JPS5833836A - Plasma atsushi method and device - Google Patents
Plasma atsushi method and deviceInfo
- Publication number
- JPS5833836A JPS5833836A JP13153981A JP13153981A JPS5833836A JP S5833836 A JPS5833836 A JP S5833836A JP 13153981 A JP13153981 A JP 13153981A JP 13153981 A JP13153981 A JP 13153981A JP S5833836 A JPS5833836 A JP S5833836A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- chamber
- energy
- high frequency
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 11
- 239000012495 reaction gas Substances 0.000 claims abstract description 7
- 238000001228 spectrum Methods 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 25
- 238000000295 emission spectrum Methods 0.000 claims description 8
- 239000000376 reactant Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体製造工程におけるスカム除去に好適なプ
ラズマアッシャ方法およびその装置Kliするものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a plasma asher method and apparatus suitable for removing scum in a semiconductor manufacturing process.
半導体装置の製造工種の一つであるホトリソグラフィ工
程では半導体ウェーハのエツチングに際してホトレジス
トヲ使用しているが、特にネガ型のホトレジス)Q用い
る場合には現像、ポストベース後にホトレジストを全体
に薄く除去する工程、いわゆるスカム除去か行なわれる
。このスカム除去には従来からプラズマを利用したプラ
ズマ了ツシャか用−られ、プラズマのエネルギとアッシ
ャ時間を適宜に設定することにょクアッシャ条件の制御
を行なっている。In the photolithography process, which is one of the manufacturing processes for semiconductor devices, photoresist is used when etching semiconductor wafers, but when negative type photoresist (Q) is used, a thin layer of photoresist is removed from the entire surface after development and post-base. A process called scum removal is carried out. Conventionally, a plasma crusher using plasma has been used to remove the scum, and the quasher conditions are controlled by appropriately setting the plasma energy and asher time.
しかじ&から、従来のこのアッシャ条件の制御は、プラ
ズマアッシャ装置内へ供給する反応ガスの流量や高周波
コイルに供給する高周波電源の電力等を予め設定した値
を基準として供給してbるのkすぎないため、プラズマ
アッシャ装置内での鵠況O変化に対してプラズマエネル
ギを常に一定に保持することは困難であシ、安定し友ス
カム除去を行なうことが難しい。この友め、スカム除去
量と密接な関係にあるホトレジストの線幅寸法にばらつ
きが生じ、半導体装置の製造歩wbが低下されるという
問題がある。However, conventional asher conditions are controlled by supplying the flow rate of the reaction gas supplied into the plasma asher device, the power of the high frequency power supply supplied to the high frequency coil, etc. based on preset values. Since the temperature is not too high, it is difficult to always maintain the plasma energy constant against changes in the plasma asher apparatus, and it is difficult to perform stable scum removal. However, there is a problem in that the line width dimension of the photoresist, which is closely related to the amount of scum removed, varies, resulting in a reduction in the manufacturing rate wb of semiconductor devices.
したがって、本発明の目的はプラズマの発光スペクトル
の強ft検出し、この検出値に基づいて反応ガスの流量
や圧力、供給電力を制御することKより、アッシャ装置
内のプラズマエネルギ會常に一定に制御してアッシャ条
件を一定に保ち、これKより良好なスカム除去を行なっ
て半導体装置の製造歩留シを向上することができるプラ
ズマアッシャ方法およびその装置を提供することにある
。Therefore, the purpose of the present invention is to detect the intensity of the plasma emission spectrum and to control the flow rate, pressure, and power supply of the reactant gas based on this detected value, thereby constantly controlling the plasma energy within the asher device. It is an object of the present invention to provide a plasma asher method and an apparatus thereof, which can improve the manufacturing yield of semiconductor devices by keeping the asher conditions constant and performing better scum removal.
以下51本発明を図示の実施例により説明する。The present invention will be explained below with reference to illustrated embodiments.
第1図は本発明の一実施例装置であシ、先ず本発明装置
を説明し次にその作用と共に本発明方法を説明する。図
において、1はプラズマブツシャ本体であり、前面扉2
の閉成により内部を気密に保持できる石英製の円筒チャ
ンバ3t−有している。FIG. 1 shows an apparatus according to an embodiment of the present invention. First, the apparatus of the present invention will be explained, and then the operation of the apparatus and the method of the present invention will be explained. In the figure, 1 is the plasma button body, and the front door 2
It has a cylindrical chamber 3t made of quartz whose interior can be kept airtight by closing the chamber.
この円筒チャンバ3内にはボートローダ4上に載して内
部Kil業等の反応ガスtalI環通流する。また、こ
の円筒チャンバ3の外周には高周波コイル8t−捲回し
、高周波電力が通流されたときKは円筒チャンバ3内に
プラズマを発生させる。This cylindrical chamber 3 is placed on a boat loader 4, and a reaction gas such as internal combustion is circulated therethrough. Further, a high frequency coil 8t is wound around the outer periphery of the cylindrical chamber 3, and when high frequency power is passed through the coil K, plasma is generated within the cylindrical chamber 3.
前記ガス供給口6にはガス源としてのガスボンへ9 t
−管路10を介して接続してガスボンベ9からの反応ガ
スを通流する一方、管路10には電磁弁11を介装して
ガスの流量および円筒チャンバ3内のガス圧力を制御し
得るようにしている。また、前記高周波コイル8には高
周波電s1zを接続し、仁の高周波電源12に制−する
仁とによ抄高周波コイルBに供給する電力t−制御する
ことができる。そして、前記電磁弁11と高周波電源1
2とは夫々マイクロコンビエータ等の制御部13に接続
し、このlllll1部13によシ前記ガス流量や供給
電力管制御するようにしている。The gas supply port 6 is connected to a gas cylinder as a gas source.
- connected via a line 10 to flow the reaction gas from the gas cylinder 9, while a solenoid valve 11 can be interposed in the line 10 to control the gas flow rate and the gas pressure in the cylindrical chamber 3; That's what I do. Further, a high frequency power source s1z is connected to the high frequency coil 8, and the electric power t supplied to the high frequency coil B can be controlled by controlling the high frequency power supply 12. The solenoid valve 11 and the high frequency power source 1
2 is connected to a control section 13 such as a micro combinator, and this section 13 controls the gas flow rate and power supply pipe.
一方、前記円筒チャンバ30周壁一部には光取出し窓3
aを形成し、この窓3aに臨んで分光器143Pよびフ
ォトマル15を一体的に配設する。On the other hand, a light extraction window 3 is provided in a part of the peripheral wall of the cylindrical chamber 30.
a, and a spectroscope 143P and a photomultiplier 15 are integrally arranged facing this window 3a.
分光器14は円筒チャンバ3内に発生し几プラズ1をス
ペクトル分光し、ホトマル15は各スペクトル強度【検
出する。七して、ホトマル15に接続したコン−シー夕
16は前記スペクトル強度の総和を計出し、かつこの値
を予め設定し友基準値17と比較することKより両者の
菱を求め、この差を前記制御@13に入力することがで
きる0次に、以上の構成のプラズマアッシャ装置の作用
と共に本発明方法を説明する。円筒チャンバ3内に試料
5を設置した後に前面扉2t−閉塞し、内部を気密に保
った状態で制御部13t−作動して電磁弁11管開放し
ガスボンベ9内の反応ガスを管路10肴よびガス供給口
6を通してチャンバ3内に通流する。このとき、一部の
ガスを排気ロアから排出する仁とによシチャンバ内を所
要のガス圧力に保持する。一方、高周波コイル8には高
周波電源12にて電力を供給し、チャンバ内のガスと協
働してチャンバ内にプラズマを発生壊せる。そして、こ
のとき発生したプラズマはlI3 mを透して分光器1
4にてスペクトル分光され、ホトマル15によシ各スペ
クトルの強度が検出逼れる。次いで、この検出値はコン
パレータ16に出力されて基準値17と比較され、両者
の差が制御部13に入力逼れる。即ち、プラズマのエネ
ルギは、その発光スペクトル分布と各スペク)+の強度
によって定まることが知られておシ、シたがってこのス
ペクトル強[1検出してこれを所定の基準値と比較すれ
ばそのときのプラズマエネルギカ所定のエネルギに比較
して大きいかめるいは小さbかが判明する。このため、
前述した差に基づいて制御部13ではプラズマエネルギ
を大成いは小の方向へ制御するように作動し、例えば高
周波コイルへの供給電力を増大成いは低減してプラズマ
エネルギを所定のエネルギに一致するようにフィードバ
ック制御するので娶る。この場合、制御部13は電磁弁
11を制御してガス流量およびガス圧力を制御するよう
にしてもよく、また前述した電力と同時にガス流Ilt
制御するようKしてもよい。The spectrometer 14 is generated in the cylindrical chamber 3 and spectrally spectrally spectra the plasma 1, and the photomultiplier 15 detects each spectral intensity. 7, the controller 16 connected to the photomultiplier 15 calculates the sum of the spectral intensities, sets this value in advance, and compares it with the reference value 17. Next, the method of the present invention will be explained along with the operation of the plasma asher device having the above configuration. After placing the sample 5 in the cylindrical chamber 3, the front door 2t is closed and the inside is kept airtight, and the control unit 13t is activated to open the solenoid valve 11 and transfer the reaction gas in the gas cylinder 9 to the pipe 10. and flows into the chamber 3 through the gas supply port 6. At this time, a part of the gas is discharged from the exhaust lower, and the inside of the exhaust chamber is maintained at a required gas pressure. On the other hand, power is supplied to the high frequency coil 8 by a high frequency power source 12, and plasma can be generated and destroyed within the chamber in cooperation with the gas within the chamber. The plasma generated at this time passes through lI3 m and is sent to the spectrometer 1.
4, and the photomultiplier 15 detects the intensity of each spectrum. Next, this detected value is output to the comparator 16 and compared with the reference value 17, and the difference between the two is input to the control section 13. That is, it is known that the energy of plasma is determined by its emission spectrum distribution and the intensity of each spectrum. It becomes clear whether the plasma energy at the time is large or small compared to the predetermined energy. For this reason,
Based on the above-mentioned difference, the control unit 13 operates to control the plasma energy in the direction of increasing or decreasing, for example, increasing or decreasing the power supplied to the high frequency coil to match the plasma energy to a predetermined energy. Feedback control is used to make it so. In this case, the control unit 13 may control the electromagnetic valve 11 to control the gas flow rate and gas pressure, and the control unit 13 may control the gas flow rate and gas pressure at the same time as the above-mentioned electric power.
K may also be used to control.
この結果、円筒チャンバ3内において発生するプラズマ
のエネルギを常に一定に保持でき、チャンバ内のアッシ
ャ条件を一定に保って良好なスカム除去を行ない、早導
体装置の製造歩留を向上することができるのである。As a result, the energy of the plasma generated inside the cylindrical chamber 3 can be kept constant, and the asher conditions inside the chamber can be kept constant to perform good scum removal and improve the manufacturing yield of fast conductor devices. It is.
にで、プラズマのエネルギを検出する際に1プラズマに
%肩の発光スペクトルの強度音測定するようにしてもよ
い。即ち、酸素ラジカルやOHラジカル等の波長に合致
するスペクトル強度を測定すればよく、例えば#!2図
に要部を示すように円筒チャンバ3の窓3aの外側に、
分jt、rjIに代えて前述した波長の元を透過する元
フィルタ18を配設し、その後方にホトフル15t−配
置した構成とすればよい。このようにしても、円筒チャ
ンバ内にて発生するプラスiのエネルギをガス流量や高
周波電力のフィードバック制御によシ一定に保持でき、
安定したアッシャ条件をs備することができる。In this case, when detecting the energy of the plasma, the intensity sound of the emission spectrum of 1% of the plasma may be measured. In other words, it is sufficient to measure the spectral intensity that matches the wavelength of oxygen radicals, OH radicals, etc. For example, #! As shown in FIG. 2, outside the window 3a of the cylindrical chamber 3,
Instead of the wavelengths jt and rjI, an original filter 18 that transmits the wavelengths described above may be provided, and a photoful filter 15t may be placed behind it. Even in this case, the plus i energy generated in the cylindrical chamber can be kept constant by feedback control of the gas flow rate and high frequency power.
Stable asher conditions can be provided.
以上のように本発明によれば、プラズマのエネルギをプ
ラズマの発光スペクトルから検出し、この検出値に基づ
いてプラズマエネルギを決定するガス流量や圧力、供給
電力をフィードバック制御し、これによシアラシャ装置
内に発生するプラズマエネルギを常に一定に制御してア
ッシャ条件を一定に蝉っているので、良好なスカム除去
を可能にし、牛導体装置の製造歩Wシを向上することが
できるという効果を奏する。As described above, according to the present invention, the plasma energy is detected from the plasma emission spectrum, and based on the detected values, the gas flow rate, pressure, and power supply that determine the plasma energy are feedback-controlled, thereby controlling the shear ash device. Since the plasma energy generated within is always controlled at a constant level and the asher conditions are kept constant, it is possible to perform good scum removal and improve the manufacturing process of the conductor device. .
#!1図は本発明装置の一実施例の断面図、第2図は変
形例の要部断面図である。
l・−・アッシャ本体、3・−・円筒チャンバ、3B・
・・窓、5・・・試料、B・・・高周波コイル、9・・
・ガス源、11・・・電磁弁、12・・・高周波電源、
13・・・制御部、14・・・分i!、15・・・ホト
マル、16・−コンパレータ、17・・・基fH[,1
B・・・フィルタ。
第1図
、/f
第 2 図#! FIG. 1 is a sectional view of an embodiment of the device of the present invention, and FIG. 2 is a sectional view of a main part of a modified example. l...Asher body, 3...Cylindrical chamber, 3B...
...Window, 5...Sample, B...High frequency coil, 9...
・Gas source, 11... Solenoid valve, 12... High frequency power supply,
13...Control unit, 14...Min i! , 15... photomal, 16... comparator, 17... group fH[,1
B...filter. Figure 1, /f Figure 2
Claims (1)
生させるプラズマアッシャ方法にかいて、発生されたプ
ラズマの発光スペクトルからプラズマエネルギを検出し
、この検出値に基づいて前記反応ガスの流量や圧力更に
は高周波電力をフィードバック制御してプラズマエネル
ギを一定に保つことを特徴とするプラズマアッシャ方法
。 λ 発光スペクトルのスペクトルに分布と各スペクトル
強度を測定してエネルギを検出して表る特許請求の範囲
第1項記載のプラズマアッシャ方法。 3、反応ガスのラジカル波長等に合致する波長の発光ス
ペクトル強度を測定してエネルギを検出してなる特許請
求の範囲wL1項記載のプラズマアッシャ方法。 4、内部にグッズマアツシャ処理を行なう試料を11t
fるチャンバと、このチャンバ内に反応ガスを通流する
ガス供給手段と、前記チャンバ近傍に配置した高周波コ
イルに高周波電力管供給する手段と、前記チャンバ内に
発生するプラズマの発光スペクトル分布や強度を総和的
或いは選択的に測定してプラズマエネルギとして検出す
る手段と、検出値を基準値と比較した上で前記反応ガス
手段、高周波電力供給手段の少なくとも一方を制御する
手段とを備えることt−%徴とするプラズマアッシャ装
置。[Claims] 1. Using a plasma asher method that generates plasma through the cooperation of a reactive gas and high-frequency power, plasma energy is detected from the emission spectrum of the generated plasma, and based on this detected value. A plasma asher method characterized in that plasma energy is kept constant by feedback controlling the flow rate and pressure of the reaction gas as well as high frequency power. 2. The plasma asher method according to claim 1, wherein the energy is detected and expressed by measuring the distribution of the λ emission spectrum and the intensity of each spectrum. 3. The plasma asher method according to claim 1, wherein the energy is detected by measuring the intensity of the emission spectrum of a wavelength that matches the radical wavelength of the reactant gas. 4. 11 tons of samples to be subjected to goods processing inside
a gas supply means for flowing a reactive gas into the chamber; a means for supplying a high frequency power tube to a high frequency coil disposed near the chamber; and an emission spectrum distribution and intensity of plasma generated in the chamber. and means for controlling at least one of the reactive gas means and the high-frequency power supply means after comparing the detected value with a reference value. Plasma asher device with % characteristics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13153981A JPS5833836A (en) | 1981-08-24 | 1981-08-24 | Plasma atsushi method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13153981A JPS5833836A (en) | 1981-08-24 | 1981-08-24 | Plasma atsushi method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5833836A true JPS5833836A (en) | 1983-02-28 |
Family
ID=15060438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13153981A Pending JPS5833836A (en) | 1981-08-24 | 1981-08-24 | Plasma atsushi method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5833836A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7632419B1 (en) * | 1997-10-06 | 2009-12-15 | Applied Materials, Inc. | Apparatus and method for monitoring processing of a substrate |
DE102019204688A1 (en) | 2018-04-11 | 2019-10-17 | Fanuc Corporation | Robot wrist structure |
-
1981
- 1981-08-24 JP JP13153981A patent/JPS5833836A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7632419B1 (en) * | 1997-10-06 | 2009-12-15 | Applied Materials, Inc. | Apparatus and method for monitoring processing of a substrate |
DE102019204688A1 (en) | 2018-04-11 | 2019-10-17 | Fanuc Corporation | Robot wrist structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10504704B2 (en) | Plasma etching systems and methods using empirical mode decomposition | |
KR102023444B1 (en) | The plasma processing apparatus and plasma processing method | |
US4609426A (en) | Method and apparatus for monitoring etching | |
TWI518525B (en) | Method of endpoint detection of plasma etching process using multivariate analysis | |
TWI253702B (en) | Monitoring an effluent from a chamber | |
US6939811B2 (en) | Apparatus and method for controlling etch depth | |
JP3639268B2 (en) | Etching method | |
US5352902A (en) | Method for controlling plasma surface-treatments with a plurality of photodetectors and optical filters | |
US7662646B2 (en) | Plasma processing method and plasma processing apparatus for performing accurate end point detection | |
JPH0216733A (en) | Method of measuring plasma characteristics in semiconductor processing | |
JP4782585B2 (en) | Plasma etching apparatus and method | |
US6939435B1 (en) | Plasma processing apparatus and processing method | |
JP6688343B2 (en) | Method of operating microwave plasma source, plasma excitation system and plasma excitation measurement system | |
CN111261544A (en) | In-situ real-time plasma chamber condition monitoring | |
JPS5833836A (en) | Plasma atsushi method and device | |
US10541184B2 (en) | Optical emission spectroscopic techniques for monitoring etching | |
JPS5884431A (en) | Plasma etching device | |
JPS62228482A (en) | Low-temperature plasma treating device | |
CN114730722A (en) | System and method for managing substrate outgassing | |
JPH08288274A (en) | Dry type thin-film processing apparatus by ecr plasma | |
RU2003112716A (en) | METHOD FOR CONTROL OF PLASMA-CHEMICAL PROCESSES OF ETCHING DIFFERENTIAL OPTICAL ACTINOMETRY AND DEVICE FOR ITS IMPLEMENTATION | |
JPS62179117A (en) | plasma processing equipment | |
JPH03181127A (en) | Dry etching device | |
JPH0513374B2 (en) | ||
JPH02244623A (en) | Manufacturing method of semiconductor device |