[go: up one dir, main page]

JPS5834791B2 - Earthquake telemeter method - Google Patents

Earthquake telemeter method

Info

Publication number
JPS5834791B2
JPS5834791B2 JP53009842A JP984278A JPS5834791B2 JP S5834791 B2 JPS5834791 B2 JP S5834791B2 JP 53009842 A JP53009842 A JP 53009842A JP 984278 A JP984278 A JP 984278A JP S5834791 B2 JPS5834791 B2 JP S5834791B2
Authority
JP
Japan
Prior art keywords
observation
motion component
earthquake
motion
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53009842A
Other languages
Japanese (ja)
Other versions
JPS54104375A (en
Inventor
摂三 宮村
誠 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP53009842A priority Critical patent/JPS5834791B2/en
Publication of JPS54104375A publication Critical patent/JPS54104375A/en
Publication of JPS5834791B2 publication Critical patent/JPS5834791B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明は、地震動の伝送において、地震動の各種情報の
うち伝送すべき情報の種類を、地震の震源およびマグニ
チュードを決定するに必要な程度に制限することによっ
て、伝送に要する回線数の節約または低品質回線の有効
利用をはかる地震テレメータ方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention improves the transmission of earthquake motion by limiting the type of information to be transmitted among various information on earthquake motion to the extent necessary to determine the epicenter and magnitude of the earthquake. This paper relates to an earthquake telemeter system that saves the number of lines required or makes effective use of low-quality lines.

従来の地震テレメータ方式の代表例を第1図に示す。A typical example of a conventional seismic telemeter system is shown in Figure 1.

第1図は観測点数が3点、その中の1観測点を拠点とし
て基地局へ地震動を伝送する場合である。
Figure 1 shows a case where there are three observation points, and one of them is used as a base to transmit seismic motion to a base station.

第1図において、1a〜3aは観測地域に設けられた観
測点で、1aは基地局に直接接続する拠点を兼ねている
In FIG. 1, 1a to 3a are observation points provided in the observation area, and 1a also serves as a base directly connected to a base station.

4aは観測地域から遠隔の地域にある基地局である。4a is a base station located in an area remote from the observation area.

5a〜7aは地震動信号を伝送する回線である。Lines 5a to 7a transmit seismic motion signals.

観測点1a〜3bが設けられる観測地域は、通常は、常
時微動の影響をさけるため、不便な山間僻地に選ばれ無
人である。
The observation area where observation points 1a to 3b are provided is usually an inconvenient remote mountain area and is uninhabited in order to avoid the effects of constant tremors.

一方、基地局4aは、地震に関する情報を必要とする機
関の所在するところでもあり、通常は部会地に設けられ
る。
On the other hand, the base station 4a is also where an organization that requires information regarding earthquakes is located, and is usually installed at a sub-site.

したがって観測点1aと基地局43間の回線7aは長距
離化する傾向にある。
Therefore, the line 7a between the observation point 1a and the base station 43 tends to have a longer distance.

この回線7aによって伝送しなければならない地震動信
号は、観測点13〜3aの各々で得られる地震動の上下
動・南北動・東西動の3戊分の合計、9成分である。
The seismic motion signal that must be transmitted through the line 7a is a total of nine components of the three components of the vertical motion, north-south motion, and east-west motion of the earthquake motion obtained at each of the observation points 13 to 3a.

−例として電話用回線1回線で地震動3Fy、分は送れ
る。
-For example, one telephone line can transmit 3 Fy of seismic motion.

この例によれば、回線7aは3回線を必要とする。According to this example, line 7a requires three lines.

回線7aのごとく長距離回線を3回線も必要とするので
は、回線数の確保が困難な場合も生じる。
If three long-distance lines such as the line 7a are required, it may be difficult to secure the number of lines.

あるいは、折角、確保できても費用がかさんで維持しき
れなくなるなどの欠点がある。
Or, even if you manage to secure one, there are drawbacks such as the expense increasing and making it impossible to maintain it.

本発明の目的は、これらの欠点を除去するため、伝送す
る地震動の内容を、地震観測の目的が達成できる程度に
制限することによって、テレメータ回線数を減少するよ
うにしたもので、以下詳細に説明する。
The purpose of the present invention is to eliminate these drawbacks by reducing the number of telemeter lines by limiting the content of the seismic motion to be transmitted to the extent that the purpose of earthquake observation can be achieved.This will be described in detail below. explain.

第2図および第3図は本発明の第1の実施例であり、観
測点数が3点の場合である。
FIGS. 2 and 3 show a first embodiment of the present invention, in which the number of observation points is three.

第2図は、従来方式を説明した第1図に対応する図であ
って1は観測地域において拠点とする観測点(以下、観
測拠点という)、2および3は観測点、4は基地局、5
〜7はテレメータ用伝送回線、8はテレコントロール用
伝送回線、である。
FIG. 2 is a diagram corresponding to FIG. 1 explaining the conventional method, in which 1 is an observation point based in the observation area (hereinafter referred to as an observation base), 2 and 3 are observation points, 4 is a base station, 5
7 to 7 are telemeter transmission lines, and 8 is a telecontrol transmission line.

第3図は、観測拠点1、観測点2および3.基地局4の
内部を示す図であって、9は地震計上下動変換器(以下
、■変換器)、10は地震計上下動変換器(以下、N変
換器)、11は地震計上下動変換器(以下、E変換器)
、12は信号調整器(以下、調整器)、13は送量器、
14は受量器、15は切換器、16は送量器、17は受
量器、18は処理装置、19は制御信号送信器、20は
制御信号受信器である。
Figure 3 shows observation base 1, observation points 2 and 3. It is a diagram showing the inside of the base station 4, in which 9 is a seismometer vertical motion converter (hereinafter referred to as a converter), 10 is a seismometer vertical motion converter (hereinafter referred to as an N converter), and 11 is a seismometer vertical motion converter. Converter (hereinafter referred to as E converter)
, 12 is a signal conditioner (hereinafter referred to as a regulator), 13 is a feeder,
14 is a receiver, 15 is a switch, 16 is a feeder, 17 is a receiver, 18 is a processing device, 19 is a control signal transmitter, and 20 is a control signal receiver.

次に第1の実施例の動作を説明する。Next, the operation of the first embodiment will be explained.

観測点2および3において、地震動は■変換器9、N変
換器10、E変換器11により検出され、電気信号に変
換され、調整器12で増幅・ろ波等の信号調整を受けて
、送量器13で伝送回線に送出できるよう変調される。
At observation points 2 and 3, seismic motion is detected by converter 9, N converter 10, and E converter 11, converted into an electrical signal, subjected to signal adjustment such as amplification and filtering by regulator 12, and transmitted. The signal is modulated by the quantizer 13 so that it can be sent to the transmission line.

観測点2の送量器13の出力は伝送回線5を介して、ま
た観測点3の送量器13の出力は伝送回線6を介して、
観測拠点1の受量器14へ送られる。
The output of the meter 13 at observation point 2 is transmitted through the transmission line 5, and the output of the meter 13 at observation point 3 is transmitted through the transmission line 6.
It is sent to the receiver 14 of the observation base 1.

観測拠点1では、観測点2および3から送られてくる地
動信号のほかに、観測拠点1における地動を、■変換器
9、N変換器10、E変換器11、により検出し、調整
器12で信号調整したものも得られる。
At observation base 1, in addition to the ground motion signals sent from observation points 2 and 3, the ground motion at observation base 1 is detected by converter 9, N converter 10, and E converter 11; You can also obtain the signal adjusted by .

観測拠点1の受量器14では、観測点1および2からの
変調信号を復調して、切換器15に地動信号を供給する
The receiver 14 of the observation base 1 demodulates the modulated signals from the observation points 1 and 2 and supplies the ground motion signal to the switch 15.

観測拠点1における地動信号も調整器12から切換器1
5に供給される。
The ground motion signal at observation base 1 is also transferred from regulator 12 to switch 1.
5.

切換器15の入力には観測拠点1、観測点2および3の
地動の上下動・南北動・東西動の3fii分、合計9戊
分が常時供給されている。
The input of the switch 15 is constantly supplied with 3 fii minutes of vertical motion, north-south motion, and east-west motion of the ground motion of observation base 1, observation points 2 and 3, for a total of 9 minutes.

切換器15は常時は送量器16へ上下動3成分(観測拠
点1と観測点2と3との上下動成分)を送っている。
The switch 15 normally sends three vertical motion components (vertical motion components between observation base 1 and observation points 2 and 3) to the feeder 16.

送量器16ではこれを伝送回線に送出できるように変調
する。
The transmitter 16 modulates the signal so that it can be sent to the transmission line.

この変調信号は伝送回線7をとおして基地局4に送られ
、受量器17で復調され、処理装置18に導かれる。
This modulated signal is sent to the base station 4 through the transmission line 7, demodulated by the receiver 17, and guided to the processing device 18.

処理装置18は地震動に関する様々な判断、記録などを
行う。
The processing device 18 performs various judgments, records, etc. regarding earthquake motion.

処理装置18の入力は、常時は観測拠点1、観測点2,
3の地動信号の上下動成分であるから、地震が発生して
この観測網に地震波が到達すれば、その初動により地動
信号の上下動成分の振幅は、観測網の太きさできまる時
間内で一斉に増大する。
The input to the processing device 18 is always from observation base 1, observation point 2,
Since this is the vertical motion component of the ground motion signal in step 3, when an earthquake occurs and seismic waves reach this observation network, the amplitude of the vertical motion component of the ground motion signal due to the initial motion will increase within the time determined by the thickness of the observation network. increases all at once.

処理装置18では、このような地震の徴候を常時監視し
ていて、もしも地震と判定できれば、各上下動成分につ
き、発震時・押し引き・振幅・周期などをはかる。
The processing device 18 constantly monitors signs of such an earthquake, and if it is determined to be an earthquake, measures the time of onset, push/pull, amplitude, period, etc. for each vertical motion component.

これらをはかつてしまえば、震源およびマグニチュード
をはかる目的にとっては上下動成分を監視し続ける必要
はないので、処理装置18からV−H切換信号を発生し
て、制御信号送信器19から伝送回線8を介して観測拠
点1の制御信号受信器20へ送る。
Once these are removed, there is no need to continue monitoring the vertical motion component for the purpose of measuring the seismic source and magnitude. The signal is sent to the control signal receiver 20 of the observation base 1 via the control signal receiver 20 of the observation base 1.

制御信号受信器20が■H切換信号を切換器15に供給
すれば、切換器15はそれまでの上下動3成分から、水
平動6e。
When the control signal receiver 20 supplies the ■H switching signal to the switch 15, the switch 15 changes from the previous three vertical motion components to the horizontal motion 6e.

分に切換えて送量器16に送る。It is then switched to minutes and sent to the feeder 16.

送量器16はこれまでの3成分入力が6成分人力になる
のであるから、変調内容を内部において切換える。
Since the feeder 16 changes the conventional three-component input into six-component manual input, the modulation content is switched internally.

成分数が2倍になるのであるから、上下動成分伝送の場
合の最高伝送周波数に対し水平動成分伝送の場合は約1
/2となる。
Since the number of components is doubled, the maximum transmission frequency for vertical motion component transmission is approximately 1 for horizontal motion component transmission.
/2.

切換後は、送量器16から伝送回線7を介して基地局4
の受量器17へ、水平動6戊分が伝送される。
After switching, the base station 4 is transmitted from the data transmitter 16 via the transmission line 7.
The six horizontal motions are transmitted to the receiver 17.

受量器17より水平動6成分の地震動信号を受けて、処
理装置18は、S波発震時、S液量大振幅、周期、地震
終結時刻をはかればH−V切換信号を発生し、制御信号
送信器19、伝送回線8、制御信号受信器20を介して
、切換器15を駆動し、常態の上下動3成分伝送に復旧
させる。
Receiving the seismic motion signal of six horizontal motion components from the receiver 17, the processing device 18 generates an H-V switching signal by measuring the S wave generation time, S liquid volume large amplitude, period, and earthquake end time, The switching device 15 is driven via the control signal transmitter 19, the transmission line 8, and the control signal receiver 20, and the normal vertical three-component transmission is restored.

以上説明した第1の実施例において、観測拠点1、観測
点2および3で構成される観測網は、1辺が数百〜数千
風程度であるから、その伝送回線5または6は自営も可
能であるし、既設の専用回線が利用できれば、これによ
ってもよい。
In the first embodiment described above, since the observation network consisting of the observation base 1 and observation points 2 and 3 has a width of several hundred to several thousand winds on one side, the transmission line 5 or 6 may be privately operated. If it is possible and an existing dedicated line can be used, this may be used.

これに対し観測拠点1と基地局4を結ぶ伝送回線7およ
び8は、一般的にいって長距離化する。
On the other hand, the transmission lines 7 and 8 connecting the observation base 1 and the base station 4 generally have longer distances.

−例としてその数字をあげれば、数十〜数百りである。-As an example, the numbers range from tens to hundreds.

このような長距離の自営回線を設けることは勿論、既設
の専用回線を多数使用することは、経済的にも社会的に
もきわめて非効率的である。
It is extremely inefficient both economically and socially to provide such long-distance private lines, as well as to use a large number of existing dedicated lines.

第1の実施例では、長距離化する伝送回線を、説明のご
とく3回線から2回線に減少することができた。
In the first embodiment, the number of long-distance transmission lines can be reduced from three to two, as explained above.

このような長距離伝送回線を電話回線についてみれば、
原則として4線式であるから、第1の実施例の伝送回線
7および8は、2回線として数えるべきものではなく4
線式1回線とすべきものである。
If we look at such long-distance transmission lines in terms of telephone lines,
Since it is basically a 4-wire system, the transmission lines 7 and 8 in the first embodiment should not be counted as 2 lines, but as 4 lines.
It should be a single wire system.

よって、従来方式であれば3回線を必要とした長距離の
伝送回線を、本発明の方式によれば、■回線に減少でき
る利点がある。
Therefore, the method of the present invention has the advantage of being able to reduce the number of long-distance transmission lines, which would require three lines in the conventional system, to (2) lines.

今まで説明した第1の実施例は観測拠点1において、常
時は上下動成分を送出し基地局からの切換信号により南
北動成分および東西動戊分に切換えて送出するものであ
ったが、第4図に示すごとく、観測拠点1において南北
動成分のみに切換えて送出する構成とすることもできる
In the first embodiment described so far, at the observation base 1, the vertical motion component is always transmitted, and the switching signal from the base station is used to switch to the north-south motion component and the east-west motion component. As shown in FIG. 4, it is also possible to configure the observation base 1 to switch to only the north-south motion component and send it out.

一般に地震動において、南北動成分を全く欠き、東西動
戊分のみということは、はとんど無い。
In general, it is rare for an earthquake motion to have no north-south motion component and only have an east-west motion component.

また反対に東西動成分を全く欠くということもない。On the other hand, it does not completely lack an east-west dynamic component.

従って、このように構成しても、常時は上下動成分、切
換時は水平動成分を伝送することができ、第1の実施例
と同じ効果が生じると共に更に伝送回線の低減ができる
Therefore, even with this configuration, it is possible to transmit the vertical motion component at all times and the horizontal motion component at the time of switching, producing the same effect as the first embodiment and further reducing the number of transmission lines.

また、南北動戊分の代りに東西動戊分を用いても同様で
ある。
Also, the same effect can be obtained by using east-west motion time instead of north-south motion time.

第3の実施例としては第5図に示すごとく、観測拠点1
において、自乗和平古根回路22により、N変換器10
の出力の自乗とE変換器11の出力の自乗との和の平方
根の絶対値をつくり、これを水平動成分として、上下動
成分と切換えて送出する構成とすることもできる。
As a third embodiment, as shown in Fig. 5, observation base 1
, the N converter 10 is converted by the square root circuit 22
It is also possible to create an absolute value of the square root of the sum of the square of the output of the E-converter 11 and the square of the output of the E converter 11, and send this as the horizontal motion component while switching to the vertical motion component.

基地局4の処理装置18においても、マグニチュードを
求めるため、自乗和平古根回路と同じ処理をするのであ
るから、これを伝送前に処理しても一向にさしつかえは
ない。
Since the processing device 18 of the base station 4 also performs the same processing as the square root circuit to obtain the magnitude, there is no problem in processing this before transmission.

水平動から得ようとしているもう一つの情報は、横波発
震時であるが、これも自乗和平古根回路出力による方が
、水平動の各成分について見るよりも明瞭になる。
Another piece of information we are trying to obtain from horizontal motion is the time of shear wave oscillation, but this is also clearer from the sum-of-squares root circuit output than from looking at each component of the horizontal motion.

本発明は地震動の信号伝送において、上下動成分、水平
動成分を適時に切換えて伝送しているので、伝送回線数
を減少できる利点があり、したがって伝送距離が長距離
にわたる場合に適用すれば回線を経済的に利用すること
ができる。
The present invention has the advantage of reducing the number of transmission lines because the vertical motion component and horizontal motion component are switched and transmitted in a timely manner in the signal transmission of seismic motion. can be used economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の地震テレメータ方式を説明する観測網図
、第2図は本発明の地震テレメータ方式を説明する観測
網図、第3図第4図および第5図は本発明の詳細な説明
図である。 1・・・・・・観測拠点、2,3・・・・・・観測点、
4・・・・・・基地局、5〜7・・・・・・テレメータ
用伝送回線、8・・・・・・テレコントロール用伝送回
線、9・・・・・・■変換器、10・・・・・・N変換
器、11・・・・・・E変換器、12・・・・・・信号
調整器、13・・・・・・送量器、14・・・・・・受
量器、15・・・・・・切換器、16・・・・・・送量
器、17・・・・・受量器、18・・・・・・処理装置
、19・・・・・・制御信号送信器、20・・・・・・
制御信号受信器、21・・・・・・切換器、22・・・
・・・自乗和平古根回路。
Figure 1 is an observation network diagram explaining the conventional earthquake telemeter system, Figure 2 is an observation network diagram explaining the earthquake telemeter system of the present invention, Figure 3, Figures 4 and 5 are detailed explanations of the present invention. It is a diagram. 1...Observation base, 2,3...Observation point,
4...Base station, 5-7...Transmission line for telemeter, 8...Transmission line for telecontrol, 9...■Converter, 10. ...N converter, 11...E converter, 12...signal conditioner, 13...feeder, 14...receiver Quantity meter, 15... Switching device, 16... Feeding device, 17... Receiving device, 18... Processing device, 19...・Control signal transmitter, 20...
Control signal receiver, 21...Switcher, 22...
・・・Square peace root circuit.

Claims (1)

【特許請求の範囲】 1 所定観測地域に多数設けられた観測点における地震
情報を、前記観測点の所定観測点または別個に設けた観
測拠点を介して、前記所定観測地域より遠隔の地点に設
置された基地局に伝送するテレメータ方式において、常
時は前記基地局で前記観測点の上下動成分を監視し、該
上下動成分によって地震の発生を感知したら基地局から
前記観測拠点に上下動成分の送出を停止して水平動成分
の送出を行なわせる切換信号を送出させる事を特徴とす
る地震テレメータ方式。 2、特許請求の範囲第1項において、水平動成分として
南北動戊分または東西動成分を用いた事を特徴とする地
震テレメータ方式。 3 特許請求の範囲第1項において、水平動成分として
南北動成分の値を自乗した値と東西動成分の値を自乗し
た値との和の平方根を求めた値を用いたことを特徴とす
る地震テレメータ方式。
[Scope of Claims] 1 Earthquake information at a large number of observation points provided in a predetermined observation area is provided at a point remote from the predetermined observation area via a predetermined observation point or a separate observation base. In the telemetry method, the base station always monitors the vertical motion component of the observation point, and if the occurrence of an earthquake is detected by the vertical motion component, the base station transmits the vertical motion component to the observation point. An earthquake telemeter system characterized by sending out a switching signal that stops sending out and starts sending out horizontal motion components. 2. The earthquake telemeter method according to claim 1, characterized in that a north-south motion component or an east-west motion component is used as the horizontal motion component. 3. Claim 1 is characterized in that the horizontal motion component is the square root of the sum of the square of the value of the north-south motion component and the square of the value of the east-west motion component. Earthquake telemeter method.
JP53009842A 1978-02-02 1978-02-02 Earthquake telemeter method Expired JPS5834791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53009842A JPS5834791B2 (en) 1978-02-02 1978-02-02 Earthquake telemeter method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53009842A JPS5834791B2 (en) 1978-02-02 1978-02-02 Earthquake telemeter method

Publications (2)

Publication Number Publication Date
JPS54104375A JPS54104375A (en) 1979-08-16
JPS5834791B2 true JPS5834791B2 (en) 1983-07-28

Family

ID=11731368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53009842A Expired JPS5834791B2 (en) 1978-02-02 1978-02-02 Earthquake telemeter method

Country Status (1)

Country Link
JP (1) JPS5834791B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192276A (en) * 1990-11-27 1992-07-10 Daido Signal Co Ltd Signal input/output device
CN102125224A (en) * 2010-12-27 2011-07-20 江西省春丝食品有限公司 Continuously repeated steaming device for straight rice noodles
CN102141635A (en) * 2010-12-21 2011-08-03 中国船舶重工集团公司第七研究院 Method for preventing and telemetering geological disaster applying ultralow frequency radio signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192276A (en) * 1990-11-27 1992-07-10 Daido Signal Co Ltd Signal input/output device
CN102141635A (en) * 2010-12-21 2011-08-03 中国船舶重工集团公司第七研究院 Method for preventing and telemetering geological disaster applying ultralow frequency radio signal
CN102125224A (en) * 2010-12-27 2011-07-20 江西省春丝食品有限公司 Continuously repeated steaming device for straight rice noodles

Also Published As

Publication number Publication date
JPS54104375A (en) 1979-08-16

Similar Documents

Publication Publication Date Title
GB2140182A (en) Infrared extension system
JPS63191088A (en) Method and device for transmitting earthquake data collected by collector dispersed and arranged on ground over central recorder
ES8407211A1 (en) Apparatus for radio and cable transmission of signals between a central control and recording system and data acquisition units.
CN110942610A (en) Intelligent rock microseismic acquisition and data wireless transmission system
WO2002035468A3 (en) Method and system for remote image reconstitution and processing and imaging data collectors communicating with the system
JPS59229949A (en) Automatic gauge examination system
AU602005B2 (en) Antenna orientation adjusting device for earth station
JPS5834791B2 (en) Earthquake telemeter method
JPS5834792B2 (en) Earthquake telemeter method
JPS62235862A (en) Data tarnsfer and collection method using telephone
JP2685914B2 (en) Building remote monitoring device
RU2169385C2 (en) System of remote control over condition of insulation of pipe-line
JPS5937692U (en) Temporary fire alarm
JPS5859255U (en) Abnormality monitoring device for signal transmission equipment
JPS60239130A (en) Submarine cable communication system
JPS63125024A (en) Supervisory control communication device
Sand Electronic level indicator for the remote verification of wind instrument position
JPS63123200A (en) Automatic telemetering system utilizing catv circuit
JPS60123041U (en) information processing equipment
JPH0771283B2 (en) Data transmission method
Leslie et al. Battery saving radio circuit and system
JPS593677U (en) Remote control signal transmission device
JPH0279591A (en) Data collection device
JPS5986755U (en) Wireless line inspection device
JPH01155555U (en)