー)の期間スイッチSWを
オンにしてコンデンサCの電荷を放電する(リセット)
。またパルスR8TがH(へイ)の期間はスイッチSW
がオフであるから、コンデンサCけ入力電圧Vtで充電
され、その値を次にスイ、チSWがオンになるまでホー
ルドする。この回路ではR1=R鵞+VR%R黛)VR
IC設定し、 トランジスタQz −(hは同種のもの
としてそのベース、エミッタ間電圧Vllll y V
i+g雪’を等しくする。コンデンサCの充電電圧はV
l −Vmm 、これがアンプAの十端子に入力するの
で該アンプの一端子の電圧もVi−vl!、抵抗VRI
Cよる分圧効果を無視すると出力VoはQ雪のV1璽だ
け上り友電圧つま、9V1−Vm鵞十V曹鵞=Viとな
る。こうしてトランジスタ9里のドロ、プ分Vm町がト
ランジスタQ倉のドロップ分Vm旬で補償され、出力′
VoはViとなりて誤差が生じない、また、使用される
差動アンプAは1段だけであるから構成が簡単であシ、
シかもフィードパ。Then, the switch SW is turned on while the pulse R8T is L (low) to discharge the charge in the capacitor C (reset).
. Also, during the period when pulse R8T is H (hey), switch SW
Since the switch SW is off, the capacitor C is charged with the input voltage Vt, and this value is held until the next switch/chip SW is turned on. In this circuit, R1 = R + VR %R May) VR
Set up the IC and set the voltage between the base and emitter of the transistor Qz - (h is the same type, Vlllly V
Make i+g snow' equal. The charging voltage of capacitor C is V
l −Vmm, which is input to the ten terminal of amplifier A, so the voltage at one terminal of the amplifier is also Vi−vl! , resistance VRI
Ignoring the partial pressure effect due to C, the output Vo rises by the voltage V1 of Q snow, which is 9V1-Vm = Vi. In this way, the drop of the transistor 9, Vm is compensated by the drop of the transistor Q, and the output '
Since Vo becomes Vi, no error occurs, and since only one stage of differential amplifier A is used, the configuration is simple.
Shikamo feedpa.
りはその段だけで行なわれるので高速動作が可能となる
。尚、vRt−ポテンショメータ型の可変抵抗としてい
るのは、アンプAのオフセット量(このアンプは正、負
電源で動作して無人力時の出力Voは零レベルにあるが
、該レベルはアンプによって若干上下する。出力Vof
零レベルにする入力電圧をオフセット電圧という)t−
調整可能とするためである。また〜も可変抵抗とすれば
トランジスタQ黛のベース、エミ、り間に流す電流を変
えてVmml 、 V■旬相互間の誤差を補正できる。Since the process is performed only in that stage, high-speed operation is possible. The vRt-potentiometer type variable resistor is used because of the offset amount of amplifier A (this amplifier operates with positive and negative power supplies, and the output Vo when unmanned is at zero level, but this level varies slightly depending on the amplifier). Up and down.Output Vof
The input voltage that brings it to zero level is called the offset voltage) t-
This is to enable adjustment. Moreover, if ~ is also made into a variable resistor, the error between Vmml and Vmml can be corrected by changing the current flowing between the base, emitter, and rib of the transistor Q.
!5図は負電圧ホールドに適用した本発明の他の実施例
で、トランジスタQt*QstPガp型にした点、正負
電源V” ev−を入れ換え次点だけが第3図と異なる
。従って、その動作は第5図と同様に考えることができ
るので、各部電圧波形を第6図に示し、詳細説明は省略
する。! Fig. 5 shows another embodiment of the present invention applied to negative voltage hold, and differs from Fig. 3 only in that the transistor Qt*QstP gap type is used, and the positive and negative power supplies V''ev- are switched. Since the operation can be considered in the same way as shown in FIG. 5, voltage waveforms at various parts are shown in FIG. 6 and detailed explanation will be omitted.
以上述べたように本発明によれば、高速且つ高精度に動
作可能なピークホールド回路を簡単な構成で実現できる
利点がある。As described above, according to the present invention, there is an advantage that a peak hold circuit that can operate at high speed and with high precision can be realized with a simple configuration.
第1図および第2図は従来のピークホールド回路の異な
る例を示す回路図、第3図および第4図は本発明の一実
施例を示す回路図および波形図、第5図および第6図は
本発明の他の実施例を示す回路図および波形図である。
図中Q!−Qsは第1および第2のトランジスタ、Cは
ピークホールド用のコンデンサ、Aは差動アンプ、VR
e−R鵞は直列抵抗、SWは1リセ、ト用スイ、チであ
る。
出願人 富士通株式会社
代理人弁理士 青 柳、 稔第1図
第3図
v十
FIST V−
第4図
、ホールド リe−ト
第5図′
第6図
、ホールド′ りむマトFIGS. 1 and 2 are circuit diagrams showing different examples of conventional peak hold circuits, FIGS. 3 and 4 are circuit diagrams and waveform diagrams showing an embodiment of the present invention, and FIGS. 5 and 6 2 is a circuit diagram and a waveform diagram showing another embodiment of the present invention. FIG. Q in the diagram! -Qs are the first and second transistors, C is the peak hold capacitor, A is the differential amplifier, VR
e-R is a series resistor, SW is 1 reset, switch for G, and switch for H. Applicant Fujitsu Ltd. Representative Patent Attorney Minoru Aoyagi Figure 1 Figure 3 v1FIST V- Figure 4 Hold Lit Figure 5' Figure 6 Hold 'Rimmato
Claims (1)
ピークホールド用のコンデンサを入力電圧で充電し、そ
して該コンデンサの端子電圧を差動アンプの非反転入力
端に与え、またエミッタホロワ接続され之第2のトラン
ジスタを通して該差動アンプの出力端から直列抵抗に電
流を流し、そして該直列抵抗で抵抗分割された電圧ヲ該
差動アンプの反転入力端に帰還する結線を施こし、さら
に該コンデンサの電荷を放電するリセット用スイ、チを
設けてなることを特徴とするピークホールド回路。A peak hold capacitor is charged with the input voltage through the first transistor connected as an emitter follower, and the terminal voltage of the capacitor is applied to the non-inverting input terminal of the differential amplifier. A reset process in which a current is passed from the output terminal of the differential amplifier to a series resistor, a voltage divided by the series resistor is returned to the inverting input terminal of the differential amplifier, and the charge in the capacitor is discharged. A peak hold circuit characterized by having a switch and a switch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56136809A JPS5837898A (en) | 1981-08-31 | 1981-08-31 | Peak holding circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56136809A JPS5837898A (en) | 1981-08-31 | 1981-08-31 | Peak holding circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5837898A true JPS5837898A (en) | 1983-03-05 |
Family
ID=15184007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56136809A Pending JPS5837898A (en) | 1981-08-31 | 1981-08-31 | Peak holding circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5837898A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766372A (en) * | 1982-08-21 | 1998-06-16 | Sumitomo Special Metals Co., Ltd. | Method of making magnetic precursor for permanent magnets |
KR100298548B1 (en) * | 1987-05-22 | 2001-09-22 | 가나이 쓰도무 | Semiconductor device comprising internal voltage generating circuit |
US6363029B1 (en) | 1985-07-22 | 2002-03-26 | Hitachi, Ltd. | Semiconductor device incorporating internal power supply for compensating for deviation in operating condition and fabrication process conditions |
-
1981
- 1981-08-31 JP JP56136809A patent/JPS5837898A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766372A (en) * | 1982-08-21 | 1998-06-16 | Sumitomo Special Metals Co., Ltd. | Method of making magnetic precursor for permanent magnets |
US6363029B1 (en) | 1985-07-22 | 2002-03-26 | Hitachi, Ltd. | Semiconductor device incorporating internal power supply for compensating for deviation in operating condition and fabrication process conditions |
US6970391B2 (en) | 1985-07-22 | 2005-11-29 | Renesas Technology Corporation | Semiconductor device incorporating internal power supply for compensating for deviation in operating condition and fabrication process conditions |
US7002856B2 (en) | 1986-07-18 | 2006-02-21 | Renesas Technology Corporation | Semiconductor device incorporating internal power supply for compensating for deviation in operating condition and fabrication process conditions |
KR100298548B1 (en) * | 1987-05-22 | 2001-09-22 | 가나이 쓰도무 | Semiconductor device comprising internal voltage generating circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Van De Plassche | A sigma-delta modulator as an A/D converter | |
JPH0420238B2 (en) | ||
JPH0621966B2 (en) | Current source device | |
EP3300251A1 (en) | Integration circuit and method for providing an output signal | |
JPS59108418A (en) | Signal generating circuit | |
US3943506A (en) | Multiple ramp digitisers | |
JPS5837898A (en) | Peak holding circuit | |
JPS6127995B2 (en) | ||
US4542332A (en) | Precision current-source arrangement | |
US4009402A (en) | Time expander circuit for a frequency-to-digital converter | |
JPH1038930A (en) | Circuit for detecting peak voltage | |
JPS60103596A (en) | Sample and hold circuit | |
JPS584194A (en) | Method of and apparatus for generating exact time track line | |
JPS6133012A (en) | Voltage.frequency converter and converting method using highpossibility one shot circuit | |
US12166489B2 (en) | Discrete time analog circuit | |
JP3979720B2 (en) | Sample and hold circuit | |
TWI812472B (en) | Closed-loop circuit of simulating inductor current | |
JPS5837568A (en) | Dot connector circuit | |
JPH044285Y2 (en) | ||
JPS5948429B2 (en) | Arithmetic circuit | |
JP2785395B2 (en) | One shot circuit | |
JPH052274B2 (en) | ||
JPS6215958B2 (en) | ||
JPS60223226A (en) | Camera | |
JPH05252003A (en) | Monostable multivibrator |