[go: up one dir, main page]

JPS5832333B2 - Ultrasonic detection type Karman vortex flow meter - Google Patents

Ultrasonic detection type Karman vortex flow meter

Info

Publication number
JPS5832333B2
JPS5832333B2 JP53027872A JP2787278A JPS5832333B2 JP S5832333 B2 JPS5832333 B2 JP S5832333B2 JP 53027872 A JP53027872 A JP 53027872A JP 2787278 A JP2787278 A JP 2787278A JP S5832333 B2 JPS5832333 B2 JP S5832333B2
Authority
JP
Japan
Prior art keywords
phase difference
karman vortex
ultrasonic
transmitting
detection type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53027872A
Other languages
Japanese (ja)
Other versions
JPS54119953A (en
Inventor
俊一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53027872A priority Critical patent/JPS5832333B2/en
Publication of JPS54119953A publication Critical patent/JPS54119953A/en
Publication of JPS5832333B2 publication Critical patent/JPS5832333B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3282Means for detecting quantities used as proxy variables for swirl for detecting variations in infrasonic, sonic or ultrasonic waves, due to modulation by passing through the swirling fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 この発明は、流体の流速に応じて発生するカルマン渦列
の発生周波数を、渦列中を通過する超音波の受けた位相
変調によって検出する超音波検出式カルマン渦流量計の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an ultrasonic detection type Karman vortex flow rate system that detects the generation frequency of a Karman vortex street generated in accordance with the flow velocity of a fluid by the phase modulation received by an ultrasonic wave passing through the vortex street. This is related to the improvement of the meter.

導管内に渦発生体を設け、その下流に発生したカルマン
渦列の発生周波数を超音波で検出して導管内を流れる流
体の流量を測定する方法は実開昭51−24154で提
案されている。
A method for measuring the flow rate of fluid flowing in a conduit by installing a vortex generator in a conduit and detecting the generation frequency of the Karman vortex street generated downstream using ultrasonic waves was proposed in Utility Model Application No. 51-24154. .

この方法でカルマン渦列を検出する場合、超音波発信器
から出た超音波は、カルマン渦列で変調され、受信器で
受信される。
When detecting the Karman vortex street using this method, the ultrasonic waves emitted from the ultrasonic transmitter are modulated by the Karman vortex street and received by the receiver.

この時の送・受波間の位相差は、超音波送・受信子間の
距離、流体の温度あるいは速度で決する第1の位相差1
と、この第1の位相差1を中心値として、カルマン渦列
に対応して進相、遅相する交流的な第2の位相差2とに
分けられる。
The phase difference between the transmitting and receiving waves at this time is the first phase difference 1 determined by the distance between the ultrasonic transmitting and receiving elements, the temperature or speed of the fluid.
and a second alternating-current phase difference 2 that advances and lags in phase in accordance with the Karman vortex street, with the first phase difference 1 as the central value.

第1の位相差1は、流体の温度変化等でEヒ較的ゆっく
り、直流的に変化し、第2の位相差2は、カルマン渦列
の周期、強弱に応じて変化し、変化は非常に速い。
The first phase difference 1 changes relatively slowly in a direct current manner due to temperature changes in the fluid, etc., and the second phase difference 2 changes depending on the period and strength of the Karman vortex street, and changes extremely. fast.

この為に全体の位相差の平均値は、第1の位相差1とな
る。
Therefore, the average value of the entire phase difference is the first phase difference 1.

さて、位相比較器として、エクスクル−シブ・OR回路
とローパスフィルタを用いた場合の回路図を第1図に、
位相差出力特性図を第2図に示す。
Now, Figure 1 shows a circuit diagram when an exclusive OR circuit and a low-pass filter are used as a phase comparator.
A phase difference output characteristic diagram is shown in FIG.

第1図にお−いて、11がエクスクル−シブ・OR回路
、12は抵抗、13はコンデンサーである。
In FIG. 1, 11 is an exclusive OR circuit, 12 is a resistor, and 13 is a capacitor.

第1図のエクスクル−シブOR回路の入力に、位相差△
φの2人力を入れた場合の平均出力電圧は、△φが00
〜3600変化するのに従って、第2図に示す様に変化
する。
At the input of the exclusive OR circuit in Figure 1, the phase difference △
The average output voltage when φ is applied by two people is △φ is 00
~3600, it changes as shown in FIG.

前述の第1の位相差1が、例えば90°であった場合に
、位相差2の△φ1が重畳された時の位相検出器の出力
Voutは、第2図に示す様に、△φ1 に対応した△
■1が得られる。
When the aforementioned first phase difference 1 is, for example, 90°, the output Vout of the phase detector when △φ1 of phase difference 2 is superimposed is △φ1 as shown in FIG. Compatible△
■1 is obtained.

第1の位相差1が180°であると、重畳された位相差
2の△φ2による出力Voutは、△■2 の様に、△
φ2と異なった復調波形となってし1う。
When the first phase difference 1 is 180°, the output Vout due to △φ2 of the superimposed phase difference 2 is as shown in △■2, △
This results in a demodulated waveform different from φ2.

この様な不具合は、位相差がO’ 、180’ 、
360° 、・・・の様に位相検波器の出力が折れ曲る
点で生じるが、第1の位相差1は、主に、超音波送・受
波器間の距離、流体中の音速、超音波の送信周波数によ
って決する。
Such a problem occurs when the phase difference is O', 180',
The first phase difference 1 occurs at the point where the output of the phase detector bends like 360°, etc., but the first phase difference 1 is mainly caused by the distance between the ultrasonic transmitter and receiver, the speed of sound in the fluid, Determined by the ultrasonic transmission frequency.

ところで、従来の方法でカルマン渦による位相変調を復
調する場合、第1の位相差1を決定するパラメータの中
の1つ、例えば流体の温度変化により、音速が変化した
様な場合に、復調不可能な位相差の点を通過してゆく為
に、特定の温度で測定が不可能となる欠点があった。
By the way, when demodulating phase modulation due to Karman vortices using the conventional method, one of the parameters that determines the first phase difference 1, for example, when the sound speed changes due to a change in the temperature of the fluid, demodulation failure occurs. Since the method passes through points of possible phase difference, it has the disadvantage that measurements cannot be made at specific temperatures.

さらには、位相検出器の特性以外の要因例えば、定在波
あるいは共振と云う様な、導管の幾何学的形状から決す
る特定の位相差になった場合にも、測定が不可能となる
欠点があった。
Furthermore, there is the drawback that measurement is impossible even when a certain phase difference is determined by the geometry of the conduit due to factors other than the characteristics of the phase detector, such as standing waves or resonance. there were.

本発明は、上記欠点を除去する為になされたもので、送
・受波間の平均位相差、つ1り第1の位相差1に、うす
による第2の位相差2が重畳された場合にでも復調可能
な平均位相差である様に、常に送・受波間の平均位相差
を適正値に制御する様にした事により、測定流体の温度
変化等にも影響される事なく、安定にカルマン渦の発生
周波数を検出する事が出来、かつ電源投入後ただちに希
望周波数範囲で動作可能な超音波検出式カルマン渦流量
計を提供する事を目的としている。
The present invention has been made to eliminate the above-mentioned drawbacks, and when the average phase difference between transmitting and receiving waves, the first phase difference 1, and the second phase difference 2 due to thinness are superimposed, However, by always controlling the average phase difference between transmitting and receiving waves to an appropriate value so that the average phase difference can be demodulated, Karman can be stably maintained without being affected by changes in the temperature of the fluid being measured. The purpose of the present invention is to provide an ultrasonic detection type Karman vortex flowmeter that can detect the frequency at which vortices occur and can operate within a desired frequency range immediately after power is turned on.

以下、この発明ゑ一実施例を図について説明する。An embodiment of this invention will be described below with reference to the drawings.

第3図において、31は超音波受信子であり、33はプ
リアンプ、32は超音波送信用振動子で、34ば32の
ドライバー 35はコンパレータで、36は位相設定用
の可変抵抗、37は抵抗、38はコンデンサ、39はタ
イマー用ICで、例えばシグネテイクス社のNE555
,40,41 。
In Fig. 3, 31 is an ultrasonic receiver, 33 is a preamplifier, 32 is an ultrasonic transmitter, 34 is a driver for 32, 35 is a comparator, 36 is a variable resistor for phase setting, and 37 is a resistor. , 38 is a capacitor, and 39 is a timer IC, such as NE555 from Signetakes.
, 40, 41.

42は抵抗で43.47はコンデンサ、44は抵抗で4
5はコンデンサ、46はパルス変換用のシュミット回路
である。
42 is a resistor, 43.47 is a capacitor, 44 is a resistor, and 4
5 is a capacitor, and 46 is a Schmitt circuit for pulse conversion.

この様に横取された超音波式カルマン渦流量計に卦いて
、1ず電源を投入すると、コンデンサ38の初期電荷は
0である為に、例えば2/3■cc の様な、初期値設
定用の制御電圧が、抵抗42及びノイズカット用のコン
デンサ43を通して、タイマー用IC39の発振周波数
制御端子へ加わり、初期設定された周波数で発振を開始
する。
When the power is first turned on to the ultrasonic Karman vortex flowmeter that has been stolen in this way, the initial charge of the capacitor 38 is 0, so the initial value, such as 2/3 cc, is set. A control voltage is applied to the oscillation frequency control terminal of the timer IC 39 through the resistor 42 and the noise cutting capacitor 43, and oscillation is started at the initially set frequency.

この出力パルス波形は、ドライバー34により増巾され
、超音波送信用振動子32を駆動する。
This output pulse waveform is amplified by the driver 34 and drives the ultrasonic transmitting transducer 32.

超音波送信用振動子32が発生した送信波は、超音波受
信子31により受信されてプリアンプ33により、パル
ス波形に変換される。
A transmission wave generated by the ultrasound transmission transducer 32 is received by the ultrasound receiver 31 and converted into a pulse waveform by the preamplifier 33.

送、受波間の位相差は、前述のエクスクル−シブOR回
路11で検出され、抵抗12及びコンデンサ13からな
るローパスフィルタで平均位相差が検出される。
The phase difference between the transmitted and received waves is detected by the above-mentioned exclusive OR circuit 11, and the average phase difference is detected by a low pass filter consisting of a resistor 12 and a capacitor 13.

さらに、送受信波間の位相差が検出される。Furthermore, the phase difference between the transmitted and received waves is detected.

さらに、送受信波間の位相差出力は、抵抗44及びコン
デンサ45からなるローパスフィルタ、シュミット回路
46により、第2の位相差2による変調出力をパルス出
力に変換して、うず周波数を出力する。
Further, the output of the phase difference between the transmitted and received waves is converted into a pulse output by a low-pass filter and Schmitt circuit 46 consisting of a resistor 44 and a capacitor 45, which converts the modulated output by the second phase difference 2 into a pulse output, and outputs an eddy frequency.

さて、平均位相差は、比較器35により、抵抗36で設
定された所定位相差と比較され、積分要素の抵抗37、
コンデンサ38を経て、所定位相差となる様にタイマー
用IC39の発振周波数制御端子を制御する。
Now, the average phase difference is compared with a predetermined phase difference set by the resistor 36 by the comparator 35, and the resistor 37 of the integral element,
Via the capacitor 38, the oscillation frequency control terminal of the timer IC 39 is controlled so that a predetermined phase difference is achieved.

なお、積分要素の時定数は、第2の位相差2には応答し
ないで、第1の位相差1にのみ応答する様な、比較的長
い時定数でよい。
Note that the time constant of the integral element may be a relatively long time constant that does not respond to the second phase difference 2 but responds only to the first phase difference 1.

ところで、第3図の実施例で示した発振周波数を制御す
るフィードバック方式にかいて、系の安定点となる為の
希望位相差に相当する発振周波数は、位相出力が2πの
整数倍ずれた点で一致する為に、何点でも存在する。
By the way, in the feedback method for controlling the oscillation frequency shown in the embodiment shown in Fig. 3, the oscillation frequency corresponding to the desired phase difference to become the stable point of the system is the point at which the phase output is shifted by an integer multiple of 2π. In order to match, any number of points can exist.

ところが、例えばPZTを用いた超音波振動子等では、
共振点付近の狭い帯域内でしか送・受波器として動作し
ない為に、回路の電源を投入して、最初にフィードバッ
クが戒り立つ発振周波数を安定させる必要がある。
However, for example, in ultrasonic transducers using PZT,
Since it operates as a transmitter/receiver only within a narrow band near the resonance point, it is necessary to turn on the power to the circuit and first stabilize the oscillation frequency at which feedback occurs.

ところで、第1の位相差1を制御するフィードバックル
ープの積分要素の時定数は、第20位相差2の出力に影
響しない様に十分長い時定数が必要である。
Incidentally, the time constant of the integral element of the feedback loop that controls the first phase difference 1 needs to be sufficiently long so as not to affect the output of the 20th phase difference 2.

この為に第3図の場合、抵抗37及びコンデンサ38は
大きな値及び容量となる。
Therefore, in the case of FIG. 3, the resistor 37 and capacitor 38 have large values and capacitances.

ところでタイマー用IC39の発振周波数制御端子を、
抵抗42を通して電圧で制御する場合、電源電圧との関
係で、ある中心周波数から高・低周波数へオフセットさ
せる為には、中心周波数を発振させる為の初期電圧を印
加させる必要がある。
By the way, the oscillation frequency control terminal of the timer IC39 is
When controlling by voltage through the resistor 42, it is necessary to apply an initial voltage to oscillate the center frequency in order to offset a certain center frequency to high or low frequencies in relation to the power supply voltage.

大容量のコンデンサ38を、電源投入後ただちに、希望
初期電圧(例えば2/3Vcc ) iですみやかに
充電した後に、しかるべき中心周波数付近の、安定周波
数でフィードバック動作を行なう事が必要である。
It is necessary to quickly charge the large capacity capacitor 38 with a desired initial voltage (for example, 2/3 Vcc) i immediately after turning on the power, and then perform a feedback operation at a stable frequency near the appropriate center frequency.

この為には、フィードバックが開始され、安定点に落付
く以前に、振動子の共振周波数付近の発振周波数で、タ
イマー用IC39が安定に中心周波数で発振する様に、
コンデンサ38の初期電荷あるいは初期電位をプリセッ
トする事が必要である。
For this purpose, the timer IC 39 should be made to oscillate stably at the center frequency at an oscillation frequency near the resonant frequency of the vibrator before the feedback starts and reaches a stable point.
It is necessary to preset the initial charge or potential of the capacitor 38.

これは、例えば第3図に示す様に、コンデンサ38に電
荷が零の状態で、タイマー用IC39が、中心周波数で
発振する様に、コンデンサ38の接地端子を初期電圧に
バイアスするとよい。
This can be done, for example, by biasing the ground terminal of the capacitor 38 to an initial voltage so that the timer IC 39 oscillates at the center frequency when the capacitor 38 has no charge, as shown in FIG.

なお、上記実施例では、送、受信子間の距離を固定とし
て、発振周波数を変化させて、送・受波間の平均位相差
が希望値となる様にフィードバック制御したが、発振周
波数を固定とし、送・受信子間の距離を増減して、送・
受波間の平均位相差が希望値となる様にフィードバック
制御してもよい。
In the above embodiment, the distance between the transmitting and receiving elements was fixed, and the oscillation frequency was changed to perform feedback control so that the average phase difference between the transmitting and receiving waves became the desired value. , by increasing or decreasing the distance between the transmitter and receiver.
Feedback control may be performed so that the average phase difference between received waves becomes a desired value.

この場合には、振動子32の位置を制御する為に例えば
、モータ、ヒータ付バイメタル等の電気→位置変換器を
用いて、その電気入力を、送・受波間の平均位相差に応
じて制御する様にすればよい。
In this case, in order to control the position of the vibrator 32, for example, an electric to position converter such as a motor or a bimetal with a heater is used, and the electric input is controlled according to the average phase difference between transmitting and receiving waves. You can do as you like.

以上のように、この発明によれば、送・受波間の平均位
相差を、位相検出器の動作可能位相差内となる様にフィ
ードバック制御する事により、被測定流体の温度変化に
もかかわらずに安定に測定出来ると同時に、電源投入後
ただちに希望周波数範囲で動作可能な超音波検出式カル
マン渦流量計を得る事が出来る。
As described above, according to the present invention, feedback control is performed so that the average phase difference between transmitting and receiving waves is within the operable phase difference of the phase detector, regardless of temperature changes in the fluid to be measured. At the same time, it is possible to obtain an ultrasonic detection type Karman vortex flowmeter that can perform stable measurements and operate in the desired frequency range immediately after turning on the power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な平均位相差検出回路、第2図は第1図
回路の動作特性図、第3図は本発明の一実施例を示す電
気回路図である。 図中、11はエクスクル−シブOR回路、12は抵抗、
13はコンデンサ、31は超音波受信子、32は超音波
送信用振動子、33はプリアンプ、34はドライノく、
35はコンパレータ、36は可変抵抗、37は抵抗、3
8はコンデンサ、39はタイマ用ICである。 尚、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a general average phase difference detection circuit, FIG. 2 is an operational characteristic diagram of the circuit shown in FIG. 1, and FIG. 3 is an electric circuit diagram showing an embodiment of the present invention. In the figure, 11 is an exclusive OR circuit, 12 is a resistor,
13 is a capacitor, 31 is an ultrasonic receiver, 32 is an ultrasonic transmitter, 33 is a preamplifier, 34 is a dry nozzle,
35 is a comparator, 36 is a variable resistor, 37 is a resistor, 3
8 is a capacitor, and 39 is a timer IC. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 カルマン渦の発生周波数を、流体中を通過する超音
波の送・受波間の位相差で検出するようにしたカルマン
渦流量計にち・いて、送・受波間の位相差の平均値を検
出する手段、比較的長い時定数を有し、超音波送・受信
子間の距離、流体の温度あるいは速度で決筐る比較的ゆ
っくり変化する直流的な第1の位相差に応答し、カルマ
ン渦列の周期、強弱に応じて変化する交流的な第2の位
相差には応答しない積分要素、及びこの積分要素の出力
により上記送・受波間の位相差の平均値か、位相検出器
の有効測定位相差以内となる様に、送受波間の平均位相
差を制御する事を特徴とする超音波検出式カルマン渦流
量計。 2 送・受波間の位相差の平均値が、位相検出器の有効
測定位相差以内となる様に、超音波送信用振動子の発振
周波数を制御する事を特徴とする特許請求の範囲第1項
記載の超音波検出式カルマン渦流量計。 3 送・受波間の位相差の平均値が、位相検出器の有効
測定位相差以内となる様に、超音波送信用振動子と超音
波受信子間の距離を制御する事を特徴とする特許請求の
範囲第1項記載の超音波検出式カルマン渦流量計。 4 積分要素中のコンデンサの初期電荷を、通常動作時
の電荷にセットするか、あるいは、通常動作時のコンデ
ンサの電荷が零付近となる様にコンデンサのバイアス値
を設定する様にして、電源スイツチオン後すみやかに所
定の周波数付近でフィードバック制御が可能となる様に
した事を特徴とする特許請求の範囲第2項記載の超音波
検出式カルマン渦流量計。
[Claims] 1. A Karman vortex flow meter that detects the frequency at which Karman vortices occur based on the phase difference between sending and receiving ultrasonic waves passing through a fluid. Means for detecting the average value of the phase difference, a direct current first phase difference that has a relatively long time constant and changes relatively slowly depending on the distance between the ultrasonic transmitter and receiver, and the temperature or speed of the fluid. and an integral element that does not respond to the alternating current second phase difference that changes depending on the period and strength of the Karman vortex street, and the output of this integral element determines the average value of the phase difference between the transmitting and receiving waves. , an ultrasonic detection type Karman vortex flowmeter characterized by controlling the average phase difference between transmitting and receiving waves so that it is within the effective measurement phase difference of a phase detector. 2. Claim 1, characterized in that the oscillation frequency of the ultrasound transmitting transducer is controlled so that the average value of the phase difference between transmitting and receiving waves is within the effective measurement phase difference of the phase detector. Ultrasonic detection type Karman vortex flow meter as described in . 3. A patent characterized in that the distance between the ultrasonic transmitting transducer and the ultrasonic receiver is controlled so that the average value of the phase difference between transmitting and receiving waves is within the effective measurement phase difference of the phase detector. An ultrasonic detection type Karman vortex flowmeter according to claim 1. 4 Set the initial charge of the capacitor in the integral element to the charge during normal operation, or set the bias value of the capacitor so that the charge on the capacitor during normal operation is near zero, and then turn on the power switch. 3. The ultrasonic detection type Karman vortex flowmeter according to claim 2, wherein feedback control is enabled immediately after a predetermined frequency.
JP53027872A 1978-03-10 1978-03-10 Ultrasonic detection type Karman vortex flow meter Expired JPS5832333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53027872A JPS5832333B2 (en) 1978-03-10 1978-03-10 Ultrasonic detection type Karman vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53027872A JPS5832333B2 (en) 1978-03-10 1978-03-10 Ultrasonic detection type Karman vortex flow meter

Publications (2)

Publication Number Publication Date
JPS54119953A JPS54119953A (en) 1979-09-18
JPS5832333B2 true JPS5832333B2 (en) 1983-07-12

Family

ID=12232982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53027872A Expired JPS5832333B2 (en) 1978-03-10 1978-03-10 Ultrasonic detection type Karman vortex flow meter

Country Status (1)

Country Link
JP (1) JPS5832333B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151123U (en) * 1983-03-28 1984-10-09 大和製衡株式会社 Device to prevent powder from adhering to the inner surface of the weighing hopper

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567776A (en) * 1982-06-30 1986-02-04 Kubota Trane Ltd. Fluid flowmeter of Karman vortex detecting type
DE3751386T2 (en) * 1986-07-17 1996-01-11 Mitsubishi Electric Corp Measuring device for engine intake air quantity.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151123U (en) * 1983-03-28 1984-10-09 大和製衡株式会社 Device to prevent powder from adhering to the inner surface of the weighing hopper

Also Published As

Publication number Publication date
JPS54119953A (en) 1979-09-18

Similar Documents

Publication Publication Date Title
CN101910804B (en) Coriolis flowmeter
US4208908A (en) Speed of sound compensation for Doppler flowmeter
US4134297A (en) Two-wire transmission system for vortex-type flowmeters
JPH0862014A (en) Mass flowmeter operating on coriolis principle
JP2008528980A (en) Ultrasonic flow sensor using modulo 2pi residual tracking
JPS5832333B2 (en) Ultrasonic detection type Karman vortex flow meter
JPS58763A (en) Gas rate sensor
JPH039405B2 (en)
JPH06343200A (en) Ultrasonic transmitter
RU2640122C1 (en) Vortex acoustic flow transducer
JP3388370B2 (en) Ultrasonic flow meter
JP2710399B2 (en) Flow measurement method
SU609962A1 (en) Ultrasonic flowmeter
JP3651110B2 (en) Ultrasonic current meter
JPH037783Y2 (en)
JPS5918364Y2 (en) current meter
JPS58214813A (en) Measuring device for flow rate
JPS6326731Y2 (en)
JP2004170326A (en) Ultrasonic vortex flowmeter
JP3453576B2 (en) Ultrasonic flow meter
JPS626811B2 (en)
JPH0140299B2 (en)
JPS6125288B2 (en)
JPH0230734Y2 (en)
JPS593696B2 (en) Thermometer using resonance absorption phenomenon