JPS583623A - Automatic control method for gas flow treatment plant - Google Patents
Automatic control method for gas flow treatment plantInfo
- Publication number
- JPS583623A JPS583623A JP56100896A JP10089681A JPS583623A JP S583623 A JPS583623 A JP S583623A JP 56100896 A JP56100896 A JP 56100896A JP 10089681 A JP10089681 A JP 10089681A JP S583623 A JPS583623 A JP S583623A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- flow rate
- absorbed
- tower
- regeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000010521 absorption reaction Methods 0.000 claims description 48
- 238000011069 regeneration method Methods 0.000 claims description 48
- 230000008929 regeneration Effects 0.000 claims description 43
- 239000002994 raw material Substances 0.000 claims description 23
- 239000002250 absorbent Substances 0.000 claims description 18
- 230000002745 absorbent Effects 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 238000005111 flow chemistry technique Methods 0.000 claims 2
- 239000007789 gas Substances 0.000 description 79
- 239000007788 liquid Substances 0.000 description 42
- 230000002378 acidificating effect Effects 0.000 description 25
- 239000002253 acid Substances 0.000 description 10
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 101150084548 Cubn gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、原料ガス中から酸性ガス等の所定のガスを分
離処理するためのガス流処理プラントの自動制御方法に
係り、さらに詳しくは、原料ガス中の所定ガスだけを吸
収剤中に吸収して分離し、この吸収剤を再生塔内で加熱
して前記所定の被吸収ガスを分離させて再生し、吸収剤
は再び吸収剤として循環再使用するように構成したガス
流処理プラントの自動制御方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic control method for a gas flow treatment plant for separating predetermined gases such as acidic gases from raw material gas, and more specifically relates to a method for automatically controlling a gas flow treatment plant for separating predetermined gases such as acidic gases from raw material gases. is absorbed into an absorbent and separated, the absorbent is heated in a regeneration tower to separate and regenerate the predetermined absorbed gas, and the absorbent is recycled and reused as an absorbent again. The present invention relates to an automatic control method for a gas flow treatment plant.
従来、燃料ガス、循環水素ガスなどの原料ガス中に含ま
れている硫化水素、炭酸ガスなどの酸性ガスを不純ガス
として除去する一般的な方法として、モノエタノールア
ン/(MIIE@A〕、デエタノールア2ン(D@E・
A)、デ・イノプpパノールア之ン(A−D@I・P)
、熱炭酸カリ溶液(H−P@C)などの溶液を11収液
として用い、この吸収液と原料ガスとを接触させること
によシ、酸性ガスを吸収液中にとり込み、この吸収液を
循環させながら、再生塔に送9込み、加熱して酸性ガス
を放散させて再使用する方法が用いられている。Conventionally, as a general method for removing acid gases such as hydrogen sulfide and carbon dioxide contained in raw material gases such as fuel gas and circulating hydrogen gas as impurity gases, monoethanolamine/(MIIE@A) and DE Ethanolamine (D@E・
A), De Inopp Panoruan (A-D@I・P)
, a solution such as hot potassium carbonate solution (H-P@C) is used as the 11 yield liquid, and by bringing this absorption liquid into contact with the raw material gas, acidic gas is incorporated into the absorption liquid, and this absorption liquid is A method is used in which the gas is fed into a regeneration tower while being circulated, heated to dissipate acidic gas, and reused.
この場合原料ガスの流量に応じて吸収液の循環量と吸収
液の再生に必要な熱量とを制御する必要があり、従来は
、原料ガスの入口での流量を測定し、この流量から前記
循環量と熱量とを算出し制御を行なってい丸。In this case, it is necessary to control the circulating amount of the absorption liquid and the amount of heat required for regenerating the absorption liquid according to the flow rate of the raw material gas. Conventionally, the flow rate at the inlet of the raw material gas is measured, and the circulating A circle that calculates and controls the amount and heat amount.
しかし、このような方法では、流入する原料ガスの流量
がたえず変動している時や急激に、しかも大lIK羨動
し走時あるいは、原料ガス流量は変動しなくても、原料
ガス中の酸性ガスの濃度が変化した時には前記循環量と
熱量との吸収11に対する対応が遅れ、吸収液の再生が
不&になり、酸性ガスの吸収不良を起こし走り、を友そ
の丸めに金属材料の腐食を促進させたり、あるいは吸収
液に過憫の熱量を与えすぎて不経済となるなどの欠点を
有していた。However, in this method, when the flow rate of the incoming raw material gas is constantly changing, or when there is a sudden and large fluctuation, or when the flow rate of the raw material gas does not fluctuate, the acidity in the raw material gas When the concentration of gas changes, the response to absorption 11 between the amount of circulation and the amount of heat is delayed, and the regeneration of the absorption liquid becomes inadequate, resulting in poor absorption of acidic gas and corrosion of metal materials. However, it has disadvantages such as accelerating the process or imparting an excessive amount of heat to the absorbing liquid, making it uneconomical.
また、このような酸性ガスの吸収−再生システムに隈ら
ず、他の1般ガスの吸収−再生システムにおいても、経
済性が高く、かつ、適切な処理を行なえる制御方法の確
立が望まれていた。In addition, it is desired to establish a control method that is highly economical and can perform appropriate processing not only for such acid gas absorption-regeneration systems but also for other general gas absorption-regeneration systems. was.
本発明の目的は、原料ガスの流入流量の変動や、原料ガ
ス中の被吸収ガスの濃度が変化しても、再生塔における
吸収剤の再生処壜が常に適切に行なわれる徴収−再生シ
ステムに′よるガス流処理プラントの自動制御方法を提
供するKある。An object of the present invention is to provide a collection-regeneration system in which the regeneration process of the absorbent in the regeneration tower is always performed appropriately even if the inflow flow rate of the raw material gas changes or the concentration of the gas to be absorbed in the raw material gas changes. K provides an automatic control method for a gas stream processing plant according to the present invention.
本発明祉、再生塔から放出される被吸収ガスの流量によ
抄吸収塔に循環される吸収剤の流量をフィードバック制
御するとともに、この吸収剤の循1ltIL量によ、り
再生塔の加熱手段をフィードフォワード制御するように
し、これにより原料ガスの流量の変動等圧対応するよう
圧して前記目的を達成しようとするものである。In accordance with the present invention, the flow rate of the absorbent circulated to the absorbent tower is feedback-controlled by the flow rate of the absorbed gas discharged from the regeneration tower, and the heating means of the regeneration tower is controlled by the amount of circulating 1ltIL of this absorbent. The objective is to achieve the above objective by performing feedforward control of the flow rate of the raw material gas, thereby adjusting the pressure to correspond to fluctuations in the flow rate of the raw material gas.
以下、本発明の実施例を図面に基づいて詳細に説明する
。Embodiments of the present invention will be described in detail below with reference to the drawings.
図は、本発明に係る自動制御方法を実施した吸収−再生
システムによるガス流処理プラントの−構成例を示すも
のである。The figure shows an example of the configuration of a gas stream treatment plant using an absorption-regeneration system implementing the automatic control method according to the invention.
図に於いて、吸収塔゛1には不純ガスである酸性ガスを
被吸収ガスとして含む原料ガス2が導入され暮。吸収塔
1に轄別に酸性ガスの吸収液3が導入されており、ll
収塔1内での原料ガス2との気液反応吸収によって吸収
液3内に酸性ガスが吸収される。この結果、酸性ガスを
除去された原料ガス2は洗滌ガス4として吸収塔゛1の
上部から吐出される。In the figure, a raw material gas 2 containing an impure acid gas as an absorbed gas is introduced into an absorption tower 1. Acidic gas absorption liquid 3 is introduced into the absorption tower 1 according to its category, and ll
The acidic gas is absorbed into the absorption liquid 3 through gas-liquid reaction and absorption with the raw material gas 2 in the collection tower 1 . As a result, the raw material gas 2 from which the acidic gas has been removed is discharged from the upper part of the absorption tower 1 as a cleaning gas 4.
一方、酸性ガスを吸収した吸収液3は吸収塔1の下部か
ら出て、流量調整弁5.熱交換器6を通って再生塔7に
流れ込む。流量調整弁5は、液面検出器29からの出力
信号により制御される。再生塔7内で酸性ガスを除去さ
゛れて再生された吸収液3は、再び熱交換器6を通り、
ここで!生塔7側に導入される吸収液3に熱を与え、さ
らIfCR量調整弁8.流量検出器9を通って吸収塔1
にもどる。このように吸収液3は吸収塔1と再生塔10
間を循環する、ようKなっており、この循環は溶液循環
ポンプ10により行なわれる。On the other hand, the absorption liquid 3 that has absorbed the acidic gas comes out from the lower part of the absorption tower 1 and flows through the flow rate adjustment valve 5. It flows into the regeneration tower 7 through the heat exchanger 6. The flow rate adjustment valve 5 is controlled by the output signal from the liquid level detector 29. The absorbent liquid 3 that has been regenerated after removing acidic gas in the regeneration tower 7 passes through the heat exchanger 6 again.
here! Heat is applied to the absorption liquid 3 introduced into the raw tower 7 side, and the IfCR amount adjustment valve 8. Absorption tower 1 through flow rate detector 9
Return to In this way, the absorption liquid 3 is distributed between the absorption tower 1 and the regeneration tower 10.
This circulation is performed by a solution circulation pump 10.
前記再生塔Tの底部には、再生に゛必要な熱量會与え秦
ために1加熱手段としての再生塔再沸器11が設けられ
ており、この再生塔再沸器11内に導入され九a収液3
にはスチーム12により熱量が加えられる。なお、スチ
ーム12の流量は流量検出器13によって検出され、流
量調整弁14によシ調整されている。ま九再生塔再沸器
11から出てくるスチーム12から液体を分離するため
のスチームトラ゛ツブ15がスチーム排出路内に設けら
れている。At the bottom of the regeneration tower T, a regeneration tower reboiler 11 is provided as a heating means to provide the necessary amount of heat for regeneration. Collection liquid 3
Heat is added by steam 12 to . Note that the flow rate of the steam 12 is detected by a flow rate detector 13 and regulated by a flow rate regulating valve 14. A steam tube 15 for separating liquid from the steam 12 coming out of the regeneration tower reboiler 11 is provided in the steam discharge passage.
再生塔T内で分離された被吸収ガスとしての酸性ガス1
6社再生塔Tの塔頂から排出される。この酸性ガス16
中に#i吸収液3が混入しているためこれを除去するた
めに排出路中に凝縮器17が設けられている。凝縮器1
7によって液化した吸収液3は環流槽18で気液分離さ
れ、この環流槽18から再生塔環流ポンプ19.R量調
整弁2゜を介して再生塔TKもどされる。流量調整弁2
゜のrJRJfは液面検出器21からの出力信号によっ
て制御されて因る。一方、環流槽18を通った酸性ガス
18Fi吸収液3を完全に除去されて次工程へ送出され
る。この送出される酸性ガス16の流量を検出する良め
に酸性ガス流量122がその送出路に設けられている。Acidic gas 1 as absorbed gas separated in regeneration tower T
It is discharged from the top of the regeneration tower T of Company 6. This acidic gas 16
Since the #i absorption liquid 3 is mixed therein, a condenser 17 is provided in the discharge path to remove this. Condenser 1
The absorption liquid 3 liquefied by 7 is separated into gas and liquid in a reflux tank 18, and from this reflux tank 18 is sent to a regeneration tower reflux pump 19. It is returned to the regeneration tower TK via the R amount adjustment valve 2°. Flow rate adjustment valve 2
rJRJf of .degree. is controlled by the output signal from the liquid level detector 21. On the other hand, the acidic gas 18Fi absorption liquid 3 that has passed through the reflux tank 18 is completely removed and sent to the next process. An acidic gas flow rate 122 is provided in the delivery path to detect the flow rate of the acidic gas 16 sent out.
なお、再生塔7の塔頂温fT1は塔頂温度指示計23に
より検出されるようになっている。Note that the tower top temperature fT1 of the regeneration tower 7 is detected by a tower top temperature indicator 23.
次に、上記のよ51にシステムに於ける吸収113とス
チーム12の流量との制御方法について説明する。Next, a method of controlling the flow rates of the absorption 113 and the steam 12 in the system 51 described above will be explained.
吸収Il[3の流量は流量調整弁8によ量制御されるが
、この流量調整弁8を酸性ガス流量計22と吸収液循環
制御手段24を介してカスケード接続し、吸収液循環制
御手段24からの出力信号によってフィードバック制御
する。化学量論的に必要とされる吸収液3の循環量QR
は(1)式で計算される。The flow rate of absorption Il[3 is controlled by a flow rate adjustment valve 8, which is connected in cascade via an acidic gas flowmeter 22 and an absorption liquid circulation control means 24. Feedback control is performed by the output signal from. Stoichiometrically required circulating amount of absorption liquid 3 QR
is calculated using equation (1).
こζで、Q:酸性ガス流量
a:酸性ガス#&度
b:溶液濃f(lj収液の濃度)
d:溶液分子量(吸収液の分子量)
である、この際、酸性ガス濃度、溶液濃度、溶液負荷、
溶液分子量等は当皺経路中に設けられた適宜な′検出器
によりあらかじめもしくは定期的なすy 7” IJ
yグにより求められている。Here, Q: acidic gas flow rate a: acidic gas # & degree b: solution concentration f (lj concentration of collected liquid) d: solution molecular weight (molecular weight of absorption liquid) In this case, acidic gas concentration, solution concentration , solution loading,
The molecular weight of the solution is measured in advance or periodically using an appropriate detector installed in the wrinkle path.
It is determined by yg.
一方、再生塔7の塔頂温度指示計23とスチーム12の
流量調整弁14も、比゛例、積分、微分動作を行なうス
チーム流量制御手段25を介してカスケード接続されて
おり、塔頂温度T1が設定値より下がれば再生塔再沸器
11のスチーム12の量を増大し、逆に塔頂温IIIL
T1が設定値よシ上が糺ば、スチーム12の量を減少さ
せるように動作する。On the other hand, the top temperature indicator 23 of the regeneration tower 7 and the flow rate regulating valve 14 of the steam 12 are also cascade-connected via a steam flow rate control means 25 that performs comparative, integral, and differential operations. If the temperature falls below the set value, the amount of steam 12 in the regeneration tower reboiler 11 is increased, and conversely the tower top temperature III
When T1 exceeds the set value, the amount of steam 12 is reduced.
このようにして吸収液゛循環量とスチームiとの両者が
それぞれ送出される酸性ガス16の流量と、再生塔7の
塔頂温度71によって制御されるのであるが、流量調整
弁8によシ行なわれる吸収液循環量の変化に応答して、
あらかじ°め再生塔再沸器11に導入されるスチーム1
2の流量調整弁14“を変化させるフィードフォワード
制御を、上記のスチーム量制御機構に組み込むために遅
れ動作制御手段(LEAD LAG) 26 、比例・
積分・微分動作子R(PID N0R) 27および合
算手段(SUM)28が附加されている。In this way, both the circulation amount of the absorption liquid and the steam i are controlled by the flow rate of the acidic gas 16 sent out and the tower top temperature 71 of the regeneration tower 7, and the flow rate adjustment valve 8 In response to changes in the amount of absorption fluid being circulated,
Steam 1 introduced into the regeneration tower reboiler 11 in advance
In order to incorporate the feedforward control that changes the flow rate adjustment valve 14'' of No. 2 into the steam amount control mechanism, a delay operation control means (LEAD LAG) 26, a proportional
An integral/differential operator R (PID N0R) 27 and a summing means (SUM) 28 are added.
流量検出11sKよって検出された吸収液3の流量便化
は、遅れ動作制御手段26に伝達され、吸収液3が循環
することによる遅れに対応させるため一定時間遅嬌して
合算手段28に出力される。The flow rate reduction of the absorbent liquid 3 detected by the flow rate detection 11sK is transmitted to the delay operation control means 26, and output to the summing means 28 after being delayed for a certain period of time in order to cope with the delay caused by the circulation of the absorbent liquid 3. Ru.
一方、塔頂温度指示計23によって検出された塔頂温度
T1は比例書積分・微分動作手段27に伝達され、塔頂
温度T1の変化に応じて比例・積分拳徽分勢の演算がさ
れた發に合算手段28に出力される。合算手段28は、
これらの両者の信号を適轟な比率で混合し、スチーム流
量制御手段25に伝達する。このスチーム流量制御手段
25は合算手段28から伝達された信号に応じて比例・
積分・微分動作を行い、この出力信号によル流量調整弁
14を制御している。On the other hand, the tower top temperature T1 detected by the tower top temperature indicator 23 is transmitted to the proportional integral/differential operating means 27, and the proportional/integral force is calculated according to the change in the tower top temperature T1. The result is then output to the summing means 28. The summing means 28 is
These two signals are mixed at an appropriate ratio and transmitted to the steam flow rate control means 25. This steam flow rate control means 25 is proportional to the signal transmitted from the summing means 28.
Integral/differential operations are performed, and the flow rate adjustment valve 14 is controlled by this output signal.
仁の゛よ5Kして、塔頂温[T1からのフィードバック
制′御量と、徴収液循環量からのフィードフォワード制
゛御−量とが一定の−合になるように設定することによ
り、流入原料ガスの流量変化、原料ガス中の酸性ガスの
If変化に対しても常11C吸収液の吸収効率を一定に
保つよ5’にする事が出来るので、安定した吸収・再生
システムによるガス流処理プラントの自動制御が出来る
。By increasing the temperature by 5K and setting the tower top temperature so that the feedback control amount from T1 and the feedforward control amount from the collected liquid circulation amount are a constant value, The absorption efficiency of the 11C absorption liquid can be kept constant at 5' even with changes in the flow rate of the inflowing raw material gas and changes in If of the acidic gas in the raw material gas, so the gas flow can be maintained by a stable absorption/regeneration system. Automatic control of processing plants is possible.
以上、詳細に説明したように1本実施例の制御方法では
、吸収液3の循環量と再生塔7の加熱量との制御を吸収
塔1に流入される。As described above in detail, in the control method of this embodiment, the circulation amount of the absorption liquid 3 and the heating amount of the regeneration tower 7 are controlled by flowing into the absorption tower 1.
原料ガス2の流量を基準として行うのではなく、再生塔
Tから送出される被吸収ガスとしての酸性ガス16の流
量に基づいて行っているので、原料ガス20大巾な流量
変動や、原料ガス2中の酸性ガス16の濃度変動に対し
ても有効に追随出来、安定した吸収・再生システムの運
転ができるというすぐれた効果がある。また、再生塔T
の加熱を有効に行なえるため、無駄なエネルギーの消耗
もなく、さらに、従来のように調整おくれKよる吸収液
3の再生不良がなくなり、原料ガス2中の酸性ガス16
が完全に除去されるから、金属材料の腐食を生じさせる
こともない。The process is not based on the flow rate of the raw material gas 2, but is based on the flow rate of the acidic gas 16 as the absorbed gas sent out from the regeneration tower T. This has the excellent effect of being able to effectively follow changes in the concentration of the acidic gas 16 in the acid gas 16, allowing stable operation of the absorption/regeneration system. Also, regeneration tower T
Since heating can be performed effectively, there is no wasted energy consumption, and there is no longer a problem of poor regeneration of the absorption liquid 3 due to a delay in adjustment as in the conventional case, and acid gas 16 in the raw material gas 2 is eliminated.
Since it is completely removed, it does not cause corrosion of metal materials.
なお、以上説明した実施例では、再生塔再沸器11への
スチーム12の制御には、再生塔塔頂温度T1と流量検
出器9からの出力信号とを用いて制御を行った場合につ
いて述べたが、本発明はこれに@定されるものではなく
、再生塔再沸器tT1の信号の代りに1酸性ガス流量計
22からの信号によ〉下記の(3)弐に示すようにスチ
ーム/酸性ガス比を求め、この比が所定の値に常に一定
になるように調整弁14を制御しても同様の効果がある
。In the embodiments described above, the steam 12 to the reboiler 11 of the regeneration tower is controlled using the top temperature T1 of the regeneration tower and the output signal from the flow rate detector 9. However, the present invention is not limited to this, and instead of the signal from the regenerator reboiler tT1, the signal from the acid gas flow meter 22 is used to generate steam as shown in (3) 2 below. The same effect can be obtained by determining the /acid gas ratio and controlling the regulating valve 14 so that this ratio is always constant at a predetermined value.
従って、本発1jllにおいては、酸性ガス等の被吸収
ガスの流量を用いて吸収液(吸収剤)の循環流量をフィ
ードバック制御することと、この吸収液の循環流量によ
り再生塔再沸器等の加熱手段の加熱量をフィードフォワ
ード制御することが重要で、これに被吸収ガスの再生塔
塔頂温度あるいは流量等の状態量を用いて加熱手段の制
御に関与さぜることによって再生塔における吸収剤の再
生処理をより適切に行なおうとするものである。Therefore, in this plant 1jll, the circulation flow rate of the absorption liquid (absorbent) is feedback-controlled using the flow rate of the absorbed gas such as acid gas, and the circulation flow rate of the absorption liquid is used to control the regeneration tower reboiler, etc. It is important to perform feedforward control of the heating amount of the heating means, and by using state variables such as the regeneration tower top temperature or flow rate of the absorbed gas to control the heating means, absorption in the regeneration tower can be controlled. The aim is to more appropriately regenerate reagents.
また、被吸収ガスとしては酸性ガス16に限らず、他の
ガスでもよく、さらに1吸収液3も単なる液に限らずス
ラリー状、その他の吸収剤でもよい、さらに、加熱手段
としてはスチーム12によるものに限らず電気的等信の
加熱手段でもよい。Further, the gas to be absorbed is not limited to the acidic gas 16, but may be any other gas, and the absorption liquid 3 is not limited to a simple liquid, but may be in the form of a slurry or other absorbent.Furthermore, the heating means may be steam 12. The heating means is not limited to the heating means, and may be an electric heating means.
次に、前記図KMしたシステムを用いた具体的な実施例
を説明する。Next, a specific example using the system shown in Figure KM will be described.
を収液3としてモノエタノールアミン(M−E・A)を
使用し、原料ガス2である水素ガス中の酸性ガス3であ
る硫化水素を吸収除去するシステムに於いて、環流槽1
8から送出される硫化水素ガスの1ltat99−、モ
ノエタノールアミンの澄液濃度bt20重量−に設定し
、また溶液負荷Cをα35〜α5の範囲で金属の腐食度
を見ながら設定し、この場合は0.4とし1.さらKf
ll!分子量dを61で実施した。また、合算手段28
では遅れ動作制御手段26からの信号t4割、比例・積
分・微分動作子R27からの信号を6割として合算する
ように設定し、さらに塔頂温度T1は103〜108℃
の範I!IK入るよう制御したところ、再生塔再沸器1
1て用いられた蒸気量は、従来に比べ約3〇−削減でき
た。In a system that uses monoethanolamine (M-E・A) as the collected liquid 3 to absorb and remove hydrogen sulfide, which is the acidic gas 3, in the hydrogen gas, which is the raw material gas 2, the reflux tank 1
The hydrogen sulfide gas sent from 8 is set to 1ltat99-, the concentration of the clear liquid of monoethanolamine is set to bt20 weight-, and the solution load C is set in the range of α35 to α5 while observing the degree of corrosion of the metal. 0.4 and 1. Sara Kf
ll! The experiment was carried out with a molecular weight d of 61. In addition, the summation means 28
Then, the signal t from the delay operation control means 26 is set to 40%, the signal from the proportional/integral/differential operating element R27 is set to 60%, and the tower top temperature T1 is set to 103 to 108°C.
Range I! When IK was controlled to enter, the regeneration tower reboiler 1
1. The amount of steam used was reduced by approximately 30% compared to conventional methods.
、図は、本発明に係る自動制御方法を実施した吸収−再
生システムによるガス流処理プラントの構成図の一例を
示すものである。
1・・・吸収塔、2・・・原料ガス、3・・・吸収剤と
しての吸収液、4・・・・洗滌ガス、7・・・再生塔、
8・・・流量調整弁、9・・・流量検出器、1.1・・
・加熱手段としての再生塔再沸器、12・・・スチーム
、14・・・流量調整弁、16・・・被吸収ガスとして
の酸性ガス、22・・・酸性ガス流量計、23・・・塔
頂温度指示針、24・・・吸収液循環制御手段、25・
・・スチーム流量制御手段、26・・・遅れ動作制御手
段、27・・・比例・積分・微分動作手段、28−・・
合算手段。
代理人 弁理士 木 下 實 三, which shows an example of a configuration diagram of a gas stream processing plant using an absorption-regeneration system implementing the automatic control method according to the present invention. 1... Absorption tower, 2... Raw material gas, 3... Absorption liquid as an absorbent, 4... Washing gas, 7... Regeneration tower,
8...Flow rate adjustment valve, 9...Flow rate detector, 1.1...
- Regeneration tower reboiler as heating means, 12... Steam, 14... Flow rate adjustment valve, 16... Acid gas as absorbed gas, 22... Acid gas flow meter, 23... Tower top temperature indicator, 24... absorption liquid circulation control means, 25.
...Steam flow rate control means, 26...Delay action control means, 27...Proportional/integral/differential action means, 28-...
Summation means. Agent Patent Attorney Minoru Kinoshita
Claims (1)
Kll収させる吸収塔と、この吸収塔を通過し九歇収剤
中の被aaガスを分離送出させて吸収剤を再生させ前記
吸収塔へ循環させる再生塔と、この再生塔に再生に必要
な熱を付与する加熱手段とを備え九ガス流処理プラント
において、前記再生塔の塔頂部から送出される被吸収ガ
スの流量を検出し、この被徴収ガスの流量を用いて吸収
塔に循環される吸収剤の循環流量をフィードバック制御
するとともに、この吸収剤の循環流量を検出し、この吸
収剤O*m重量を用いて前記加熱手段の加熱量をフィー
ドフォワード制御することt−特徴とするガス流処理プ
ラントの自動制御方法。 (1) 前記特許請求の範囲第1項において、前記加
熱手段の加熱量の制御にあたり、前記被吸収ガスの状態
量に基づくフィードバック制御を加味することを特徴と
するガス流処理プラン)の自動制御方法。 (−)前記特許請求の範囲第2項において、前記被吸収
ガスの状態量として被吸収ガスの再生塔塔頂部温度を選
択し、この塔頂部温度による制御信号と前記吸収剤の循
環流量による制御信号とを所定の割合で合算して制御す
る仁とを特徴とするガス流処理プラントの自動制御方法
。 (4)前記特許請求の範囲第2項におりて、加熱手段を
スチームを用いる再生塔再沸器により構−成するととも
に、前記被吸収ガスの状態量として被吸収ガスの流量を
選択し、前記再生塔再沸器のスチームの流量・と被吸収
ガスの流量との比が常に所定O値TlC−!一定となる
よう制御する仁とを特徴とするガス流処lIプラントの
自動制御方法。[Scope of Claims] (1) An absorption tower that temporarily collects the gas to be absorbed in the raw material gas stream in an absorbent, and a gas to be absorbed in the collection agent that passes through the absorption tower and is sent out separately. A nine-gas flow processing plant comprising a regeneration tower for regenerating the absorbent and circulating it to the absorption tower, and a heating means for applying heat necessary for regeneration to the regeneration tower. The flow rate of the absorbed gas is detected, and the flow rate of the collected gas is used to feedback control the circulation flow rate of the absorbent that is circulated to the absorption tower. An automatic control method for a gas flow treatment plant, characterized in that the heating amount of the heating means is feedforward controlled using weight. (1) Automatic control of a gas flow treatment plan according to claim 1, characterized in that in controlling the heating amount of the heating means, feedback control based on the state quantity of the absorbed gas is taken into account. Method. (-) In claim 2, the temperature at the top of the regeneration tower of the absorbed gas is selected as the state quantity of the absorbed gas, and the control is performed using a control signal based on the temperature at the top of the tower and a circulating flow rate of the absorbent. 1. An automatic control method for a gas flow processing plant, characterized in that the signal is controlled by summing the signals at a predetermined ratio. (4) In claim 2, the heating means is constituted by a regeneration tower reboiler using steam, and the flow rate of the absorbed gas is selected as the state quantity of the absorbed gas, The ratio between the flow rate of steam in the regeneration tower reboiler and the flow rate of the gas to be absorbed is always at a predetermined O value TlC-! 1. An automatic control method for a gas flow treatment plant, characterized in that the temperature is controlled to be constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56100896A JPS583623A (en) | 1981-06-29 | 1981-06-29 | Automatic control method for gas flow treatment plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56100896A JPS583623A (en) | 1981-06-29 | 1981-06-29 | Automatic control method for gas flow treatment plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS583623A true JPS583623A (en) | 1983-01-10 |
JPS647811B2 JPS647811B2 (en) | 1989-02-10 |
Family
ID=14286095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56100896A Granted JPS583623A (en) | 1981-06-29 | 1981-06-29 | Automatic control method for gas flow treatment plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS583623A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59145014A (en) * | 1983-02-07 | 1984-08-20 | Nippon Mining Co Ltd | Control of liquid recirculation amount and regeneration heat amount in hydrogen sulfide recovery apparatus |
JP2013202496A (en) * | 2012-03-28 | 2013-10-07 | Toshiba Corp | Carbon dioxide recovery system and method of controlling the same |
JP2014004525A (en) * | 2012-06-25 | 2014-01-16 | Toshiba Corp | Carbon dioxide recovery apparatus and method for operating the same |
-
1981
- 1981-06-29 JP JP56100896A patent/JPS583623A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59145014A (en) * | 1983-02-07 | 1984-08-20 | Nippon Mining Co Ltd | Control of liquid recirculation amount and regeneration heat amount in hydrogen sulfide recovery apparatus |
JP2013202496A (en) * | 2012-03-28 | 2013-10-07 | Toshiba Corp | Carbon dioxide recovery system and method of controlling the same |
JP2014004525A (en) * | 2012-06-25 | 2014-01-16 | Toshiba Corp | Carbon dioxide recovery apparatus and method for operating the same |
Also Published As
Publication number | Publication date |
---|---|
JPS647811B2 (en) | 1989-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2339507C (en) | Method for controlling absorbent at decarboxylation facility and system therefor | |
US4106916A (en) | Automatic control of an absorption/stripping process | |
CN100418612C (en) | Control method wet method smoke desulfur for elecric power plant | |
US3395510A (en) | Gas scrubber | |
JP3212524B2 (en) | Control method of flue gas decarbonation equipment | |
JP2013504424A (en) | Method and system for removing carbon dioxide from a process gas | |
CA1150067A (en) | Side stream type condensing system and method of operating the same | |
KR800000034B1 (en) | A method for the wet air oxidation of sludge or liquor | |
US4322393A (en) | Process for drying calcium chloride generated in high chloride flue gas desulfurization systems | |
CA2950569C (en) | Co2 recovery unit and co2 recovery method | |
JPS583623A (en) | Automatic control method for gas flow treatment plant | |
JPH06154554A (en) | Method for controlling amine compound concentration in carbon dioxide-absorption liquid | |
WO2016006416A1 (en) | Co2 recovery device and co2 recovery method | |
US20240101500A1 (en) | Natural Gas Dehydration | |
KR101715488B1 (en) | A fluidized bed heat exchanger for condensing heat recovery from multi-type heat sources | |
JP4338928B2 (en) | Gas purification method, gas purification system and power generation system | |
US3411866A (en) | Method and apparatus for maintaining proper reactivation of absorbent solution | |
CN115608125A (en) | A method and system for controlling the discharge of desulfurization wastewater through online monitoring of chloride ions | |
JP4704743B2 (en) | Process for recovering methylene chloride | |
JPS59145014A (en) | Control of liquid recirculation amount and regeneration heat amount in hydrogen sulfide recovery apparatus | |
JP2923092B2 (en) | Method for removing carbon dioxide from flue gas | |
US4844876A (en) | Process and device for selective extraction of H2 S from an H2 S-containing gas | |
US4192850A (en) | Dual temperature exchange systems | |
SU1364357A1 (en) | Method of controlling the process of absorption-desorption | |
JPH02222712A (en) | Method for desulfurizing stack gas |