JPS5833781B2 - Turbine generator shaft monitoring device - Google Patents
Turbine generator shaft monitoring deviceInfo
- Publication number
- JPS5833781B2 JPS5833781B2 JP51148855A JP14885576A JPS5833781B2 JP S5833781 B2 JPS5833781 B2 JP S5833781B2 JP 51148855 A JP51148855 A JP 51148855A JP 14885576 A JP14885576 A JP 14885576A JP S5833781 B2 JPS5833781 B2 JP S5833781B2
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- torque
- turbine generator
- generator
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Control Of Turbines (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Description
【発明の詳細な説明】
この発明は、タービン発電機の軸の疲労を監視する装置
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for monitoring shaft fatigue of a turbine generator.
従来のタービン発電機軸系の概略構成図を第1図にブロ
ックで示す。A schematic configuration diagram of a conventional turbine generator shaft system is shown in block form in FIG.
図中、1は発電機ロータ、2はタービン、3は励磁機、
4はタービン間、タービンと発電機および発電機と励磁
機を結合している軸である。In the figure, 1 is a generator rotor, 2 is a turbine, 3 is an exciter,
4 is a shaft that connects the turbines, the turbine and the generator, and the generator and the exciter.
このように構成されているタービン発電機においては、
突発短絡時、再閉路時などにおいで軸4に衝撃的なトル
クが加わり、タービン、発電機等の慣性能率と軸ででき
るねじり振動系のために軸4がねじり振動を起し、この
ねじり振動によって軸材が疲労することがある。In a turbine generator configured in this way,
Shock torque is applied to the shaft 4 during sudden short circuits, re-closing, etc., and the shaft 4 causes torsional vibration due to the inertia rate of the turbine, generator, etc. and the torsional vibration system created by the shaft, and this torsional vibration The shaft material may become fatigued.
この場合、衝撃的なトルクの大きさと起る回数が不確定
であるため、ねじり振動によって生じる軸トルクの大き
さと回数が不確定であり、軸の疲労度が明確でないとい
う問題点があった。In this case, since the magnitude of the impact torque and the number of times it occurs are uncertain, the magnitude and number of times of the shaft torque generated by torsional vibration are uncertain, and there is a problem that the fatigue level of the shaft is not clear.
本発明は、上記のごとき軸の疲労度を監視するためにな
されたもので、軸にかかるトルクを計測して軸の安全度
を監視する軸監視装置を提供することを目的としたもの
である。The present invention was made in order to monitor the degree of fatigue of the shaft as described above, and an object of the present invention is to provide a shaft monitoring device that measures the torque applied to the shaft and monitors the safety level of the shaft. .
以下この発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.
第2図はこの発明の軸監視装置を設置したタービン発電
機軸系を示すブロック図である。FIG. 2 is a block diagram showing a turbine generator shaft system in which the shaft monitoring device of the present invention is installed.
図中、5は軸に取り付けられた回転パルス検出用の歯車
、6はマグネットセンサなどのパルス発生器、7は回転
むら検出計、8は発電機出力線、9は電力測定器、10
は演算装置、11は指示計である。In the figure, 5 is a gear for detecting rotational pulses attached to the shaft, 6 is a pulse generator such as a magnetic sensor, 7 is a rotational unevenness detector, 8 is a generator output line, 9 is a power measuring device, 10
1 is an arithmetic unit, and 11 is an indicator.
本発明の軸監視装置はこの実施例において、パルス発生
器6、回転むら検出計7、電力測定器9、演算装置10
および指示計11で構成される。In this embodiment, the axis monitoring device of the present invention includes a pulse generator 6, a rotation unevenness detector 7, a power measuring device 9, and an arithmetic device 10.
and an indicator 11.
以上のように構成された軸監視装置において、パルス発
生器6が軸4の回転速度に比例したパルス周波数のパル
スを生じ、回転むら計7がパルス周波数の変動を測定し
、軸4のねじり振動を検出する。In the shaft monitoring device configured as described above, the pulse generator 6 generates pulses with a pulse frequency proportional to the rotational speed of the shaft 4, and the rotational unevenness meter 7 measures fluctuations in the pulse frequency to detect torsional vibrations of the shaft 4. Detect.
これにより、軸の2点間の相対ねじれ角に関係のある変
動の交流成分を検出する。This detects the alternating current component of fluctuations related to the relative torsion angle between two points on the shaft.
そして、電力測定器9により発電機の出力が計測される
から、これと発電機の回転数とによりトルクを求める。Then, since the output of the generator is measured by the power measuring device 9, the torque is determined from this and the rotational speed of the generator.
この場合回転数は発電機出力線8の検出電圧の周波数か
ら得ることができ、また、パルス発生器6の出力パルス
を計数することによっても得られる。In this case, the rotation speed can be obtained from the frequency of the detected voltage of the generator output line 8, and also by counting the output pulses of the pulse generator 6.
このときのトルクは直流成分と電源周波数に関する成分
で、後者は主に電源周波数の基本波と高調波成分から成
る。The torque at this time is a direct current component and a component related to the power supply frequency, and the latter mainly consists of the fundamental wave and harmonic components of the power supply frequency.
さらに、タービン2と発電機ロータ1との軸系のねじり
振動による軸トルクと歯車5に生じる回転むらの関係を
別に求めておいて、この特性を演算装置10に記憶して
おく。Furthermore, the relationship between the shaft torque due to torsional vibration of the shaft system of the turbine 2 and the generator rotor 1 and the rotation unevenness occurring in the gear 5 is separately determined, and this characteristic is stored in the arithmetic unit 10.
このようにして回転むら計7の回転むら信号と、演算装
置10に記憶している回転むらと軸トルクの特性から、
演算装置10で軸のある点にかかる軸系のねじり振動に
よる軸トルクを求める。In this way, from the rotational unevenness signal from the rotational unevenness meter 7 and the characteristics of rotational unevenness and shaft torque stored in the calculation device 10,
The arithmetic unit 10 calculates the shaft torque due to torsional vibration of the shaft system applied to a certain point on the shaft.
これは交流成分である。This is an alternating current component.
他方、電力測定器9が検出した電力と周波数を用いて演
算装置10で発電機ロータ1に加わるトルクを求め、次
にこのトルクによる上記ある点の軸トルクを求めて軸系
のねじり振動による軸トルクを加え合せる。On the other hand, using the power and frequency detected by the power measuring device 9, the arithmetic unit 10 calculates the torque applied to the generator rotor 1, and then calculates the shaft torque at the above-mentioned point due to this torque, and calculates the shaft torque due to torsional vibration of the shaft system. Add torque.
加え合せたトルクは第3図に示すカーブCとなる。The added torque becomes a curve C shown in FIG.
このカーブCで表わされるトルクが軸トルクである。The torque represented by this curve C is the shaft torque.
演算装置10はこの軸トルクと軸4の直径から軸の応力
を求め、たとえばその応力のピーク値とその回数を求め
て応力の頻度を求める。The arithmetic unit 10 determines the stress of the shaft from this shaft torque and the diameter of the shaft 4, and calculates the frequency of the stress by determining, for example, the peak value of the stress and the number of times.
この累積頻度は指示計11で示される。This cumulative frequency is indicated by indicator 11.
例えば、応力の時間波形が第4図に示すように変動する
波形の場合、応力のレベルをレベル1〜3の区間に分け
て各区間に応力のピーク値が入る回数を求めて応力のレ
ベルに対する回数のデータ、即ち応力の頻度を計数して
各応力レベル毎に頻度を指示計11に示す。For example, if the stress time waveform is a waveform that fluctuates as shown in Figure 4, the stress level is divided into sections of levels 1 to 3, and the number of times the stress peak value falls in each section is calculated to determine the stress level. The data on the number of times, that is, the frequency of stress is counted and the frequency is shown on the indicator 11 for each stress level.
また応力に対する頻度の計数法としては、既知のレイン
クロ法、レンジペア計数法などを用いて演算装置10で
演算しても良い。Further, as a frequency counting method for stress, the calculation device 10 may use the known Raincrot method, range pair counting method, or the like.
したがって、これらの応力の頻度のデータを基にして材
料の疲労のS−N曲線(応力−破壊繰返し数)などのデ
ータ定数を用い演算装置10によりその時の軸材の残り
の寿命を推定して、その値を指示計11により出力する
ことにより軸の安全度を知ることができる。Therefore, based on data on the frequency of these stresses, the remaining life of the shaft member at that time is estimated by the calculation device 10 using data constants such as the S-N curve (stress-rupture repetition rate) of material fatigue. , by outputting the value from the indicator 11, the safety degree of the shaft can be known.
このようにして、軸にかかった応力とその回数を内容と
する応力の累積頻度が指示され、軸の安全度を知ること
ができる。In this way, the stress applied to the shaft and the cumulative stress frequency, which includes the number of times the stress is applied, are indicated, and the safety level of the shaft can be known.
なお、回転むら計7としてワウ・フラッタ−・メータ等
を用いると軸のねじれ振動は測定できるが、軸の2点間
の相対ねじれ角を計測しているのではないので相対ねじ
れ角、即ち軸トルクは求まらない。Note that the torsional vibration of the shaft can be measured by using a wow, flutter meter, etc. as the rotational unevenness meter 7, but it does not measure the relative torsion angle between two points on the shaft, so the relative torsion angle, that is, the shaft Torque cannot be found.
しかし、振動成分は、軸系の特性をあらかじめ求めてお
けば、トルクの人、出力点がわかっているので一点の軸
のねじれ角から逆算して軸系のねじり振動による軸トル
クがわかる。However, if the vibration component is determined in advance by determining the characteristics of the shaft system, the torque force and output point are known, and the shaft torque due to torsional vibration of the shaft system can be determined by calculating backwards from the shaft torsion angle at one point.
一方、発電機ロータ1からのトルクは、電力測定器9か
らの出力電力を回転数で割ればトルクが求まる。On the other hand, the torque from the generator rotor 1 can be determined by dividing the output power from the power measuring device 9 by the rotational speed.
従って、上述の通り、軸系のねじり振動による軸トルク
に発電機ロータからのトルクを加え合せると軸にかかる
トルクが求まり、軸の応力も求めることができる。Therefore, as described above, by adding the torque from the generator rotor to the shaft torque due to torsional vibration of the shaft system, the torque applied to the shaft can be determined, and the stress on the shaft can also be determined.
以上の実施例では、歯車5は軸系の端の励磁機3に取付
けたが、軸系のどこでもよい。In the above embodiment, the gear 5 was attached to the exciter 3 at the end of the shaft system, but it may be mounted anywhere on the shaft system.
たとえば、励磁機3と発電機ロータの間または発電機ロ
ータとタービンの間等でもよい。For example, it may be between the exciter 3 and the generator rotor, or between the generator rotor and the turbine.
また、歯車5を用いたが、回転むらを計測するに適した
ものであれば他のものでもよく、歯車5の代りに白黒の
縞模様のテープを回転軸にはりつけて、光学的に回転パ
ルスを取り出してもよい。In addition, although the gear 5 is used, other gears may be used as long as it is suitable for measuring rotational unevenness. Instead of the gear 5, a black and white striped tape is attached to the rotating shaft to optically pulse the rotation. You may take it out.
また一般に用いられているエンコーダでもよい。Alternatively, a commonly used encoder may be used.
パルス発生器6はマグネットセンサ、光学的センサでも
よい。The pulse generator 6 may be a magnetic sensor or an optical sensor.
回転むら計7としてワウ・フラッタ−メータ、ジッター
メータ等を用いることができる。As the rotational unevenness meter 7, a wow/flutter meter, a jitter meter, etc. can be used.
演算装置10はアナログ、デジタルのどちらの演算装置
でもよい。The arithmetic device 10 may be either an analog or digital arithmetic device.
また両方を使用してもよい。Alternatively, both may be used.
以上説明したように本発明によると、タービン発電機に
おいて、その軸に歯車等を備え、パルス発生器で回転数
に比例したパルスを発生し、そのパルス信号より回転む
らを検出する回転むら計を具備し、一方、発電機の電圧
、電流より電力を測定する電力測定器を具備し、かつ上
記の回転むら計の信号より軸系のねじり振動による軸ト
ルクを計算すると共に、電力測定器からの電力波形と回
転数から発電機ロータに加わるトルクを求め上記軸トル
クと加えあわせて軸にかかるトルクの瞬時値を求め、こ
れにより軸の応力を求め、応力の大きさと頻度を計算し
て、材料の疲労に対する安全度を計算する演算装置を具
備することによって、軸の疲労の程度を監視することが
できる。As explained above, according to the present invention, a rotational irregularity meter is provided in a turbine generator, which has a gear or the like on its shaft, generates a pulse proportional to the rotational speed with a pulse generator, and detects rotational irregularity from the pulse signal. On the other hand, it is equipped with a power measuring device that measures power from the voltage and current of the generator, and calculates the shaft torque due to torsional vibration of the shaft system from the signal of the rotational irregularity meter, and also calculates the shaft torque due to torsional vibration of the shaft system from the signal of the rotational irregularity meter. Determine the torque applied to the generator rotor from the power waveform and rotational speed, add it to the shaft torque above to determine the instantaneous value of the torque applied to the shaft, determine the stress on the shaft, calculate the magnitude and frequency of stress, and determine the material By providing a computing device that calculates the degree of safety against fatigue of the shaft, the degree of fatigue of the shaft can be monitored.
第1図は従来のタービン発電機の概略を示すブロック図
、第2図はこの発明の軸監視装置を設置したタービン発
電機の概略を示すブロック図、第3図はタービン発電機
の軸のトルク波形を示すグラフ、第4図は応力に対する
頻度の計数法を説明するグラフである。
1:発電機ロータ、2:タービン、3:励磁機、4:軸
、5:歯車、6:パルス発生器、7:回転むら計、9:
電力測定器、10:演算装置、11:指示計。
なお、図中同一符号は同一または相当部分を示す。Fig. 1 is a block diagram schematically showing a conventional turbine generator, Fig. 2 is a block diagram schematically showing a turbine generator equipped with the shaft monitoring device of the present invention, and Fig. 3 is a block diagram schematically showing the shaft torque of the turbine generator. The graph showing the waveform, FIG. 4, is a graph explaining the frequency counting method with respect to stress. 1: Generator rotor, 2: Turbine, 3: Exciter, 4: Shaft, 5: Gear, 6: Pulse generator, 7: Rotation irregularity meter, 9:
Power measuring device, 10: Arithmetic device, 11: Indicator. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
気パルスを生ずるパルス発生器、その電気パルスを受け
る回転むら検出器、上記発電機の出力を計測する電力測
定器、および上記回転むら計の信号よりタービン発電機
軸の軸系ねしり振動によるタービン発電機軸に生じる軸
トルクを計算すると共に、電力測定器による電力計測値
を回転数で割りタービン発電機にかかるトルクの直流分
と電源周波数に関する成分を計算して上記ねじり振動に
よる軸トルクと加え合わせ、トルクの瞬時値を求めてタ
ービン発電機軸の応力を定め、応力の大きさと頻度を計
算する演算装置を備えるタービン発電機の軸監視装置。1 A pulse generator that generates electric pulses with a frequency proportional to the rotational speed of the turbine generator shaft, a rotational unevenness detector that receives the electric pulses, a power measuring device that measures the output of the generator, and a signal from the rotational unevenness meter. Calculate the shaft torque generated on the turbine generator shaft due to shaft system torsional vibration of the turbine generator shaft, and also calculate the DC component and power frequency component of the torque applied to the turbine generator by dividing the power measurement value by the power measuring device by the rotation speed. A shaft monitoring device for a turbine generator, comprising an arithmetic device that calculates the magnitude and frequency of the stress by determining the stress of the turbine generator shaft by determining the instantaneous value of the torque by adding the torque to the shaft torque due to the torsional vibration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51148855A JPS5833781B2 (en) | 1976-12-10 | 1976-12-10 | Turbine generator shaft monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51148855A JPS5833781B2 (en) | 1976-12-10 | 1976-12-10 | Turbine generator shaft monitoring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5373301A JPS5373301A (en) | 1978-06-29 |
JPS5833781B2 true JPS5833781B2 (en) | 1983-07-22 |
Family
ID=15462238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51148855A Expired JPS5833781B2 (en) | 1976-12-10 | 1976-12-10 | Turbine generator shaft monitoring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5833781B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19621046A1 (en) * | 1996-05-24 | 1997-11-27 | Skf Gmbh | Method and device for measuring the output torque |
-
1976
- 1976-12-10 JP JP51148855A patent/JPS5833781B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5373301A (en) | 1978-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12044594B2 (en) | Abnormality diagnostic method and abnormality diagnostic device for rolling bearing | |
US4995257A (en) | Monitor for shaft vibration in an operating turbine | |
JPS5858004B2 (en) | Device for non-contact measurement or monitoring of the vibration state of blades in the rotor of an axial turbine | |
US4521894A (en) | Overspeed/underspeed detector | |
JPH073360B2 (en) | Shaft torsional vibration monitoring device | |
US4635210A (en) | Method of and apparatus for detecting crack condition | |
Hancke et al. | The microprocessor measurement of low values of rotational speed and acceleration | |
US6751281B2 (en) | Measurement system of torsion vibration for reactor internal pump | |
KR960018533A (en) | Torsional Vibration Measurement and Analysis Machine Tools and Methods Thereof | |
JPS5833781B2 (en) | Turbine generator shaft monitoring device | |
US6289294B1 (en) | Method for determining rotational data using an encoder device | |
JP2005098258A (en) | Turbine generator shaft torsional vibration detection method | |
JPH11352020A (en) | Device and method for measuring dynamic torsion characteristic of damper assembly | |
JP2000283891A (en) | Device for measuring rotation component of rotation axis and method for its measurement | |
US5893052A (en) | Method and apparatus for testing sensing system performance | |
JPH01213527A (en) | Device for monitoring torsion of shaft | |
JPH028192Y2 (en) | ||
JPS6117402Y2 (en) | ||
JPS6259766B2 (en) | ||
JPS5822925A (en) | Twist vibration monitoring method of rotary shaft | |
JPH023930B2 (en) | ||
JPS6073411A (en) | Measuring device for cable length | |
JPS634132B2 (en) | ||
JPS6246817B2 (en) | ||
JPS62259039A (en) | Monitoring device for shaft torsion fatigue |