[go: up one dir, main page]

JPS5830938B2 - Continuous heat treatment method for high carbon steel wire rod for high processing cold drawing - Google Patents

Continuous heat treatment method for high carbon steel wire rod for high processing cold drawing

Info

Publication number
JPS5830938B2
JPS5830938B2 JP5248578A JP5248578A JPS5830938B2 JP S5830938 B2 JPS5830938 B2 JP S5830938B2 JP 5248578 A JP5248578 A JP 5248578A JP 5248578 A JP5248578 A JP 5248578A JP S5830938 B2 JPS5830938 B2 JP S5830938B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
wire
transformation
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5248578A
Other languages
Japanese (ja)
Other versions
JPS54143717A (en
Inventor
和夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5248578A priority Critical patent/JPS5830938B2/en
Publication of JPS54143717A publication Critical patent/JPS54143717A/en
Publication of JPS5830938B2 publication Critical patent/JPS5830938B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 この発明は、高加工度々間引抜き用線材の連続熱処理方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuous heat treatment of wire rods for high processing and frequent drawing.

この発明は熱間圧延直後または再加熱後に施される高炭
素鋼線材の連続パテンティング処理方法に係り、とくに
オーステナイト化温度をこえた温度からの冷却カーブを
有利にコントロールして鉛浴を用いることなしに当該鋼
種の到達しうべき最高レベルの強度と、高度の冷間加工
に耐えるじん性とを兼ね備えた微細パーライト組織をう
るための熱処理方法に関するものである。
The present invention relates to a method for continuous patenting treatment of high carbon steel wire immediately after hot rolling or after reheating, and in particular, it uses a lead bath while advantageously controlling the cooling curve from a temperature exceeding the austenitizing temperature. The present invention relates to a heat treatment method for obtaining a fine pearlite structure that has both the highest level of strength that can be achieved for the steel type and the toughness to withstand high-level cold working.

この発明は熱間圧延直後または再加熱後の高炭素鋼線材
をオーステナイト化温度以上の温度から、特定冷媒中に
て強制冷却したのち、大気中放冷あるいはさらに水冷後
巻取る冷却工程において、特定冷媒中にて線材表面温度
を350〜550℃の範囲とし、かつその時点での冷却
所要時間が当該鋼種の連続冷却変態(いわゆるOCT・
)開始時間以内であるように制御し、以後10〜30秒
間熱伝達係数20〜100Kcal/m2.h、cなる
冷媒中での冷却、そのひとつの例として大気中放冷後水
冷し巻取るかもしくは特定冷媒を出た直後にループ状に
加工して大気雰囲気あるいはさらに400〜500℃に
保熱された断熱槽中に束重ね収納するかだけで、工程上
きかめて簡便にしかも線材断面積内で均一な硬さの下に
、当該鋼種の最高レベルの強じん性をうろことのできる
熱処理方法である。
This invention involves forcedly cooling a high carbon steel wire rod immediately after hot rolling or after reheating in a specific refrigerant from a temperature above the austenitizing temperature, and then allowing it to cool in the atmosphere or further cooling with water and then winding it. The surface temperature of the wire in the refrigerant is in the range of 350 to 550°C, and the required cooling time at that point is the continuous cooling transformation (so-called OCT) of the steel type.
) The heat transfer coefficient is controlled to be within the starting time, and then the heat transfer coefficient is 20 to 100 Kcal/m2 for 10 to 30 seconds. Cooling in refrigerants h and c. One example is cooling in the air, then cooling with water and winding up, or immediately after exiting the specific refrigerant, processing it into a loop shape and keeping it in the air or further at 400 to 500℃. The heat treatment process is extremely simple and allows for uniform hardness within the cross-sectional area of the wire, as well as the highest level of toughness for the steel type, simply by stacking the bundles in a heat-insulated tank. It's a method.

筐たこの発明は、上記強制冷却の開始温度から350〜
550℃の温度域への特定冷媒中での冷却時間を、とく
に3秒以下とすることにより全く同一の冷却処理を施し
て鋼上成分範囲(C;0.40−0.90% 、Mn
; 0.20〜1.00% )には無関係に当該鋼種の
最高レベルの強じん性をうろことができるような連続熱
処理を可能ならしめるものである。
The invention of this invention is to reduce the starting temperature of forced cooling to 350~
By setting the cooling time in a specific refrigerant to a temperature range of 550°C to 3 seconds or less, the same cooling treatment can be performed to achieve a steel composition range (C; 0.40-0.90%, Mn
; 0.20 to 1.00%), it enables continuous heat treatment to achieve the highest level of toughness of the steel type.

硬鋼線材やピアノ線材などの高炭素鋼線材はいわゆるパ
テンティング処理を施したのち冷間でダイスによる引抜
きすなわち伸線加工を行ない、所定の強さとじん性を付
与して使用に供される。
High carbon steel wire rods such as hard steel wire rods and piano wire rods are subjected to a so-called patenting treatment and then cold drawn through dies, that is, wire drawn, to impart predetermined strength and toughness before being used.

このパテンティングは大別して熱間圧延工程と連続して
行われるダイレクトパテンティング(略称L)P )と
熱間圧延線材あるいは伸線材を再加熱して行われる通常
のパテンティングとに分かれる。
This patenting can be roughly divided into direct patenting (abbreviated as L)P), which is performed continuously with the hot rolling process, and normal patenting, which is performed by reheating the hot rolled wire rod or drawn wire rod.

後者には一般に空気パテンティング(AP)と鉛パテン
テイング(LP )が用いられており、高い強じん性を
うる目的に対してはほとんどLPが主として採用されて
いる。
Air patenting (AP) and lead patenting (LP) are generally used for the latter, and LP is mostly used for the purpose of obtaining high toughness.

一般にパテンティング処理にてえられる微細なパーライ
ト組織が伸線加工以降の線材の性質に大きな影響を与え
ることは周知である。
It is well known that the fine pearlite structure obtained through the patenting process has a great influence on the properties of the wire rod after wire drawing.

ところがAPは冷媒が通常大気であるため熱伝達係数(
すたぽ伝熱係数、熱伝達率ともよばれている)が小さく
、高い強度をうろことができない他、伸線性を損う初析
フェライトの生成など問題点が多く、工程の簡略さから
特殊な用途に限って採用されているにすぎない。
However, in AP, the refrigerant is usually atmospheric air, so the heat transfer coefficient (
The heat transfer coefficient (also known as the heat transfer coefficient) is small, making it impossible to achieve high strength, and there are many problems such as the formation of pro-eutectoid ferrite that impairs wire drawability. It is only used for specific purposes.

これに反しLPは第一の特徴として溶融金属を冷媒に用
いるため熱伝達係数が犬きく初期の冷却速度が犬となり
、適冷オーステナイトの状態から微細パーライトへの変
態に移行しやすいこと、第二の特徴としては強じん性を
付与するのに適した微細パーライト(いわゆるソルバイ
ト)をうる変態温度域に当る450〜600℃に鉛浴を
保持できるため、はぼ恒温変態が可能となり均一な組織
の形成が期待されることなどが挙げられていたのである
On the other hand, the first characteristic of LP is that it uses molten metal as a refrigerant, so the initial cooling rate is very low when the heat transfer coefficient is low, and it is easy to transform from moderately cooled austenite to fine pearlite. One of the characteristics of this is that the lead bath can be maintained at 450 to 600℃, which is the transformation temperature range that produces fine pearlite (so-called sorbite), which is suitable for imparting toughness. It was mentioned that it is expected that the formation of

しかしながら通常冷却物体が冷媒の温度に近づくに伴い
冷却速度が急激に小さくなることは周知の事実であって
、LPのごとく冷媒温度にて変態させる場合には一般に
理想とする浴温からの変態開始が難しく、すなわち恒温
変態ではなくなり、かつより高温度域での変態となって
強度不足を招く結果となっていたことが否めない。
However, it is a well-known fact that the cooling rate of a normally cooled object decreases rapidly as it approaches the temperature of the refrigerant, and when transforming at the refrigerant temperature like LP, the transformation generally starts from the ideal bath temperature. It is undeniable that the transformation was difficult, that is, the transformation was not constant temperature, and the transformation occurred in a higher temperature range, resulting in insufficient strength.

さらに450〜600’(m度域の溶融鉛の示す熱伝達
係数値のとりうる範囲が狭いので、変態開始の早い低カ
ーボン・低マンガン線材や、線径の大きい線材の場合に
は冷却能力不足のため、より高温度域からの変態開始と
なり達しうる最高レベルの強じん性をえていなかった。
Furthermore, since the possible range of the heat transfer coefficient value of molten lead in the 450 to 600' (m degree range) is narrow, the cooling capacity is insufficient for low carbon/low manganese wire rods that start transforming quickly or wire rods with large wire diameters. Therefore, the transformation started at a higher temperature range, and the highest level of toughness that could be achieved was not achieved.

事実、LPによる熱処理線材強度q線径依存性(すなわ
ち線材径が犬なるほど強度が低い傾向)の犬なることが
実操業の場で既定観念化され容認されてきた。
In fact, the fact that the strength of the wire heat treated by LP is dependent on q and wire diameter (that is, the wire diameter tends to be lower as the wire diameter increases) has been established and accepted in actual operations.

加えLPの実施に際しては高温鉛ガスや酸化鉛による人
体への害の防止がとくに必要である上、省資源への指向
などに関し、好1しからざる技術となってきている。
In addition, when implementing LP, it is particularly necessary to prevent harm to the human body due to high-temperature lead gas and lead oxide, and it has become an unfavorable technology in terms of resource conservation.

一万現状のDP法には種々のタイプのものが考案されそ
の一部は実用化されているが、最大の課題はLP、J:
りもはるかに低い強度のLPレベルへのアップである。
Currently, various types of DP methods have been devised and some of them have been put into practical use, but the biggest problem is LP, J:
It is also a much lower intensity upgrade to the LP level.

DPにおける低強度の原因は冷却能力不足に伴う高温度
域の変態である。
The cause of low strength in DP is transformation in the high temperature range due to insufficient cooling capacity.

すなわちその代表的な冷却パターンである直線状での噴
射水冷却とそれに引続く700℃以下のループ状での強
制空冷において、主たる変態は強制空冷時になされるの
でLPのごとき450〜600’C温度域よりもはるか
に高い温度域での変態となって高い強度かえられない。
In other words, in the typical cooling pattern of straight jet water cooling followed by forced air cooling in a loop below 700°C, the main transformation occurs during forced air cooling, so the temperature is 450 to 600'C, such as LP. The transformation takes place in a much higher temperature range than the above range, and high strength cannot be achieved.

筐たループ状冷却中での変態であるから、円周方向位置
に依存した冷却速さの差が強度の差となって現われてく
ることも解決べき課題のひとつであり、その差は高強度
を期待するほど大きくなるので重大である。
Since the transformation takes place during cooling in the form of a loop, one of the issues to be solved is that the difference in cooling rate depending on the circumferential position results in a difference in strength. This is important because the more you expect it, the bigger it becomes.

こ\にCr等の変態の開始を大きく遅らせる元素の添加
によって冷却連間が遅くとも高強度なうることが可能で
はあるが、添加元素減少化の指向に対して逆効果となる
他、冷却所要時間の長大化は作業性の低下につながるの
で最善の手段とはいえない。
Although it is possible to achieve high strength even if the cooling period is delayed by adding elements such as Cr that significantly delay the start of transformation, this has the opposite effect on the trend toward reducing the amount of added elements, and also reduces the cooling time required. This is not the best method as increasing the length of the process leads to a decrease in workability.

この発明は上述の高炭素鋼線材の熱処理に関する従来技
術の問題点 I、p[i−ける低カーボン・低マンガン線材あるいは
太径線材の場合の強度不足ならびに高温鉛ガスや酸化鉛
の人体への害 ■ DpKL−ける強度不足、強度のバラつきの双方に
対して、同一の方式によりコスト低減をはかりつつ全面
的な解決をねらったものである。
This invention addresses the above-mentioned problems in the prior art regarding heat treatment of high carbon steel wire rods. The aim is to completely solve both the problems of insufficient strength and variations in strength by using the same method while reducing costs.

この発明の方法は、オーステナイト化温度以上の温度か
らの冷却の条件として、まず特定冷媒中でCCT開始時
間以内に線材表面温度を350〜550℃域會で低下さ
せることを規定し、以後は20〜100Kcal/m2
hCなる熱伝達係数をもった冷媒としてのひとつの例で
ある大気放冷中にて準恒温的にパーライト変態させるこ
とにより当該鋼種の達しうべき最高レベルの強じん性を
うろことが基本的内容であり、とやに350〜550℃
温度域1での冷却所要時間を3秒以下に規定することに
よって、はとんどすべての線材鋼種に対して最高レベル
の強じん性をうべき目的に対して適用可能な単一な万能
冷却パターンとなしつる。
The method of this invention stipulates that as a condition for cooling from a temperature higher than the austenitizing temperature, the wire surface temperature must first be lowered in a range of 350 to 550°C within the CCT start time in a specific refrigerant; ~100Kcal/m2
An example of a refrigerant with a heat transfer coefficient of hC, the basic content is to achieve the highest level of toughness that the steel type should achieve by undergoing quasi-isothermal pearlite transformation while cooling in the air. 350~550℃
By specifying the cooling time required in temperature range 1 to 3 seconds or less, a single universal cooling system that can be applied to almost all wire steel types to achieve the highest level of toughness. Patterns and vines.

また特定冷媒中にて350〜550℃温度域に冷却後、
ただちに線材をループ状E%性加工してのち大気雰囲気
の断熱槽内に束重ねして収#?3さぜる手段によって設
備のコンパクト化をはかることもできこの方式は線速の
迅犬なりPに対してきわめて有効である。
After cooling to a temperature range of 350 to 550℃ in a specific refrigerant,
Immediately after processing the wire rod into a loop shape, the wire is stacked in bundles in an insulated tank in an atmospheric atmosphere and stored. 3. The equipment can be made more compact by means of stirring, and this method is extremely effective for fast linear speeds.

この発明においては350〜550℃温度域へ冷却の後
における、ひじように熱伝達係数の小さい大気あるいは
大気雰囲気の断熱槽収納中でのパーライト変態であるか
ら、線材断面内および線材長さ方向位置での硬さあるい
は強度の均一な分布かえられるわけである。
In this invention, the pearlite transformation is carried out in the air, which has an extremely small heat transfer coefficient, after cooling to a temperature range of 350 to 550°C, or in an insulated tank in an atmospheric atmosphere. This means that the uniform distribution of hardness or strength can be changed.

オたこの発明のDPにかいては冷却後の再加熱や、恒温
雰囲気中保持などを全く必要としないのでひじように経
済性が高く簡便でもある。
The DP of this invention does not require any reheating after cooling or maintenance in a constant temperature atmosphere, so it is extremely economical and simple.

この発明の方法では特定冷媒としてとくに純水を含む任
意溶質、任意温度の水溶液を採用し、線材の完全な水溶
液中連続浸漬冷却という一般には全く不可能とされてき
た手段を採用することにより、LPのごとき鉛の使用を
回避できることはもちろんのこと、その流速の変化を巧
みに利用して任意レベルの冷媒の熱伝達係数を容易かつ
迅速にうろことができ、作業の簡略化および経費の低減
化に関しきわめて大きい効果をえたのである。
In the method of this invention, an aqueous solution of an arbitrary solute and an arbitrary temperature including pure water is used as a specific refrigerant, and by employing a method that has been generally considered completely impossible, that is, continuous immersion cooling of the wire in a complete aqueous solution. Not only can the use of lead such as LP be avoided, but the change in flow velocity can be skillfully used to easily and quickly change the heat transfer coefficient of the refrigerant to any level, simplifying work and reducing costs. This had an extremely large effect on the development of society.

特定冷媒中での到達線材表面温度範囲350〜550℃
の中、下限を350℃としたのは温度が小なるほど引張
強度が高くなるのであるが350℃より低くすると熱処
理組織がベーナイト様となりじん性のいちぢるしい低下
を来たしその後の高度の冷間加工(すなわち伸線)が全
く不可能となるためであり、上限を550℃と限定した
のは550℃を超えてもじん性の低下はほとんどみられ
ないものの引張強度が通常のLP処理以下のレベルまで
大きく低下してしまうためである。
Wire surface temperature range achieved in specific refrigerant: 350-550℃
The lower limit was set at 350°C because the lower the temperature, the higher the tensile strength. However, when the temperature is lower than 350°C, the heat-treated structure becomes bainite-like, resulting in a noticeable decrease in toughness, and the subsequent high-level cold treatment This is because processing (i.e., wire drawing) is completely impossible, and the reason why the upper limit was set at 550°C is that although there is almost no decrease in toughness even when the temperature exceeds 550°C, the tensile strength is lower than that of normal LP processing. This is because the level will drop significantly.

350〜550℃の範囲内で鋼種、線材径により線材表
面温度を適宜選択することによって、最高レベル強度を
うるのであるが概して低C−低Mn材量よび太径線材は
ど低温度側とすべきである。
The highest level of strength can be obtained by appropriately selecting the wire surface temperature within the range of 350 to 550°C depending on the steel type and wire diameter, but in general, low C-low Mn material content and large diameter wires are on the lower temperature side. Should.

また、350〜550℃温度域1での冷却所要時間を3
秒以下とすることにエリあらゆる鋼種に適用しうる冷却
パターンとをしうるとしたのは、通常の硬線材の最も低
C−低Mn材のCCT開始時間が約3秒であることに対
応させたものである。
In addition, the required cooling time in the 350-550℃ temperature range 1 is 3.
The reason why we were able to create a cooling pattern that can be applied to all types of steel by making it less than 1 second is because the CCT start time of the lowest C-low Mn hard wire material is approximately 3 seconds. It is something that

350〜550℃温度域への急冷を可能ならしめるため
に強制冷媒の温度は300℃以下に限定される。
In order to enable rapid cooling to a temperature range of 350 to 550°C, the temperature of the forced refrigerant is limited to 300°C or less.

350〜550℃温度域以降の冷媒の熱伝達係数を20
−100 K cal/m2h ℃と限定したのは、つ
ぎの理由による。
The heat transfer coefficient of the refrigerant in the temperature range of 350 to 550℃ is 20
The reason why the temperature was limited to -100 Kcal/m2h°C is as follows.

変態が開始する筐では線材温度の低下はできるだけ小さ
いほどよくそのためには冷媒の熱伝達係数が小さいほど
よいのであるが逆に変態開始後は変態を促進させるため
に発生する変態熱を奪ってやらねばならずある大きさの
熱伝達係数値を確保しなければならない。
In the case where transformation begins, the wire temperature decrease should be as small as possible, and for this purpose the smaller the heat transfer coefficient of the refrigerant, the better; however, on the contrary, after the transformation begins, it is necessary to remove the heat of transformation generated in order to accelerate the transformation. A certain value of the heat transfer coefficient must be ensured.

このため[350〜550℃温度域との関連にかいて変
態時の冷媒の熱伝達係数を20〜100 K cal/
rrFh′Cと規定したのである。
For this reason, the heat transfer coefficient of the refrigerant during transformation is set at 20 to 100 Kcal/in relation to the temperature range of 350 to 550°C.
It was defined as rrFh'C.

ちなみに大気中放冷での熱伝達係数は30〜50 K
c ai/m2h ’Cであり、上述の目的に対して適
正な冷媒のひとつである。
By the way, the heat transfer coefficient when cooled in the atmosphere is 30 to 50 K.
c ai/m2h 'C, and is one of the appropriate refrigerants for the above purpose.

上述のごとき熱処理方法の適用される高炭素鋼線材とは
一般的にCを0.40−0.90係含有し、C以外の通
常成分としてSi2MnP、S、At等を適宜な範囲で
含有する線材であり、さらに添加元素としてNi、Cr
、Mo、V、B、Ti、Nb、REM等を一種類以上含
有した線材も含捷れる。
The high carbon steel wire rod to which the above heat treatment method is applied generally contains 0.40 to 0.90% of C, and contains Si2MnP, S, At, etc. as normal components other than C in an appropriate range. It is a wire rod, and further contains Ni and Cr as additional elements.
, Mo, V, B, Ti, Nb, REM, etc., are also included.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

線材をオーステナイト化温度(AC3点)以上に加熱し
、APおよびLPを施した場合の冷却曲線例を第1図に
示し、APの場合は曲線■、 LPの場合は曲線■のご
とくなる。
Figure 1 shows an example of a cooling curve when a wire rod is heated above the austenitizing temperature (AC 3 points) and subjected to AP and LP.

図中各上部ラインは大径材、下部ラインは細径材に相当
する。
In the figure, each upper line corresponds to a large-diameter material, and the lower line corresponds to a small-diameter material.

曲線■は変態温度域が高いため、初析フェライトを生成
しかつ粗い層状パーライトとなり、強度が低くかつ十分
なる伸線性に欠ける場合もでてくる。
Curve (2) has a high transformation temperature range, so it produces pro-eutectoid ferrite and becomes coarse layered pearlite, resulting in low strength and insufficient wire drawability.

曲線■の場合は微細な層状パーライト(すなわちンルバ
イト)相を呈し、曲線■の場合よりも強度か飛躍的に高
くなり十分なる伸線能も有する。
In the case of curve (2), a fine layered pearlite (namely, nrubite) phase is exhibited, and the strength is dramatically higher than in the case of curve (2), and it also has sufficient wire drawability.

曲線■の下限ラインは鉛浴温度近傍から変態が開始し、
いわゆる恒温変態に近くなるが線径が太くなるほどに上
部ラインに近づき鉛浴温度より高い温度で変態が開始す
るため、細径材と比べて強度の低下をきたす。
The lower limit line of curve ■ indicates that transformation starts near the lead bath temperature;
It approaches so-called isothermal transformation, but the thicker the wire, the closer it gets to the upper line and the transformation starts at a temperature higher than the lead bath temperature, resulting in a decrease in strength compared to small diameter materials.

実際に従来、大径材にかいては強度の低下が容認されて
きたが、冷却理論上から当然の帰結である大径なるがゆ
えの、このような強度低下を避けるために一般にCrな
どを添加することにより、変態の開始を遅らせて鉛浴温
度近傍からの変態開始を意図しその成功をみてはいるが
、このような新たな合金元素の添加はコストアップの要
因となったり資源節約の主旨に反することになるので必
ずしも本質的な改善策とはいえず、この発明のごとくま
ず熱処理の工夫でその解決を画るのがより望ましいとい
えよう。
In fact, in the past, it has been accepted that the strength of large-diameter materials decreases, but in order to avoid such a decrease in strength due to the large diameter, which is a natural consequence of cooling theory, it is generally recommended to use Cr or other materials. By adding these new alloying elements, we aim to delay the start of transformation so that it starts near the lead bath temperature, and we have seen success in this, but the addition of such new alloying elements increases costs and reduces resource savings. Since this goes against the main idea, it cannot necessarily be said to be an essential improvement measure, and it would be more desirable to first try to solve the problem by devising heat treatment as in the present invention.

筐た線の走行速度が著大(たとえば5.5 rranφ
では時速250 km/hrにも達する)なりPに対し
ては変態に必要な時間を合めた加熱温度からの冷却時間
は短いほど望ましいことは明らかでありむしろ変態開始
時間の短縮化を画るの力体筋といえる。
The running speed of the enclosed wire is extremely high (for example, 5.5 rranφ
For P, it is clear that the shorter the cooling time from the heating temperature, which includes the time required for transformation, the better.In fact, it is intended to shorten the transformation start time. It can be said to be the physical strength of the body.

LPにしても加熱時間の短縮化が可能となれば当然作業
能率のアップのために線の走行速度を犬とするわけであ
り、その原生じる装置の大型化を避けるひとつの方策と
してCCT開始時間の短縮化があげられる。
Even in the case of LP, if it becomes possible to shorten the heating time, it is natural that the running speed of the line will be increased to increase work efficiency, and one way to avoid the increase in size of the equipment that arises is to reduce the CCT start time. can be shortened.

CCT開始時間を短縮すればするほど作業能率の向上は
はかれるが通常のLPではより高温域からの変態開始と
なるわけであるから、強度低下の度合が増すことになり
結局この発明のごとき新らしい技術が不可欠となってく
る。
The shorter the CCT start time, the more the work efficiency can be improved, but in normal LP, the transformation starts from a higher temperature range, so the degree of strength decrease increases, and in the end, this invention is not new. Technology will become essential.

第1図の曲線■がこQ発明にもとづく代表的な冷却カー
ブであり、実線が特定冷媒中、破線が大気冷媒中を意味
する。
Curve 2 in FIG. 1 is a typical cooling curve based on the Q invention, where the solid line means the specific refrigerant and the broken line means the atmospheric refrigerant.

上部ラインは細径材あるいは高C−高地材に適し、下部
ラインは大径材に適する。
The upper line is suitable for small diameter materials or high C-highland materials, and the lower line is suitable for large diameter materials.

またそれぞれにかいてエリ下部ラインを採用するほど高
い強度をうろことができる。
Also, the more you use the lower edge line in each case, the higher the strength can be achieved.

曲線■はこの発明方法にかいて加熱温度から350〜5
50°C温度域への冷却所要時間を3秒とした場合の冷
却曲線を示す。
Curve ■ is 350 to 5 from the heating temperature according to the method of this invention.
A cooling curve is shown when the time required for cooling to a temperature range of 50°C is 3 seconds.

併示したCCT開始ラインに依存して、5WRH62A
線材U400℃に冷却後1.5秒間大気中で放冷されて
変態が開始するのに対して、5WRH82B線材では同
じ400℃に冷却後約12秒間大気中放冷されて後、変
態が開始する。
Depending on the CCT start line shown, 5WRH62A
Wire U is cooled to 400°C and left to cool in the air for 1.5 seconds before transformation begins, while 5WRH82B wire is cooled to the same temperature of 400°C and left to cool in the air for about 12 seconds before transformation begins. .

各鋼種の最高レベルの強じん性をつるためには線材径お
よび成分(JISの成分でばCとMn )によって急冷
温度域350〜550℃内で適宜冷却温度を選択する必
要はあるが、強制冷却時間を3秒以下とすれば、この強
制冷却時間を線材径と成分によって別途与える必要がな
いのでひじように有効な技術である。
In order to achieve the highest level of toughness for each steel type, it is necessary to select an appropriate cooling temperature within the quenching temperature range of 350 to 550°C depending on the wire diameter and composition (JIS composition: C and Mn). If the cooling time is set to 3 seconds or less, there is no need to provide this forced cooling time separately depending on the wire diameter and composition, so this is an extremely effective technique.

第2図は従来のLP処理工程を示すものであり、サプラ
イスタンド1から送り出された線材5ば900〜105
0’Cに加熱された加熱炉2の内部を走行する間にオー
ステナイト化温度(A c 3点)以上に加熱され、4
50〜600℃範囲内の一定温度に保定された鉛浴槽3
を通過中にパーライト変態がほぼ完了し、以後巻取ドラ
ム4にて巻取られる。
Figure 2 shows the conventional LP processing process, in which the wire rods 5, 900 to 105, are sent out from the supply stand 1.
While traveling inside the heating furnace 2 heated to 0'C, it is heated to the austenitizing temperature (A c 3 points) or higher, and 4
Lead bath 3 maintained at a constant temperature within the range of 50 to 600°C
The pearlite transformation is almost completed while passing through, and thereafter it is wound up on the winding drum 4.

これに対してこの発明による熱処理方法では、たとえば
加熱温度から強制冷却を行わしめる特定冷媒として水溶
液を用い線材の完全な浸漬冷却法を適用した場合、第3
図に示した連続熱処理工程のごとく、サプライスタンド
1、加熱炉22巻取ドラム4の配置はLPの場合とほと
んど同様であるが、鉛浴槽3に相当する位置(水溶液ρ
循還を可能として、液温、濃度、流速を自動コントロー
ルするための付属装置一式を備えた冷却水槽6を置く。
On the other hand, in the heat treatment method according to the present invention, for example, when a complete immersion cooling method of the wire is applied using an aqueous solution as a specific refrigerant that performs forced cooling from the heating temperature, the third
As shown in the continuous heat treatment process shown in the figure, the arrangement of the supply stand 1, heating furnace 22, and take-up drum 4 is almost the same as in the case of LP, but the position corresponding to the lead bath 3 (aqueous solution ρ
A cooling water tank 6 is installed that enables circulation and is equipped with a set of accessory devices for automatically controlling the liquid temperature, concentration, and flow rate.

またこの発明による熱処理方法のその2のタイプとして
、加熱温度から所定の温度域350〜550℃に管状冷
却槽8でもって強制冷却後、ただちに線材5をループ状
に加工して断熱槽10内にて束重ね保管する工程を直接
パテンティング(DP)の例として第4図に示す。
In the second type of heat treatment method according to the present invention, after forced cooling in the tubular cooling tank 8 from the heating temperature to a predetermined temperature range of 350 to 550°C, the wire 5 is immediately processed into a loop shape and placed in the heat insulating tank 10. The process of stacking and storing bundles is shown in FIG. 4 as an example of direct patenting (DP).

最終の圧延ロール7を出た超高速の線材5は管状冷却槽
8を通過後直ちにレーイングコーン9によりループ状に
加工されそのまま垂直降下して大気雰囲気あるいはさら
に400〜500’CVc保熱された断熱槽10中にて
束重ねされ、少くとも最終端のパーライト変態が終了す
るまでそのままの状態で保持される。
The ultra-high speed wire 5 that came out of the final rolling roll 7 passed through a tubular cooling tank 8, was immediately processed into a loop shape by a laying cone 9, and was then vertically lowered to the atmosphere or further heat-retained for 400 to 500'CVc. The bundles are stacked in a heat insulating tank 10 and held in that state at least until the pearlite transformation at the final end is completed.

つぎに本発明になる熱処理方法により得られた線材の材
質を実施例によって説明する。
Next, the material of the wire rod obtained by the heat treatment method according to the present invention will be explained with reference to examples.

実施例 供試線材の寸法とおもな含有化学成分を第1表に示す。Example Table 1 shows the dimensions and main chemical components of the test wire.

圧延の一!1あるいは伸線の筐まの線材を、840〜9
60℃に加熱保持アニオン系ポリソープ(焼入剤)の水
溶液を冷媒として浸漬冷却法により強制冷却し、その後
大気中で放冷した。
One of the rolling ones! 1 or the wire rod of the wire drawing box, 840-9
The sample was heated and held at 60°C and forcedly cooled by an immersion cooling method using an aqueous solution of anionic polysoap (quenching agent) as a coolant, and then allowed to cool in the atmosphere.

第2表に冷却条件と熱処理材の材質を示す。Table 2 shows the cooling conditions and the materials of the heat-treated materials.

変態開始の遅いB鋼について強制冷却後CCT開始筐で
の大気中放冷時間を大きく長短3段階12.9,0秒に
分けて与えたが、いずれの場合とも1401’−q/r
ranを超えるLPレベル以上の熱処理強度(ただし絞
りRA> 45 %保証)をうろことができた。
For steel B, which has a slow start of transformation, the cooling time in the atmosphere in the CCT start box after forced cooling was divided into three stages, long and short, 12.9.0 seconds, but in each case the time was 1401'-q/r.
It was possible to achieve a heat treatment strength of LP level or higher (guaranteed drawing RA > 45%), which exceeds RAN.

また強制冷却時間が6秒未満の場合にはCCT開始時間
の犬きく異るA、B鋼に対して全く同一の線速、冷却槽
長さで作業できることが明らかであり、作業能率向上の
うえでひじように有効である。
Furthermore, when the forced cooling time is less than 6 seconds, it is clear that steel A and B, which have very different CCT start times, can be worked at exactly the same wire speed and cooling tank length, which improves work efficiency and improves work efficiency. It is extremely effective.

第5図にA、B鋼について、強制冷却終了時の線材表面
温度θ。
Figure 5 shows the wire surface temperature θ at the end of forced cooling for steels A and B.

と熱処理材の強度δB′i?工び絞りRAとの関係を示
す。
and the strength δB′i of the heat-treated material? The relationship with RA is shown.

加熱温度が840,900960 ’Cの3水準で強制
冷却時間ばA、B鋼種とも6秒である。
The forced cooling time at three heating temperatures of 840 and 900960'C is 6 seconds for both A and B steel types.

A、B鋼とも840〜960℃の温度範囲で焼入性の加
熱温度依存性はほとんどない。
Both steels A and B have almost no dependence of hardenability on heating temperature in the temperature range of 840 to 960°C.

θ。とδ8とは完全に一対一の対応関係にある。θ. and δ8 have a completely one-to-one correspondence.

A鋼ではθ。For A steel, θ.

〈450℃でLPレベル強度を超え、B鋼ではθcく5
50℃でI、Pレベル強度を超えている。
<Exceeds LP level strength at 450℃, and B steel has θc less than 5
Exceeds I and P level intensity at 50°C.

θ。θ.

が小なるほどδ8が大なる傾向にはある75&θ。75 & θ tends to increase as δ8 becomes smaller.

がある値以下になるとベーナイト組織が生じてじん性が
著しく低下することは、RAの低下から明らかである。
It is clear from the decrease in RA that below a certain value, a bainite structure is formed and the toughness is significantly reduced.

すなわち、第5図にむいてA鋼、B鋼はともにθ。That is, as shown in Fig. 5, steel A and steel B are both θ.

く350℃、B鋼ばθ。<400℃にて線引可能なRA
の下限値40%を割る。
350℃, B steel θ. RA drawable at <400℃
Divide the lower limit of 40%.

線引可能(眠してRA>40%)でかつLPの最高レベ
ルを超える強度をうろことの可能なθ。
θ that is drawable (RA > 40%) and capable of scaling intensities above the highest level of LP.

の範囲として、A鋼ば350くθ。The range of A steel is 350 x θ.

く450°C,B鋼ば350くθc〈55o℃をえた。θc〈55o℃ was obtained for B steel at 350℃.

この高強じん性をうろことの可能なθ。This high toughness makes it possible to scale θ.

の範囲が材質とくにC量に依存することはLPにおいて
も認められてきたことであった。
It has been recognized in LP that the range depends on the material, especially the C content.

すなわちLPの場合、Amば450〜500℃、Bdl
ば500〜550℃の鉛浴温度にてそれぞれLP処理に
釦ける最高レベル強じん性を示してきた。
In other words, in the case of LP, Am 450-500°C, Bdl
They have shown the highest level of toughness for LP treatment at a lead bath temperature of 500 to 550°C.

したがってこの発明にもとづく熱処理方式の結論として
、総括的に40〜90%C線材に対して達しうべき最高
レベル強じん性をうるために350くθCζ550℃な
る温度範囲が決定されたわけである。
Therefore, as a conclusion of the heat treatment method based on this invention, a temperature range of 350° C. to 550° C. was determined in order to obtain the highest level of toughness that should be achieved overall for 40-90% C wire.

第6図にA、B各鋼の最高強度を示した熱処理線材を線
引した結果を示す。
FIG. 6 shows the results of drawing the heat-treated wire showing the highest strength of each steel A and B.

A、Bdとも引抜加工限度はLPと同等がそれ以上であ
り、到達強度ULP処理材のそれを超えている。
The drawing limits for both A and Bd are equivalent to but higher than LP, and the ultimate strength exceeds that of the ULP treated material.

以上の実施例にもとづいた説明のごとく、この発明に従
う40〜90 %C含有になる線材の連続的熱処理方法
は、オーステナイト化温度(AC3点)以上に加熱保持
径線材表面温度3.50〜550℃域に適冷オーステナ
イトの状態で強制冷却し、その後熱伝達係数20〜10
0Kcal/m2h℃なる冷媒中を走行さぞあるいぽル
ープ状に束重ねした状態で微細パーライト変態g−tr
るきわめて簡庚な制御熱処理工程によって、熱間圧延線
材でのDPとしても、または従来のLPに代わりうるパ
テンティング方法としても適用可能であり、両者にかい
てLPにかける最高レベル強じん性を上回る当該鋼種の
達しうべき最高強じん性を容易にうろことができ、さら
に前者に対しては強度の均一化に卦いて、後者に対して
は線速Cアップ化、無公害化に釦いて従来技術の問題点
を有利に解決できる。
As explained based on the above embodiments, the continuous heat treatment method for a wire rod containing 40 to 90% C according to the present invention is performed by heating the wire rod to a temperature above the austenitization temperature (AC 3 points) at a diameter wire surface temperature of 3.50 to 550. Forced cooling in the appropriately cooled austenite state in the °C range, then a heat transfer coefficient of 20 to 10
When running in a refrigerant with a temperature of 0Kcal/m2h℃, fine pearlite transformation occurs when the bundles are piled up in a loop shape.
Due to its extremely simple controlled heat treatment process, it can be applied as a DP on hot rolled wire rods or as a patenting method that can replace conventional LP, both of which provide the highest level of toughness for LP. It is possible to easily exceed the maximum toughness that the steel type should achieve, and for the former, it is possible to equalize the strength, and for the latter, it is possible to increase the linear speed C and make it non-polluting. The problems of the prior art can be solved advantageously.

この発明はよれば従来技術に比してつぎのごとく有利で
ある。
The present invention has the following advantages over the prior art.

■ LP方式よりもすぐれた強じん性かえられる。■ Superior toughness compared to the LP method.

■ LP法のごとき公害の問題が全くない。■ There are no pollution problems like the LP law.

■ 従来の直接パテンティング法と比べて高温酸化スケ
ールが少ない。
■ Less high-temperature oxidation scale compared to conventional direct patenting methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炭素鋼材の連続冷却変態開始ラインと線材の
空気パテンティング、鉛パテンティング卦よびこの発明
にもとづくパテンティングの場合の冷却曲線とを併示し
たグラフ、第2図は従来の鉛パテンテイング処理工程、
また第3図はこの発明の強制冷却媒体として水溶液を採
用し線材の完全な浸漬冷却によるパテンティング処理工
程を一例について示した説明図、第4図はこの発明の強
制冷却後直ちにループ加工して断熱槽内にて束重ね収納
する方法による直接パテンティング処理工程の一例を示
した説明図、第5,6図はこの発明の実施例に釦ける熱
処理後の線材の材質特性を示した図表である。 1・・・サプライスタンド、2・・・加熱炉、4・・・
巻取機、5・・・線材、6・・・冷却水槽、7・・・圧
延ロール、8・・管状強制冷却槽、9・・・レーイング
コーン、10・・・断熱槽。
Fig. 1 is a graph showing the continuous cooling transformation start line of high carbon steel material, air patenting of wire rod, lead patenting diagram, and cooling curve in the case of patenting based on this invention. Patenting process,
Further, Fig. 3 is an explanatory diagram showing an example of the patenting process by complete immersion cooling of the wire rod using an aqueous solution as the forced cooling medium of the present invention, and Fig. 4 is an explanatory diagram showing an example of the patenting processing process by completely immersion cooling of the wire rod according to the present invention. An explanatory diagram showing an example of a direct patenting process using a method of stacking and storing bundles in a heat insulating tank, and Figures 5 and 6 are charts showing material characteristics of wire rods after heat treatment according to an embodiment of the present invention. be. 1... Supply stand, 2... Heating furnace, 4...
Winding machine, 5... wire rod, 6... cooling water tank, 7... rolling roll, 8... tubular forced cooling tank, 9... laying cone, 10... insulation tank.

Claims (1)

【特許請求の範囲】 1 熱間圧延直後あるいは再加熱後の高炭素鋼線材を、
オーステナイト化温度以上の温度から300℃以下の温
度に保持した冷媒中に通しその走行過程における強制冷
却を介してパテンティングする際、この強制冷却は線材
表面温度が350〜550℃の範囲に至る降温に要する
時間を、該線材鋼種に依存する連続冷却変態開始時間以
内にすることと、その後引続き熱伝達係数が20〜10
0Kcal/m2. h 、 Cである冷媒中を走行す
る間に変態を完了させること との結合よりなる高加工度冷間引抜き用高炭素鋼線材の
連続熱処理方法。
[Claims] 1 High carbon steel wire rod immediately after hot rolling or after reheating,
When patenting is performed through forced cooling during the running process of passing through a refrigerant maintained at a temperature from above the austenitizing temperature to below 300°C, this forced cooling lowers the wire surface temperature to a range of 350 to 550°C. The time necessary for
0Kcal/m2. h. A method for continuous heat treatment of high carbon steel wire rods for high workability cold drawing, which comprises completing the transformation while running in a C refrigerant.
JP5248578A 1978-05-01 1978-05-01 Continuous heat treatment method for high carbon steel wire rod for high processing cold drawing Expired JPS5830938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5248578A JPS5830938B2 (en) 1978-05-01 1978-05-01 Continuous heat treatment method for high carbon steel wire rod for high processing cold drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5248578A JPS5830938B2 (en) 1978-05-01 1978-05-01 Continuous heat treatment method for high carbon steel wire rod for high processing cold drawing

Publications (2)

Publication Number Publication Date
JPS54143717A JPS54143717A (en) 1979-11-09
JPS5830938B2 true JPS5830938B2 (en) 1983-07-02

Family

ID=12916010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5248578A Expired JPS5830938B2 (en) 1978-05-01 1978-05-01 Continuous heat treatment method for high carbon steel wire rod for high processing cold drawing

Country Status (1)

Country Link
JP (1) JPS5830938B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124103U (en) * 1984-01-28 1985-08-21 日本電業工作株式会社 cavity resonator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143440A (en) * 1981-02-28 1982-09-04 Sumitomo Electric Ind Ltd Heat treatment of steel wire rod
JPS58174523A (en) * 1982-04-03 1983-10-13 Nippon Steel Corp Manufacturing method for ultra-fine-grained high-strength hot-worked steel materials
JPS59107023A (en) * 1982-12-09 1984-06-21 Nippon Steel Corp Manufacturing method of ultra-fine grain hot rolled steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124103U (en) * 1984-01-28 1985-08-21 日本電業工作株式会社 cavity resonator

Also Published As

Publication number Publication date
JPS54143717A (en) 1979-11-09

Similar Documents

Publication Publication Date Title
JPH06322480A (en) Wire rod for reinforced high strength steel wire and method for manufacturing the same
CN118854174A (en) A high-plasticity hot-rolled carbon wire rod for 1670MPa bridge cables and a manufacturing method thereof
US4088511A (en) Steels combining toughness and machinability
US4767472A (en) Method for the treatment of steel wires
US4040872A (en) Process for strengthening of carbon steels
US4604145A (en) Process for production of steel bar or steel wire having an improved spheroidal structure of cementite
CN118895460A (en) A hot-rolled composite phase 1770MPa grade prestressed stranded wire rod and its manufacturing method
US3939015A (en) In-line heat treatment of hot-rolled rod
JPS5830938B2 (en) Continuous heat treatment method for high carbon steel wire rod for high processing cold drawing
JPH03240919A (en) Manufacturing method of steel wire rod for wire drawing
US4931107A (en) Process for producing a cold rolled steel sheet having a good ageing resistance by continuous annealing
US4375378A (en) Process for producing spheroidized wire rod
JPS59136421A (en) Preparation of rod steel and wire material having spheroidal structure
JPS607004B2 (en) Directly patented wire manufacturing method
JPH0160532B2 (en)
GB1566128A (en) Heat treating of hot-rolled steel rod
JPS59136422A (en) Preparation of rod steel and wire material having spheroidal structure
JPH06100934A (en) Method for manufacturing high carbon steel wire material for wire drawing
JPS59136423A (en) Preparation of rod steel and wire material having spheroidal structure
JP2815695B2 (en) Fluidized bed patenting method for high carbon steel wire
KR100340546B1 (en) A method of manufacturing wire rods for preventing martensite formation in segregation zone
JPH04280920A (en) Steel wire manufacturing equipment for wire drawing
JPH0372023A (en) Method and equipment for manufacturing thermomechanically treated rolled steel
JPH10298641A (en) Method for producing steel material excellent in spheroidizing annealing processability
CN118006887A (en) 1000MPa grade high-plasticity 55SiCrA spring steel wire rod production process