[go: up one dir, main page]

JPS583236A - Manufacture of gallium arsenide element - Google Patents

Manufacture of gallium arsenide element

Info

Publication number
JPS583236A
JPS583236A JP56101891A JP10189181A JPS583236A JP S583236 A JPS583236 A JP S583236A JP 56101891 A JP56101891 A JP 56101891A JP 10189181 A JP10189181 A JP 10189181A JP S583236 A JPS583236 A JP S583236A
Authority
JP
Japan
Prior art keywords
crystal
gallium arsenide
film
semiconductor
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56101891A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nishi
西 秀敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56101891A priority Critical patent/JPS583236A/en
Publication of JPS583236A publication Critical patent/JPS583236A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はヒ化ガリウム(GaAmlTh用いた半導体装
置の製造方法に係り、特KGaAa結晶上K11面保S
Sとしてアルミニウムナイトライド(−AtN)膜を用
いて、イオノ注入KL−vτGmA−結晶中Kn或いは
p影の不純物ドーピングを行なう方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device using gallium arsenide (GaAmlTh), and specifically relates to a method for manufacturing a semiconductor device using gallium arsenide (GaAmlTh).
The present invention relates to a method of doping Kn or p-type impurities in an ion implantation KL-vτGmA-crystal using an aluminum nitride (-AtN) film as S.

GaAs結晶Kn或いはp形不細物管イオン注入とかう
方法を使ってドーピングする際、GaAs結晶内に格子
欠陥が導入される。この結晶欠陥を除去し、注入した不
純物管電気的に活性化さぜるために熱処理が行われるが
、GaA−結晶を630℃以上で加熱すると結晶表面か
らヒ素(A−)が鱗離會起こし結晶欠陥の発生を促す、
この解決策に従来は熱処理過SにおいてA−の解離を防
ぐための表面保SSとしτ5ins 、Sin N4尋
が用いられている。AjNIlはGaAsの熱膨張係数
に最も近い故、ハクリ等の問題も少なく安定な保鏝膜と
して使用されている。しかしながら、―めて高温の、例
えば950℃以上の熱処理で社それでもAtNjIとG
aAs結晶の膨張率が若干具クマくるため、AtN膜、
G a A・結晶双方にストレスが生じ、結晶に直接的
に影響する結晶欠陥、又は、AtN膜の剥離、ピンホー
ルによってできる結晶表面のビット、即ち、テーマルピ
ット(th@rmal  pitlが発生するという問
題がある。
When doping a GaAs crystal using a method such as Kn or p-type impurity tube ion implantation, lattice defects are introduced into the GaAs crystal. Heat treatment is performed to remove these crystal defects and electrically activate the implanted impurity tube, but when a GaA-crystal is heated above 630°C, arsenic (A-) scales from the crystal surface. Promotes the generation of crystal defects,
To solve this problem, conventionally, τ5ins and Sin N4 are used as surface protection SS to prevent the dissociation of A- during heat treatment. Since AjNIl has a coefficient of thermal expansion closest to that of GaAs, it is used as a stable retaining film with fewer problems such as peeling. However, even with very high temperature heat treatment, for example, 950°C or higher, AtNjI and G
Since the expansion rate of the aAs crystal is slightly different, the AtN film,
Stress occurs in both G a A and the crystal, resulting in crystal defects that directly affect the crystal, peeling of the AtN film, bits on the crystal surface caused by pinholes, or thematic pits (th@rmal pits). There is a problem.

本発明の目的は、表面保sgであるAtN膜及びGaA
s結晶にかかろストレスを緩和するために、G a A
 s結晶内に不純物倉イオン注入する前倉しくは後に、
ボロン(B)イオンを注入する1稈を加えることに!v
、高温に訃けるGaAs結I 晶中の欠陥の発生を低減し、高品質のGaAm素子製造
方法を提供することに#)る。
The purpose of the present invention is to use an AtN film and a GaA film as surface retaining sg.
In order to alleviate the stress on the s crystal, G a A
Before or after implanting impurity ions into the s-crystal,
We decided to add one culm to implant boron (B) ions! v
The present invention aims to provide a method for manufacturing high-quality GaAm elements by reducing the occurrence of defects in GaAs I crystals that are susceptible to high temperatures.

本発明は原子半径の小さいB?GaAs結晶中の不純物
領域に注入することKLって、QaAsの熱膨張とAt
Nのそれと會一致する工うにし、AtN膜とGaAs結
晶にかかるストレスを緩和することをはかるものである
。但し、膨張係数が一致する理由にまだ明確には解明さ
れていない。
The present invention uses B with a small atomic radius? KL is implanted into the impurity region in the GaAs crystal, and the thermal expansion of QaAs and At
The method is designed to match that of N, and is intended to relieve stress on the AtN film and GaAs crystal. However, the reason why the expansion coefficients match has not yet been clearly elucidated.

しかし、QaAsの熱膨張率(7X10−・dog−1
) K比べAtN保霞膜の熱膨張係数(6XIO−”d
eg−1)がわずかに小さいことから、Btff熱処理
熱処理品に圧縮歪の発生するのを防止し、結晶に導入さ
れる格子欠陥全極力抑止する原理が一部働いていると推
察される。尚、Be!Gaと同族元11に属するためB
を注入しても電気的特性K[接的な影響はない、又、B
の注入量は極微量であってGaAs結晶組成の実質的変
化會及ばずKは至らないため、バンド構造は影響を受け
ず、従って素子等性を変えることはない。
However, the thermal expansion coefficient of QaAs (7X10-・dog-1
) Thermal expansion coefficient of AtN barrier film compared to K (6XIO-”d
eg-1) is slightly small, it is inferred that the principle of preventing compressive strain from occurring in the Btff heat-treated product and suppressing lattice defects introduced into the crystal as much as possible is at work. Furthermore, Be! B because it belongs to Ga and cognate element 11
There is no direct effect on the electrical characteristics K [also, B
Since the implantation amount of is extremely small and does not substantially change the GaAs crystal composition and does not affect K, the band structure is not affected and therefore the device properties are not changed.

本発明の一実施例としてGaA口結晶にn彫工細物であ
るセレン(f3ts)fイオン注入によってドーピング
したときの製造方法i従来と比較して訣明することにす
る。第1図は従来の種々の製造段階におけるGaAs素
子の略図的断面図、第2図に本発明の実施例KLる種々
の製造段階におけるGaAsの略図的断面図を示す。
As an example of the present invention, a manufacturing method in which a GaA crystal is doped by n-shaped selenium (f3ts) f ion implantation will be explained in comparison with a conventional method. FIG. 1 shows a schematic cross-sectional view of a GaAs device at various stages of conventional manufacturing, and FIG. 2 shows a schematic cross-sectional view of GaAs at various stages of manufacturing according to an embodiment of the present invention.

従来の方法では、最初に300℃に保持したGaAsウ
ェハ1に125KsVのSeイオン2會l X 101
4cm −’ 、イオン注入する(第1 IQ(a) 
)。
In the conventional method, a GaAs wafer 1 held at 300°C is first injected with 2 ions of Se ions at 125 KsV.
4 cm −', ion implantation (first IQ(a)
).

次にSe注入層3の上KAtNIII4tP1000A
Next, on the Se injection layer 3, KAtNIII4tP1000A
.

基板温度300℃にて反応スパッタリング法で形成しく
第1 @(b) l、これを950℃で熱処理する。
The first layer is formed by a reactive sputtering method at a substrate temperature of 300° C., and then heat treated at 950° C.

この場合、注入層の活性化率は約20−、キャリア濃度
的2 X I Q” cm−”のn+層が形成され皮。
In this case, the activation rate of the injection layer is about 20-, and an n+ layer with a carrier concentration of 2.times.IQ"cm-" is formed.

(6し、ウェハ面内においてこれらの値のばらつきは大
きかった。これは保1IIIIであるAtN膜4に局所
的にピンホールが発生したことによるものとAt)れる
、ピンホール発生が原因でGaAs’)エバに生じるサ
ーマルピットの密Flt’l約10’em −”であっ
た。
(6) There was a large variation in these values within the wafer surface. This was due to the local occurrence of pinholes in the AtN film 4, which is a protective material. ') The density of the thermal pit formed in the evaporator was about 10'em-''.

本発明の実施例の製造1稈ではSeイオン注入に先立ち
、50KeVのBイオy51に300℃に保持したGa
Asウェハ6KIX10”eIR−″璽イオン注入する
(第28!11(c) 1 @次KB注入層7の上から
S・イオン8klxl□ti国−1イオン注入する(第
2図(d)、次いで、Se十B注入層9上に反応スパッ
タリング法でAAN膜10’に1000大形成しく第2
図(e))、950℃で熱処理を行う、注入層の活性化
率は約50チ、キャリア濃度的5X10”cm−”のn
十層が形成され、サーマルビットの発生率は10”cm
−以下と小さくなった。又、熱処理KJC5形成されF
tn形層のPL(photo  luminesc@n
ce)測定管行っ友ところ、S・注入のみでは観測され
ていた1、27・Vの強い発光が、Bの二重注入を加え
ることに19著しく減少することが判った。 1.27
eVの発光は結晶欠陥の1つであるGa空孔とドナの複
合欠陥に関与するもの゛と従来より解釈されているとこ
ろから、注入したB原子がGa格子位置を占め、Ga空
孔とドナーの複合欠陥の形成を防止する効果があるもの
と考えらねる。
In the manufacturing one culm of the embodiment of the present invention, prior to Se ion implantation, Ga
As wafer 6KIX10"eIR-" ions are implanted (Fig. 28!11(c) 1) S ions are implanted from above the KB implantation layer 7 (Fig. 2(d), then , a second AAN film 10′ having a thickness of 1000 is formed on the Se+B injection layer 9 by a reactive sputtering method.
Figure (e)), heat treatment is performed at 950°C, the activation rate of the injection layer is about 50cm, and the n of carrier concentration is 5X10"cm-".
Ten layers are formed and the incidence of thermal bits is 10”cm
− It became smaller. In addition, heat treatment KJC5 is formed
PL of tn-type layer (photo luminesc@n
ce) Measuring tube It was found that the strong luminescence of 1,27 V, which had been observed with only S injection, was significantly reduced by 19 when double injection of B was added. 1.27
Conventionally, it has been interpreted that eV emission is related to a complex defect between Ga vacancies and donors, which is one of the crystal defects. This is considered to be effective in preventing the formation of complex defects.

注入層活性化率は結晶中の欠陥の量に大きく依在し、欠
陥の量が多い場合に注入し几不細物のキャリアとして働
く量が少なくなるため活性化率が減少する。従って本発
明の実施例と従来との活性化率を比較すると、従来より
も値が大きくなう友ということは、前述したGaペーカ
ンスイー・ド尚、Bイオンの代わVにGa+ As、I
nイオンについてPJ様の試み管行ってみたが大きな改
良とはならず、特にI n + A■注入では逆効果で
あった0 本発明に工れば、熱処理におけるAtN膜及び結晶にか
かるストレスを緩和し、結晶欠陥の発生を防止すること
ができる。
The activation rate of the implanted layer largely depends on the amount of defects in the crystal, and when the amount of defects is large, the activation rate decreases because the amount of injected impurities that act as carriers decreases. Therefore, when comparing the activation rates of the embodiments of the present invention and the conventional method, the activation rates are larger than those of the conventional method.
Mr. PJ's trial tube for n ions was tried, but it did not make a big improvement, and in particular the I n + A ■ implantation had the opposite effect. If the present invention is applied, the stress applied to the AtN film and crystal during heat treatment can be reduced. It is possible to relax and prevent the occurrence of crystal defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実施例を説明する図、第2図は本発明の
実施例t−説明する図である。 1.6   GaA畠ウェハ 2.8   Seイオン 5   Bイオン 3    8s注入層 4.1OAtN膜 7   B注入層 9    B+S・注入層 第1図       率2図 (α)               (C)<b)(
tl) (e)
FIG. 1 is a diagram for explaining a conventional embodiment, and FIG. 2 is a diagram for explaining an embodiment of the present invention. 1.6 GaA Hatake wafer 2.8 Se ion 5 B ion 3 8s injection layer 4.1 OAtN film 7 B injection layer 9 B+S・Injection layer Fig. 1 Ratio Fig. 2 (α) (C) < b) (
tl) (e)

Claims (1)

【特許請求の範囲】[Claims] ヒ化ガリウム半導体Kn或いはP彫工細物をイオン注入
し、該半導体上にアルミニウムナイトライド膜を形成し
、熱処理する工sを含む素子製造方法において、不純物
注入の前若しくは後に、ボロンイオンを該半導体の不純
物注入領竣にイオン注入する工sを含むことt*徽とす
るヒ化ガリウム票子製造方法。
In a device manufacturing method including ion-implanting a gallium arsenide semiconductor Kn or P sculpture, forming an aluminum nitride film on the semiconductor, and heat-treating the semiconductor, boron ions are added to the semiconductor before or after impurity implantation. A method for producing a gallium arsenide stamp comprising the step of implanting ions into an impurity implantation region.
JP56101891A 1981-06-30 1981-06-30 Manufacture of gallium arsenide element Pending JPS583236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56101891A JPS583236A (en) 1981-06-30 1981-06-30 Manufacture of gallium arsenide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56101891A JPS583236A (en) 1981-06-30 1981-06-30 Manufacture of gallium arsenide element

Publications (1)

Publication Number Publication Date
JPS583236A true JPS583236A (en) 1983-01-10

Family

ID=14312545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56101891A Pending JPS583236A (en) 1981-06-30 1981-06-30 Manufacture of gallium arsenide element

Country Status (1)

Country Link
JP (1) JPS583236A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047428A (en) * 1983-08-26 1985-03-14 Fujitsu Ltd Manufacture of semiconductor device
JPH01211797A (en) * 1988-02-19 1989-08-24 Komunikusu:Kk Pickup device for taisho lyre
JPH03136097A (en) * 1989-10-20 1991-06-10 Komunikusu:Kk Electronic taisho lyre

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047428A (en) * 1983-08-26 1985-03-14 Fujitsu Ltd Manufacture of semiconductor device
JPH01211797A (en) * 1988-02-19 1989-08-24 Komunikusu:Kk Pickup device for taisho lyre
JPH03136097A (en) * 1989-10-20 1991-06-10 Komunikusu:Kk Electronic taisho lyre
JP2594834B2 (en) * 1989-10-20 1997-03-26 株式会社コムニクス Electronic Taisho Koto

Similar Documents

Publication Publication Date Title
US4920076A (en) Method for enhancing growth of SiO2 in Si by the implantation of germanium
US4617066A (en) Process of making semiconductors having shallow, hyperabrupt doped regions by implantation and two step annealing
JPS6310573A (en) Manufacturing method of semiconductor device
JPH0727965B2 (en) Method for manufacturing device including embedded SiO 2 layer
US4960728A (en) Homogenization anneal of II-VI compounds
JPH0475655B2 (en)
JPS61201425A (en) Treatment of gaas substrate
Sealy Ion implantation doping of semiconductors
Chin et al. Effects of thermal annealing on semi‐insulating undoped GaAs grown by the liquid‐encapsulated Czochralski technique
JPS583236A (en) Manufacture of gallium arsenide element
JPH04233219A (en) Method for manufacturing products consisting of semiconductor devices
JPS6227727B2 (en)
US3211589A (en) P-n junction formation in iii-v semiconductor compounds
JPS62265717A (en) Heat treating method for substrate for gallium arsenide integrated circuit
JPS6130030A (en) Method of annealing multi-element semiconductor
JPH0797567B2 (en) Method of forming thin film
Hong et al. Effects of grown‐in stress on the metastable solid solubility limits in Sb implanted Ge0. 1Si0. 9 alloys
Rao et al. Be, S, Si, and Ne ion implantation in InSb grown on GaAs
JP3028559B2 (en) Semiconductor wafer and method of manufacturing the same
Arokiaraj et al. Surface passivation of GaAs grown on Si by selenium sulfide treatment
Lo et al. Radiation effects in ultrathin nitrided oxides prepared by rapid thermal processing
Xiao et al. Reduction of crystalline disorder in molecular beam epitaxy GaAs on Si by MeV ion implantation and subsequent annealing
Lee et al. The effects of point defects on the electrical activation of Si-implanted GaAs during rapid thermal annealing
Babentsov et al. Luminescence profiling: a diagnostic method for an impurities-defects system in semiconductor materials
DE112021001213T5 (en) Manufacturing process for semiconductor silicon wafers