[go: up one dir, main page]

JPS5836827B2 - Battery manufacturing method - Google Patents

Battery manufacturing method

Info

Publication number
JPS5836827B2
JPS5836827B2 JP10712178A JP10712178A JPS5836827B2 JP S5836827 B2 JPS5836827 B2 JP S5836827B2 JP 10712178 A JP10712178 A JP 10712178A JP 10712178 A JP10712178 A JP 10712178A JP S5836827 B2 JPS5836827 B2 JP S5836827B2
Authority
JP
Japan
Prior art keywords
battery
electrolyte
gel
alkyl ester
acid alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10712178A
Other languages
Japanese (ja)
Other versions
JPS5533747A (en
Inventor
信夫 江田
彰克 守田
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10712178A priority Critical patent/JPS5836827B2/en
Publication of JPS5533747A publication Critical patent/JPS5533747A/en
Publication of JPS5836827B2 publication Critical patent/JPS5836827B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、ポリメタクリル酸アルキルエステルでゲル化
した有機電解質を用いる電池の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a battery using an organic electrolyte gelled with a polymethacrylic acid alkyl ester.

現状の小型電子機器の主電源として銀電池や水銀電池が
用いられているが、これらは本質的にクリーブ性を有す
るアルカリ電解液を使用していることに加え、電池の電
位が相乗効果を及ぼし、長期間に亘り完全無漏液化を図
ることは非常に困難であり、漏液は機器に重要な損傷を
与えるものである。
Silver and mercury batteries are currently used as the main power source for small electronic devices, but in addition to using an alkaline electrolyte that inherently has cleaving properties, the potential of the battery has a synergistic effect. However, it is very difficult to achieve complete leak-free operation over a long period of time, and leakage causes serious damage to equipment.

そこで、本発明者らは、先にリチウムで代表される軽金
属を負極活物質とする有機電解質電池の電解質をポリメ
タクリル酸アルキルエステルでゲル化し、固定化する方
法を提案した。
Therefore, the present inventors previously proposed a method of gelling and immobilizing the electrolyte of an organic electrolyte battery using a light metal such as lithium as a negative electrode active material with a polymethacrylic acid alkyl ester.

この方法によれば、高温保存時でも漏液を起こさない有
機電解質電池が得られる。
According to this method, an organic electrolyte battery that does not leak even when stored at high temperatures can be obtained.

とくに高エネルギー密度を有する小形、薄形電池化の現
状においては、有機電解質電池は、上記の点からも有利
である。
Particularly in the current situation of small and thin batteries with high energy density, organic electrolyte batteries are advantageous from the above points as well.

ここに用いるポリメタクリル酸アルキルエステルとして
は、電解質として一般的に用いられる炭酸プロピレン、
γ−プチロラクトンなどとの相溶性、ゲル化のしやすさ
から、ポリメタクリル酸メチルやポリメタクリル酸エチ
ルがより適している。
The polymethacrylic acid alkyl ester used here includes propylene carbonate, which is commonly used as an electrolyte,
Polymethyl methacrylate and polyethyl methacrylate are more suitable because of their compatibility with γ-butyrolactone and the like and ease of gelation.

しかし、ポリメタクリル酸メチルやポリメタクリル酸エ
チルなどのメタクリル酸系統のポリマーは分子構造上か
ら接着性が大きいことが知られている。
However, it is known that methacrylic acid-based polymers such as polymethyl methacrylate and polyethyl methacrylate have high adhesive properties due to their molecular structure.

このことは一面では、正極と負極に挾持されたゲルは両
極板との接触が良いので電池特性上からは有利であるが
、他面、次のような問題があった。
On the one hand, this is advantageous in terms of battery characteristics because the gel sandwiched between the positive and negative electrodes has good contact with both electrode plates, but on the other hand, there are the following problems.

すなわち、この種のポリマーを用いてゲル電解質を得る
には、有機電解質とポリマーとを80〜90℃の温度に
加熱して熱ゾルをつくり、これをシャーレなどに流し込
んで冷却する工程が必要である。
In other words, in order to obtain a gel electrolyte using this type of polymer, it is necessary to heat the organic electrolyte and polymer to a temperature of 80 to 90°C to create a thermosol, which is then poured into a petri dish and cooled. be.

そしてこのゲルの薄片を所定の形状に切り出して正、負
極間に組み込む製造過程においては、ゲルはポリマー単
体のときは異なり、粘弾性の因子が入ってきて、とくに
製造用治工具、例えばゲルを入れたシャーレ、切り出し
治具やピンセットなどの挾持治具にくっついて、電池材
刺として所定の形状に保って取り扱うことが非常に困難
である。
In the manufacturing process where a thin piece of gel is cut into a predetermined shape and inserted between the positive and negative electrodes, gel is different from when it is made of a single polymer, and viscoelastic factors come into play, especially when using manufacturing jigs and tools, such as gel. It sticks to the petri dish in which it is placed, a cutting jig, a clamping jig such as tweezers, etc., and it is extremely difficult to maintain and handle the battery material in a predetermined shape as a prick.

このため、ゲル電解質層の形状が一定せず、電気特性が
ばらついたり、放電特性が悪くなったりする欠点がある
As a result, the shape of the gel electrolyte layer is not constant, resulting in variations in electrical characteristics and poor discharge characteristics.

本発明は、上記のような従来の欠点を除き、ゲル電解質
の製造工程を簡略化するものである。
The present invention eliminates the above-mentioned conventional drawbacks and simplifies the manufacturing process of gel electrolytes.

すなわち、本発明はポリメタクリル酸アルキルエステル
の多孔質体を電池内の例えば正極上に配設し、これに有
機電解質を注液し、電池封口後加熱して前記電解質をゲ
ル化するものである。
That is, in the present invention, a porous body of polymethacrylic acid alkyl ester is disposed within a battery, for example, on the positive electrode, an organic electrolyte is injected into the porous body, and the electrolyte is gelled by heating after sealing the battery. .

この方法によれば、適当な弾性を有し、正、負極との密
着の良好なゲル電解質が得られ、従来に比べて極めて簡
単に品質の一定した電池を製造することができる。
According to this method, a gel electrolyte having appropriate elasticity and good adhesion to the positive and negative electrodes can be obtained, and a battery of constant quality can be manufactured much more easily than in the past.

前記の加熱温度は、高ければ短時間でゲル化が完了する
が高すぎると、封ロリング等に悪影響を及ぼすので、9
0〜60℃が適当である。
If the above-mentioned heating temperature is high, gelation will be completed in a short time, but if it is too high, it will have a negative effect on the sealing ring, etc.
A temperature of 0 to 60°C is suitable.

適当な加熱時間は、90℃の場合約10分、60℃の場
合約lO時間である。
Suitable heating times are about 10 minutes at 90°C and about 10 hours at 60°C.

なお、本発明者らは、ポリメタクリル酸アルキルエステ
ルの粒子を分散した電解質を電池内へ注入した後、加熱
してゲル化する方法も提案したが、この方法では、ポリ
マーが電解質を吸収して熱ゾルになる前には、電解質は
電池内でフリーに存在するために、例えば封目板ガスケ
ットとの間の隙間にも回り、この液はポリマーに吸収さ
れて熱ゾルになることに参加しないでそのまま存在する
ことも多く、この液が電池の高温保存中に漏液すること
もあり、充分とはいえなかった。
The present inventors have also proposed a method in which an electrolyte in which polymethacrylic acid alkyl ester particles are dispersed is injected into a battery and then heated to gel. However, in this method, the polymer absorbs the electrolyte. Before it becomes a thermosol, the electrolyte exists freely within the battery, so it circulates around the gap between the sealing plate and the gasket, for example, and this liquid is absorbed by the polymer and does not participate in becoming a thermosol. This solution was often present as it is, and this solution sometimes leaked during high-temperature storage of batteries, so it was not sufficient.

本発明では、電解質は大部分がポリマーの多孔質体中に
保持され、加熱により完全にゲル状電解質となり、漏液
に関与するフリーの液はなくなり、漏液は起こらない。
In the present invention, most of the electrolyte is held in a porous body of polymer, and the electrolyte is completely turned into a gel-like electrolyte by heating, so that there is no free liquid involved in leakage, and no leakage occurs.

またこのゲル状電解質は耐熱性を有し、ある程度の温度
まではゲルは弾性を保ち、離液は起こさない。
Furthermore, this gel electrolyte has heat resistance, and the gel maintains its elasticity up to a certain temperature and does not cause syneresis.

以下、本発明の実施例を図面とともに説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図はフツ化炭素−リチウム電池を示す。FIG. 1 shows a carbon fluoride-lithium battery.

図において、1はステンレス鋼製のケース、2は同材質
の封目板、3は封口板の内面に溶着したグリッドであり
、このグリッドの表面に負極のリチウムシ一ト4を圧着
している。
In the figure, 1 is a case made of stainless steel, 2 is a sealing plate made of the same material, and 3 is a grid welded to the inner surface of the sealing plate, and a negative electrode lithium sheet 4 is pressure-bonded to the surface of this grid.

5は正極で、フツ化炭素100重量部、アセチレンブラ
ック10重量部、SBR結着剤8重量部および分子量7
0万〜75万、粒径0.05〜0.15ixiのポリメ
タクリル酸メチル15重量部の混合物0.28gをディ
スク状に成形し、ケース1の内面に溶着したチタン製グ
リッド6上に圧着してある。
5 is a positive electrode containing 100 parts by weight of carbon fluoride, 10 parts by weight of acetylene black, 8 parts by weight of SBR binder, and a molecular weight of 7.
0.28 g of a mixture of 15 parts by weight of polymethyl methacrylate having a particle size of 0.000000 to 0.750000 and a particle size of 0.05 to 0.15 ixi was formed into a disk shape, and it was pressed onto the titanium grid 6 welded to the inner surface of the case 1. There is.

この電池は次のようにして組み立てた。This battery was assembled as follows.

まずケース内の前記正極上にポリプロピレンの不織布か
らなるセパレータ7とポリメタクリル酸メチル粒子の焼
結多孔質体(多孔度約45%)のディスクを載置後、1
モル/tのホウフツ化リチウムを溶解した炭酸プロピレ
ン0. 2 5 CCを注液した後、前記負極を結合し
た封目板とポリプロピレン製ガスケット8をケース1に
組み合わせ、かしめ封ロした。
First, a separator 7 made of a polypropylene nonwoven fabric and a disk made of a sintered porous body (porosity about 45%) of polymethyl methacrylate particles are placed on the positive electrode in the case, and then
mol/t of lithium borofluoride dissolved in propylene carbonate 0. After injecting 25 CC, the sealing plate to which the negative electrode was bonded and the polypropylene gasket 8 were combined into the case 1 and sealed by caulking.

その後80゜Cにて1時間エージングを行ない電池内の
電解質をゲル化させた。
Thereafter, aging was performed at 80° C. for 1 hour to gel the electrolyte within the battery.

9はポリメタクリル酸メチルの多孔質体が電解質を吸収
してゲル化した電解質層である。
9 is an electrolyte layer in which a porous material of polymethyl methacrylate absorbs an electrolyte and becomes a gel.

なお上記ケース内に注液された電解質の一部は多孔性の
正極中に浸透し、正極中のポリメタクリル酸メチルとと
もにゲル化した。
Note that a part of the electrolyte injected into the case permeated into the porous positive electrode and gelled together with polymethyl methacrylate in the positive electrode.

上記のようにして製造した電池を分解したところ、封目
板とパッキングの間の隙間などにフリーの電解質はなか
った。
When the battery manufactured as described above was disassembled, there was no free electrolyte in the gap between the sealing plate and the packing.

上記の実施例では、ポリメタクリル酸メチルの焼結多孔
質体を用いたが、他に、ポリメタクリル酸メチルの良溶
媒で、低沸点溶媒でもあるテトラヒドロフラン、メチル
エチルケトン、1,3−ジオキソランまたは1,2−ジ
メトキシエタンに所定量のポリメタクリル酸メチルを溶
解させ、この溶液に例えば従来の保液材であるポリプロ
ピレン不織布や綿などを浸漬した後、加熱すると、低沸
点溶媒は揮発するので、上記の不織布や綿などを基材と
したポリメタクリル酸メチルの多孔質体が得られる。
In the above example, a sintered porous body of polymethyl methacrylate was used, but in addition, tetrahydrofuran, methyl ethyl ketone, 1,3-dioxolane, 1, When a predetermined amount of polymethyl methacrylate is dissolved in 2-dimethoxyethane and a conventional liquid retaining material such as polypropylene nonwoven fabric or cotton is immersed in this solution and heated, the low boiling point solvent will evaporate. A porous body of polymethyl methacrylate is obtained using nonwoven fabric, cotton, or the like as a base material.

これらを用いて同様の電池を構成したが、充分な成果が
得られた。
A similar battery was constructed using these, and satisfactory results were obtained.

上記実施例の電池Aと、従来の電池Bとについて、20
℃における電気特性の比較を次表に、また20℃におけ
る5KΩでの放電特性を第2図に示す。
Regarding the battery A of the above example and the conventional battery B, 20
The following table shows a comparison of the electrical properties at 20°C, and the discharge characteristics at 5KΩ at 20°C are shown in Figure 2.

なお電池Bは、1モル/tのホウフッ化リチウムを溶解
した炭酸プロピレンに濃度24重量%となるようにポリ
メタクリル酸メチルを加え、80〜90℃に加熱して熱
ゾルを作り、これを冷却した後所定の大きさに切り取っ
たゲル電解質を用い、正極には上記熱ゾルを減圧下で含
浸してゲル電解質を含有させた。
Battery B is made by adding polymethyl methacrylate to propylene carbonate in which 1 mol/t of lithium borofluoride is dissolved to give a concentration of 24% by weight, heating the mixture to 80 to 90°C to create a thermosol, which is then cooled. After that, the gel electrolyte was cut into a predetermined size, and the positive electrode was impregnated with the above thermosol under reduced pressure to contain the gel electrolyte.

以上のように、本発明によれば、従来に比べて簡単でし
かも安定に、電気特性および放電特性の優れた電池を得
ることができる。
As described above, according to the present invention, a battery with excellent electrical characteristics and discharge characteristics can be obtained more easily and stably than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた電池の縦断面図、第2
図は電池の放電特性を示す。
Fig. 1 is a vertical cross-sectional view of a battery used in an example of the present invention;
The figure shows the discharge characteristics of the battery.

Claims (1)

【特許請求の範囲】 1 軽金属を活物質とする負極と、正極と、ポリメタク
リル酸アルキルエステルでゲル化した有機電解質とを有
する電池の製造法であって、予め電池内に配設したポリ
メタクリル酸アルキルエステルの多孔質体に有機電解質
を注液し、電池封口後に加熱して前記電解質をゲル化す
ることを特徴とする電池の製造法。 2 ポリメタクリル酸アルキルエステルが、ポリメタク
リル酸メチルもしくはポリメタクリル酸エチルである特
許請求の範囲第1項記載の電池の製造法。
[Scope of Claims] 1. A method for manufacturing a battery having a negative electrode using a light metal as an active material, a positive electrode, and an organic electrolyte gelled with polymethacrylic acid alkyl ester, the method comprising: A method for manufacturing a battery, comprising injecting an organic electrolyte into a porous body of acid alkyl ester, and heating the electrolyte after sealing the battery to gel the electrolyte. 2. The method for manufacturing a battery according to claim 1, wherein the polymethacrylic acid alkyl ester is polymethyl methacrylate or polyethyl methacrylate.
JP10712178A 1978-08-31 1978-08-31 Battery manufacturing method Expired JPS5836827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10712178A JPS5836827B2 (en) 1978-08-31 1978-08-31 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10712178A JPS5836827B2 (en) 1978-08-31 1978-08-31 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS5533747A JPS5533747A (en) 1980-03-10
JPS5836827B2 true JPS5836827B2 (en) 1983-08-11

Family

ID=14451010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10712178A Expired JPS5836827B2 (en) 1978-08-31 1978-08-31 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JPS5836827B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1281492C (en) * 1985-10-23 1991-03-12 Joseph Albert Antonelli Crosslinked polymer microparticle

Also Published As

Publication number Publication date
JPS5533747A (en) 1980-03-10

Similar Documents

Publication Publication Date Title
EP0883137A4 (en) THIN FILM, ELECTROLYTIC, APROTIC, DRIPPED CONDUCTOR WITH IMMOBILIZED LIQUID AND POLYMERIC CELL
CN110661032A (en) Solid electrolyte film and application thereof
JPS6388750A (en) Non-water battery having special separator
JPH08264205A (en) Gel electrolyte and battery
JPH11283672A (en) Polymer solid electrolyte cell and its manufacture
JP2003007357A (en) Non-aqueous electrolyte air battery
JPS5836827B2 (en) Battery manufacturing method
JPS5836828B2 (en) Battery manufacturing method
JPS5856467B2 (en) Battery manufacturing method
CN216054799U (en) A kind of zinc electrode protected by fiber membrane
JPH05182650A (en) Thin type battery
JPS5856227B2 (en) Organic electrolyte battery and its manufacturing method
JPS62219469A (en) Lithium battery
JPS59112565A (en) Nonaqueous electrolyte battery
US6290878B1 (en) Solid polymer electrolyte based on polyacrylonitrile
JPS61214364A (en) Thin lithium battery
JPS5836826B2 (en) Manufacturing method of organic electrolyte battery
JPS62126544A (en) Manufacture of battery
JP2782975B2 (en) Organic electrolyte battery
JP2855677B2 (en) Sealed lead-acid battery
JPS5983354A (en) Manufacture of organic electrolyte battery
JPH08203515A (en) Manufacture of nickel electrode
JPS58186164A (en) Manufacture of negative electrode for alkaline battery
JPS61214374A (en) Thin lithium secondary battery
JPS60182666A (en) Manufacture of nonaqueous electrolyte battery