[go: up one dir, main page]

JPS5835970A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5835970A
JPS5835970A JP56135154A JP13515481A JPS5835970A JP S5835970 A JPS5835970 A JP S5835970A JP 56135154 A JP56135154 A JP 56135154A JP 13515481 A JP13515481 A JP 13515481A JP S5835970 A JPS5835970 A JP S5835970A
Authority
JP
Japan
Prior art keywords
region
film
base
layer
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56135154A
Other languages
Japanese (ja)
Other versions
JPH0126185B2 (en
Inventor
Osamu Hataishi
畑石 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56135154A priority Critical patent/JPS5835970A/en
Publication of JPS5835970A publication Critical patent/JPS5835970A/en
Publication of JPH0126185B2 publication Critical patent/JPH0126185B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D48/00Individual devices not covered by groups H10D1/00 - H10D44/00
    • H10D48/30Devices controlled by electric currents or voltages
    • H10D48/32Devices controlled by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H10D48/34Bipolar devices
    • H10D48/345Bipolar transistors having ohmic electrodes on emitter-like, base-like, and collector-like regions

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To reduce the area of an active region by conducting the introduction of an inpurity and the draw-out of an electrode from the side surface of the active region demarcated by a field insulating film. CONSTITUTION:When the region demarcated by the field oxide film of an N type Si epitaxial layer 13 is selectively etched by Si3N4 18 and the mask of a photo-resist 19, a groove 20 is formed to the film and a B ion implanting layer 21a is shaped, an Si exposed section is deeply molded and the section under the film 18 is shallowly formed. Poly Si 22' not added is stacked through a CVD method, B is implanted in high concentration, and a P<+> layer 21b is shaped. A base electrode 22 is formed through lift-off, and conductivity is given through annealing while a P<+> base connecting layer 23 is shaped. The surface is coated with poly Si 24 not added, an Si3N4 mask 25 is molded selectively, B<+> ions are implanted, and a P type external base 27 is formed through annealing. The layer 24 is selectively oxidized 28 up to its bottom, the layers 25, 24, 18 are removed through etching, B and successively As ions are implanted from a window 26, a P type internal base 29 and an N<+> emitter 30 are shaped through annealing, and an Al electrode 31 is formed. According to this constitution, the active region demarcated by the insulating film is reduced, and the density of elements can be increased.

Description

【発明の詳細な説明】 本発明はバイポーラ型半導体装置の製造方法に係り、特
に活性領域の側面がフィールド絶縁膜によって画定され
る構造のバイポーラ型半導体装置に於ける機能領域及び
電極の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a bipolar semiconductor device, and more particularly to a method for forming functional regions and electrodes in a bipolar semiconductor device having a structure in which side surfaces of an active region are defined by field insulating films. .

半導体素子の微細化を図ること社、半導体集積回路(I
C)の動作速度及び集積度を向上せしめるうえで重要な
課4である。
Semiconductor integrated circuit (I)
Section 4 is important in improving the operating speed and degree of integration of C).

バイポーラ型半導体装!11iK於て、素子の微細化を
図ゐ構造として多く用いられるものとして、活性領域が
フィールド絶縁膜で画定されるアイソ・プレーナ構造が
ある。このアイソ参プレーナ構造に於ては素子分離領域
、コレクタ・コンタクト領域及びベース領域が、一枚の
フォト・iスフによって自己整合された状態で形成され
るので、これらの領域を形成する際の位置合わせ余裕を
みる必要がなく、従って素子の微細化が図れるわけであ
る。
Bipolar semiconductor device! In 11iK, an iso-planar structure in which an active region is defined by a field insulating film is often used as a structure for miniaturization of elements. In this isoplanar structure, the element isolation region, collector/contact region, and base region are formed in a self-aligned state using a single photo-i-sphere, so the positions when forming these regions are There is no need to check the alignment margin, and therefore it is possible to miniaturize the element.

然し従来のアイソ参プレーナ構造に於ては、第1図に示
すようにベース電極窓1とエミッタ拡散窓兼電極窓2が
、別の位置合わせ工程を経てベース領域3上に並設され
るために、活性領域であるベース領域の長さLを、電極
窓の位置合わせ余裕αとベース電極窓10幅t、とエイ
ツタ電極窓の幅t!及びこれら電極窓上に形成する゛シ
極配線の位置合わせ余裕を考慮した電極窓間隔t、の和
(L=α+1B+L!+Lm)以下に縮小することがで
きないとbう問題がらり九◇ 本発明は上記問題点を除去するためにフィールド絶縁膜
によって画定された活性陳域の@面から不純物の導入及
び電極の導出を行うことにより活性領域面積を縮小せし
めるバイポーラ半導体装置の製造方法を提供する。
However, in the conventional isoplanar structure, as shown in FIG. 1, the base electrode window 1 and the emitter diffusion window/electrode window 2 are arranged side by side on the base region 3 through another alignment process. , the length L of the base region, which is the active region, the alignment margin α of the electrode window, the width t of the base electrode window 10, and the width t of the Eitsuta electrode window! There is a problem that the electrode window spacing t cannot be reduced to less than the sum (L=α+1B+L!+Lm) of the electrode window interval t, which takes into account the positioning margin of the electrode wiring formed on these electrode windows. In order to eliminate the above-mentioned problems, a method for manufacturing a bipolar semiconductor device is provided in which the area of the active region is reduced by introducing impurities and leading out electrodes from the @ plane of the active region defined by the field insulating film.

則ち本発明は活性領域の側面がフィールド絶縁膜により
て画定される構造のバイポーラ型半導体装置の製造方法
に於て、フィールド絶縁膜に活性領域の縁部側面を表出
する溝を形成し、該溝から活性領域内に不純物の導入を
行い、然る後膣溝上に前記不純物導入領域と接する電極
を形成する工程を有することを特徴とする。
That is, the present invention provides a method for manufacturing a bipolar semiconductor device in which the side surfaces of an active region are defined by a field insulating film, in which a groove is formed in the field insulating film to expose an edge side surface of the active region; The method is characterized by the step of introducing an impurity into the active region from the groove, and then forming an electrode on the groove to be in contact with the impurity introduced region.

以下本発明を一実施例について第2図に示す被処理半導
体基板の一例の断面構造図、及び第3図(&)乃至(j
)K示す第1の実施例の工程断面図、第4図(a)乃至
(e)に示す第2図の実施列の工程断面図を用いて詳細
に説明する。
The following is a cross-sectional structural diagram of an example of a semiconductor substrate to be processed shown in FIG. 2, and FIGS.
This will be explained in detail using process sectional views of the first embodiment shown in )K and process sectional views of the implementation row of FIG. 2 shown in FIGS.

本発明を適用してパイボー2型半導体装置を形成する際
の被処理基板は、例えば埋込み!−拡散。
When forming a Pibo 2 type semiconductor device by applying the present invention, the substrate to be processed may be, for example, embedded! - Diffusion.

エピタキシャル成長2選択熱酸化、不純物の選択導入等
1通常の工程を経て第2図に示すような構造に形成され
る。則ち第2図に於て°、11はP−型シリコン(Sl
)基板、12はN+fjS、埋込み14.13はN型シ
リコ−/(Si)エピタキシャル層(コレクタ領域)、
14はP1型索子分離領域、15はN+f!l!コレク
タ・コンタクト領域、16m、16b、16c。
A structure as shown in FIG. 2 is formed through regular steps such as epitaxial growth, selective thermal oxidation, and selective introduction of impurities. In other words, in Fig. 2, 11 is P-type silicon (Sl
) substrate, 12 is N+fjS, buried 14.13 is N-type silicon/(Si) epitaxial layer (collector region),
14 is the P1 type cordon separation region, 15 is N+f! l! Collector contact area, 16m, 16b, 16c.

16d、16・はフィールド二酸化シリコン(Sinり
膜を示す。
16d and 16. indicate field silicon dioxide (Sin film).

第3図(a)乃至(j)の工程断面図に示したのは、本
発明をベース領域のみに適用した一実施例である。
The cross-sectional views of FIGS. 3(a) to 3(j) show an embodiment in which the present invention is applied only to the base region.

即ち先ず第3図(a)に示すように、直接窒化法により
フィールドS10.膜16b及び16cによシ画定表出
された活性領域17ON型S1工ピタキシヤル層13上
面に150〜2oo(A)8度の第1の窒化シリコン(
SisNa)#18を形成する。次いで第3図6)に示
すようにフォト・レジスト膜19及び5lsN+膜18
をマスクにして選択エツチングを行い、フィールドS1
0*膜16bにNaSiエピタキシャル層13の側面を
表出する0、2〜0.3.(μm〕程度の深さのベース
・コンタクト溝20を形成し、次いで前記フォト・レジ
スト膜19をマスクにして、例えば注入エネルギー30
 (KeV 〕を注入iic 2 X 103’(at
m/−〕程度の条件で硼素CB)のイオン注入を行う。
That is, first, as shown in FIG. 3(a), field S10. A first silicon nitride film (150-200 (A) 8 degrees
SisNa) #18 is formed. Next, as shown in FIG. 3 (6), a photoresist film 19 and a 5lsN+ film 18 are formed.
Selective etching is performed using the mask as a mask, and the field S1
0*0, 2 to 0.3 where the side surface of the NaSi epitaxial layer 13 is exposed on the film 16b. A base contact groove 20 with a depth of approximately (μm) is formed, and then, using the photoresist film 19 as a mask, implantation energy of, for example, 30 μm is formed.
(KeV ) injected iic 2 X 103' (at
Ion implantation of boron CB) is performed under conditions of about 100 m/-].

なお該イオン注入に於て硼素イオンB+注入領域νaは
81面表出領域で深く、5IIIN4膜被覆領域で浅く
形成される〔虻は硼素イオンを示す)。次いで第3図(
e)に示すように該被処理基板上に化学気相成長(CV
D)法を用いて0.5〔μ屏〕程度の厚さの第1のノン
・ドープ多結晶St層22′を形成し、次いで骸ノy・
ドープ多結晶5il122’に例えば注入エネに’f−
60(KeV)、注入量5X10”(ate/at)程
度の条件で硼素の)の高濃度イオン注入を行う(21b
はB+注入領域)0次いでリフト・オフを行って、第3
図(d)に示すように前記ベース・コンタクト溝20を
覆う領域に多結晶81ベース電極配線22を形成し、所
望の高温アニール処理を行って、多結晶81ベース電極
配線22に導電性を附与すると同時に、該配線中の硼素
Bをベース・コンタクト溝20内に表出しているsiエ
ピタキシャル層内に拡散せしめ、該領域にP+型ベース
・コンタクト領域23を形成する。次いで第3図(e)
に示すように前記ベース電極−線220表面を含む被処
理基板上にCVD法を用いて500〔ス〕程度の厚さの
第2のノン・ドープ多結晶St層24を形成し、更にそ
の上KCVD法によfi2000(λ〕程度の厚さの第
2の81.N、膜25′を形成する。次いで通常の7オ
ト・エツチング法によシ第2の5isN+膜25′のパ
ターンニ/グを行い、第3図(イ)に示すようにエミッ
タ電極窓形成領域26を覆う8isNaパターン25を
形成し、該85N+パターン25をマスクにして例えば
注入エネルギー40(KeV)*注入緻2X10  (
ala/I:11)程度の条件で硼素(6)のイオン注
入を行い、所望の高温アニール処理を施してP屋外部ベ
ース領域27を形成する。次いで81aN+パターン2
5を耐酸化マスクとして第2の多結晶Si層24を底部
まで選択熱酸化して、第3図(吟に示すように多結晶シ
リコンベース電極配線22゜外部ベース領域27及びフ
ィールドS10.膜16b。
In this ion implantation, the boron ion B+ implantation region νa is formed deep in the 81-plane exposed region and shallow in the 5IIIN4 film-coated region (the globs indicate boron ions). Next, Figure 3 (
As shown in e), chemical vapor deposition (CV) is performed on the substrate to be processed.
D) A first non-doped polycrystalline St layer 22' having a thickness of about 0.5 [μ] is formed using the method, and then a skeleton layer 22' is formed.
For example, if the implantation energy is 'f-
High concentration boron ion implantation (21b) is performed under conditions of approximately 60 (KeV) and an implantation amount of 5 x 10'' (ate/at).
(B+ implanted region) 0 Then lift-off is performed and the third
As shown in Figure (d), a polycrystalline 81 base electrode wiring 22 is formed in a region covering the base contact groove 20, and a desired high temperature annealing treatment is performed to impart conductivity to the polycrystalline 81 base electrode wiring 22. At the same time, the boron B in the wiring is diffused into the Si epitaxial layer exposed in the base contact groove 20 to form a P+ type base contact region 23 in this region. Then Figure 3(e)
As shown in FIG. 2, a second non-doped polycrystalline St layer 24 having a thickness of about 500 mm is formed on the substrate to be processed including the surface of the base electrode line 220 using the CVD method. A second 81.N film 25' having a thickness of approximately fi2000 (λ) is formed by the KCVD method. Next, the second 5isN+ film 25' is patterned by the usual 7-to-etching method. As shown in FIG. 3(a), an 8isNa pattern 25 covering the emitter electrode window forming region 26 is formed, and using the 85N+ pattern 25 as a mask, the implantation energy is 40 (KeV)*implantation density 2×10 (
Boron (6) ions are implanted under conditions of approximately ala/I:11), and a desired high temperature annealing process is performed to form the P outdoor base region 27. Then 81aN+pattern 2
5 as an oxidation-resistant mask, the second polycrystalline Si layer 24 is selectively thermally oxidized to the bottom, and as shown in FIG. .

16eの表面を覆う5lot絶縁膜28を形成する0次
いで第3図6)に示すように前記5isN+ハターン2
5及びその下部の第2の多結晶81層24及び第1の8
11N4膜18を選択的にエツチング除去して前記81
0*絶縁膜27に工建ツタ電極窓26を形成した後、該
エミッタ電極窓26から例えば注入エネルギー30(K
eV)、5X10”(mtll/cd)程度の条件で硼
*(B)のイオン注入を行い入−型s1エピタキシャル
層に所望の深さの8%人領域29′を形成し、次いで第
3図(1)に示すようにエミッタ電極窓26から例えば
注入エネルギー60 (KeV )y注入量5 X 1
0”(mtwx/ai )程度の条件で砒素イオン(A
ll+)を前記B+注入領域29′よシ洩く且つ高濃度
に注入した後、所望の高温アニール処理を施してP型内
部ペース領域29及びN十型エミ、り領域30を形成す
る。次いで通常の蒸着、パターンニングの工程を経て第
3図(j)に示すようにニオツタ電極窓26上K例えば
アルミニウム(A t>−81合金等からなる金属・、
エミッタ電極配線31を形成する。なお前述のように多
結晶Slペース電極配線22の表面は5101絶縁膜2
8で覆われているので、該エミッタ電極配線31a前記
ペース電極配線22にオーバ・2ツブして形成すること
ができる◎次いで図示しないがカベ−絶縁膜の形成等が
なされて半導体装置が提供される。
Then, as shown in FIG.
5 and the second polycrystalline 81 layer 24 below it and the first 8
The 11N4 film 18 is selectively etched away to form the 81
0*After forming the constructional ivy electrode window 26 on the insulating film 27, for example, injection energy 30 (K
Boron * (B) ions were implanted under conditions of approximately 5×10” (mtll/cd) to form an 8% human region 29' with a desired depth in the in-type s1 epitaxial layer, and then, as shown in FIG. As shown in (1), from the emitter electrode window 26, for example, the implantation energy is 60 (KeV)y, the implantation amount is 5.times.1
Arsenic ions (A
After implanting the B+ implanted region 29' at a high concentration, a desired high temperature annealing process is performed to form the P type internal space region 29 and the N0 type emitter region 30. Next, through normal vapor deposition and patterning steps, as shown in FIG. 3(j), a metal such as aluminum (A t>-81 alloy, etc.) is deposited on the electrode window 26.
Emitter electrode wiring 31 is formed. As mentioned above, the surface of the polycrystalline Sl space electrode wiring 22 is coated with the 5101 insulating film 2.
8, the emitter electrode wiring 31a can be formed over the space electrode wiring 22 by two layers.Next, although not shown, a wall insulating film is formed, etc., and a semiconductor device is provided. Ru.

又第4図(a)乃至(e)の工程断面図に示したのは、
本発明をベース領域とエミッタ領域の両方に通用した一
実施例である。
Also, what is shown in the process cross-sectional views of FIGS. 4(a) to (e) is as follows.
This is an embodiment in which the present invention is applied to both the base region and the emitter region.

則ち第4図(a)に示すように、第1の実施例と同様の
工程を経て第3図(d)と同様の構造に形成された被処
理半導体基板上の多結晶Slベース電極配線22の表面
に、先ず直接雪化法を用いて15cF−200〔ム〕柵
度の厚さのSi、N、絶縁膜32を形成する〇(なお第
4図に於て13はNmSiエピタキシャル層、16b、
16cはフィールドstow膜、17は活性領域、18
は第1のSt、N、膜、20はベース・コンタクト溝、
23はP 型ペース・コンタクト領域を示す0)次いで
1g4図(b)K示すようにフォト・レジス)Ill 
9をマスクとしてフィールドSin。
That is, as shown in FIG. 4(a), the polycrystalline Sl base electrode wiring on the semiconductor substrate to be processed is formed through the same steps as in the first embodiment and in the same structure as in FIG. 3(d). First, on the surface of 22, an Si, N, insulating film 32 with a thickness of 15 cF-200 [mu] is formed using a direct snow formation method (in Fig. 4, 13 is a NmSi epitaxial layer; 16b,
16c is a field stow film, 17 is an active region, 18
is the first St, N, film, 20 is the base contact groove,
23 indicates the P-type space contact region 0) then photoresist as shown in 1g4(b)K)Ill
Field Sin with 9 as a mask.

膜16cの表出領域を選択的にエツチングし、該フィー
ルドSin、膜16cにN型81工ピタキシヤル層13
の側面を表出する深さ0.2〜0.3(Jlm)程度の
工きツタ・コンタクト11133を形成し、次いで上記
フォト・レジスト膜19をマスクとして例えば注入エネ
ルギー30(Key)、注入量5 X 10”(ats
s/−〕程度の条件で硼素イオン(B+)の選択注入を
行いN−型S1エピタキシャル層13内に所望の深さの
硼素イオン(B+)注入領域34′を形成する。次いで
第4図(e)に示すように上記フォト・レジスト膜19
及び第1の5isN+膜18をマスクとして同一領域に
、例えば注入エネルギー20〔K・■〕、注入量5XI
OI”(ate/aA)程度の条件で、高濃度に砒素イ
オン(A I +)の選択注入を行い、B+注入領域3
4’内に該領域より浅いA8+注入領域35′を形成す
る。
The exposed area of the film 16c is selectively etched, and an N-type 81 pitaxial layer 13 is formed on the field Sin and the film 16c.
An ivy contact 11133 with a depth of about 0.2 to 0.3 (Jlm) is formed to expose the side surface of the wafer, and then using the photoresist film 19 as a mask, for example, an implantation energy of 30 (Key) and an implantation amount are applied. 5 x 10” (ats
Selective implantation of boron ions (B+) is performed under conditions of approximately s/- to form a boron ion (B+) implanted region 34' of a desired depth in the N- type S1 epitaxial layer 13. Next, as shown in FIG. 4(e), the photoresist film 19 is
Then, using the first 5isN+ film 18 as a mask, the same region is implanted with an implantation energy of 20 [K·■] and an implantation amount of 5XI.
Arsenic ions (A I +) are selectively implanted at a high concentration under conditions of approximately OI" (ate/aA), and the B+ implanted region 3 is
An A8+ implantation region 35', which is shallower than the region 4', is formed within the region 4'.

次いでフォト・レジスト膜19を除去した後、所七叢 蒸 温の高温アニール処理を施して第4図(d)に示すよう
にN型81工ピタキシヤル層13の上部に前記P+型ペ
ース・コンタクト領域23に接するP型内部ペース領域
34を、又該P型内部ベース領域34内にi工ずツク領
域35を形成する0次いで蒸着。
After removing the photoresist film 19, a high-temperature annealing process is performed at a temperature of about 70% to form the P+ type space contact region on the upper part of the N type pitaxial layer 13, as shown in FIG. 4(d). A P-type internal space region 34 adjoining the P-type internal base region 23 is then deposited to form an i-processed region 35 within the P-type internal base region 34 .

パターンニング等の工程を経て第4図(e) K示すよ
うにフィールド5ift膜16cのニオツタ拳コンタク
ト溝33上にAt合金等からなる金属・工きツタ電極配
線31を形成し、次いで図示しないがカバー絶縁属の形
成等がなされて半導体装置が提供される。なお前述じた
ように多結晶S1ベ一スwi配線22の表面は511N
4絶縁膜32で覆われているので、該金属エミッタ電極
配線31は前記多結晶81ベース電極配線22にオーバ
・ラップして形成できる。
As shown in FIG. 4(e)K through processes such as patterning, a metal/etched electrode wiring 31 made of At alloy or the like is formed on the contact groove 33 of the field 5ift film 16c, and then, although not shown, A semiconductor device is provided by forming a cover insulator and the like. As mentioned above, the surface of the polycrystalline S1 base Wi wiring 22 is 511N.
4, the metal emitter electrode wiring 31 can be formed to overlap the polycrystalline 81 base electrode wiring 22.

上記実施例の説明から明らかなように本発明をベース領
域のみに適用した際にはベース′を極配線の接続領域が
、フィールド絶縁膜で画定された活性領域の側面に形成
されるので、その分だけ活性領域の長さを縮小すること
ができる。
As is clear from the description of the above embodiments, when the present invention is applied only to the base region, the connection region between the base and the electrode wiring is formed on the side surface of the active region defined by the field insulating film. The length of the active region can be reduced by that amount.

又本発明をベース領域とエミッタ領域の両方に適用し死
際には、ペース電極配線の接続傾城及びエミッタ電極配
線の接続領域が共にフィールド絶縁膜で画定された活性
領域の側面に形成されるので、その分だけ更に活性領域
の長さを縮小することができる。
Furthermore, when the present invention is applied to both the base region and the emitter region, both the connection slope of the pace electrode wiring and the connection region of the emitter electrode wiring are formed on the side surface of the active region defined by the field insulating film. , the length of the active region can be further reduced by that amount.

以上説明したように本発明によれば活性領域の側面が絶
縁膜によって画定されるアイソ・プレーナ構造等のパイ
ボー2型半導体素子に於ける活性領域面積が縮小できる
ので、素子の高密度化が図れる0 なお本発明の方法は逆導電型の半導体装置にも適用でき
る0又エミツタ電極配線にはAt合金以外に高融点金属
、高融点金属珪化物、多結晶シリコン等信の配線材料も
使用できる。
As explained above, according to the present invention, the area of the active region in a pibo-2 type semiconductor device such as an iso-planar structure in which the sides of the active region are defined by an insulating film can be reduced, so that the density of the device can be increased. Note that the method of the present invention can also be applied to semiconductor devices of opposite conductivity type.In addition to At alloys, wiring materials such as high-melting point metals, high-melting point metal silicides, and polycrystalline silicon can also be used for the emitter electrode wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアイソ・プレーナ構造の上面模式図、第
2図は本発明の方法に使用する被処理半導体基板の一例
の断面構造図、第3図(a)乃至(j)は本発明の第1
の実施例に於ける工程断面図で、第4図(a)乃至(・
)は本発明の第2の実施例に於ける工程断面図である。 図に於て、13はN型シリコン・エビタキクヤル層* 
 16 b@ 16 cはフィールド二酸化シリコン膜
。 17は活性領域、18は第1の窒化シリコン膜、19は
フォト・レジスト膜、20はペース・コンタクト溝。 21a、21b、29’、34’は硼素イオン注入領域
。 22は多結晶シリコン・ベース電極配線、23はP+臘
ベースφコンタクト領域、24はfa2のノン・ドープ
多結晶シリコン層、25′は第2の窒化シリコン膜、2
5は窒化シリコン・パターン、26′はエンツタ電極窓
形成領域、26はエミッタ電極窓、27はP屋外部ペー
ス涜域、28は二酸化シリコン絶縁膜、29.34はP
型内部ペース領域*  go、sはt型ニオツタ領域、
31は金属・エミッタ電極配線、32は窒化シリコン絶
縁膜、33はエミッタ・コンタクト溝、35′は砒素イ
オン注入領域、B+は硼素イオン、  Aa+は砒素イ
オンを示す。 第1 11 第3霞 第3 閃 隼1 竿4閃
FIG. 1 is a schematic top view of a conventional iso-planar structure, FIG. 2 is a cross-sectional structural diagram of an example of a semiconductor substrate to be processed used in the method of the present invention, and FIGS. the first of
FIG. 4(a) to (・
) is a process sectional view in a second embodiment of the present invention. In the figure, 13 is an N-type silicon layer*
16 b @ 16 c is a field silicon dioxide film. 17 is an active region, 18 is a first silicon nitride film, 19 is a photoresist film, and 20 is a space contact groove. 21a, 21b, 29', and 34' are boron ion implanted regions. 22 is a polycrystalline silicon base electrode wiring, 23 is a P+ base φ contact region, 24 is an fa2 non-doped polycrystalline silicon layer, 25' is a second silicon nitride film, 2
5 is a silicon nitride pattern, 26' is an emitter electrode window forming region, 26 is an emitter electrode window, 27 is a P external space area, 28 is a silicon dioxide insulating film, and 29.34 is a P
Type internal pace area * go, s is T-type Niotsuta area,
31 is a metal/emitter electrode wiring, 32 is a silicon nitride insulating film, 33 is an emitter contact groove, 35' is an arsenic ion implantation region, B+ is a boron ion, and Aa+ is an arsenic ion. 1st 11th 3rd Kasumi 3rd Senhaya 1 Rod 4th Sen

Claims (1)

【特許請求の範囲】[Claims] 活性領域の側面がフィールド絶縁膜によって画定される
構造のバイポーラ型半導体装置の製造方法に於て、フィ
ールド絶縁属に活性領域の縁部側面を表出する溝を形成
し、該溝から活性領域内に不純物の導入を行い、然る後
膣溝上に前記不純物導入領域と接すゐ電極を形成する工
程を有することを特徴とする半導体装置の製造方法。
In a method of manufacturing a bipolar semiconductor device having a structure in which the side surfaces of an active region are defined by a field insulating film, a groove is formed in the field insulating material to expose the edge side surface of the active region, and the inside of the active region is formed from the groove. 1. A method for manufacturing a semiconductor device, comprising the steps of introducing an impurity into the region, and then forming an electrode on the vaginal groove in contact with the impurity-introduced region.
JP56135154A 1981-08-28 1981-08-28 Manufacturing method of semiconductor device Granted JPS5835970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135154A JPS5835970A (en) 1981-08-28 1981-08-28 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135154A JPS5835970A (en) 1981-08-28 1981-08-28 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5835970A true JPS5835970A (en) 1983-03-02
JPH0126185B2 JPH0126185B2 (en) 1989-05-22

Family

ID=15145074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135154A Granted JPS5835970A (en) 1981-08-28 1981-08-28 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5835970A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419675A (en) * 1977-07-15 1979-02-14 Hitachi Ltd Production of semiconductor devices
JPS559425A (en) * 1978-07-07 1980-01-23 Oki Electric Ind Co Ltd Manufacturing method for semiconductor device
JPS56126961A (en) * 1980-03-03 1981-10-05 Ibm Semiconductor device
JPS56157042A (en) * 1980-05-06 1981-12-04 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419675A (en) * 1977-07-15 1979-02-14 Hitachi Ltd Production of semiconductor devices
JPS559425A (en) * 1978-07-07 1980-01-23 Oki Electric Ind Co Ltd Manufacturing method for semiconductor device
JPS56126961A (en) * 1980-03-03 1981-10-05 Ibm Semiconductor device
JPS56157042A (en) * 1980-05-06 1981-12-04 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0126185B2 (en) 1989-05-22

Similar Documents

Publication Publication Date Title
US4102733A (en) Two and three mask process for IGFET fabrication
JPH0228902B2 (en)
JPH0628266B2 (en) Method for manufacturing semiconductor device
US4210993A (en) Method for fabricating a field effect transistor
JPS58175846A (en) Manufacture of semicondutor device
JPH05206451A (en) MOSFET and manufacturing method thereof
JPH0325972A (en) Semiconductor memory and manufacture thereof
US3967364A (en) Method of manufacturing semiconductor devices
JPS5835970A (en) Manufacturing method of semiconductor device
JPS5940571A (en) semiconductor equipment
JPH0127589B2 (en)
JP2707536B2 (en) Method for manufacturing semiconductor device
JPS61225851A (en) Semiconductor device and manufacture thereof
JPS603157A (en) Manufacture of semiconductor device
JPH05226466A (en) Manufacture of semiconductor device
JP2621607B2 (en) Method for manufacturing semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JPH1126756A (en) Manufacture of semiconductor device
JPS6117144B2 (en)
JPS613470A (en) semiconductor equipment
JPH04162631A (en) Manufacture of semiconductor device
JPS61147575A (en) Manufacturing method of semiconductor device
JPH02275639A (en) Manufacture of semiconductor device
JPH05267332A (en) Manufacture of semiconductor device
JPH0691101B2 (en) Bipolar transistor manufacturing method