[go: up one dir, main page]

JPS5829736A - Synthesis of 4-allyl-2,5-cyclohexadienone derivative - Google Patents

Synthesis of 4-allyl-2,5-cyclohexadienone derivative

Info

Publication number
JPS5829736A
JPS5829736A JP56127077A JP12707781A JPS5829736A JP S5829736 A JPS5829736 A JP S5829736A JP 56127077 A JP56127077 A JP 56127077A JP 12707781 A JP12707781 A JP 12707781A JP S5829736 A JPS5829736 A JP S5829736A
Authority
JP
Japan
Prior art keywords
allyl
cyclodextrin
para
derivative
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56127077A
Other languages
Japanese (ja)
Other versions
JPH0134212B2 (en
Inventor
Hidefumi Hirai
平井 英史
Makoto Komiyama
真 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56127077A priority Critical patent/JPS5829736A/en
Priority to EP82900665A priority patent/EP0073837B1/en
Priority to DE8282900665T priority patent/DE3274104D1/en
Priority to EP19840112783 priority patent/EP0158709B1/en
Priority to DE8484112783T priority patent/DE3276858D1/en
Priority to PCT/JP1982/000066 priority patent/WO1982003073A1/en
Publication of JPS5829736A publication Critical patent/JPS5829736A/en
Priority to US06/530,158 priority patent/US4523031A/en
Publication of JPH0134212B2 publication Critical patent/JPH0134212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titiled substance in high yield in high selectivity useful as a a raw material for synthesizing a physiologically active substance or other syntheses, by reacting a para-position substituted phenol with an allyl chloride in the presence of cyclodextrin as a catalyst. CONSTITUTION:A para-position substituted phenol derivative is reacted with an allyl halide derivative in the presence of cyclodextrin as a catalyst, to give a compound shown by the formula (A, B, C, D and E are H, substituted or unsubstituted alkyl, aryl, alkoxyl, or allyl; R is substituted or unsubstituted allyl). To be concrete, cyclodextin is added to the para-position substituted phenol derivative and an aqueous solution of NaOH, etc., and dissolved, the allyl halide is added to the solution dropwise, to give the compound shown by the formula. alpha-Cyclodextrin or beta-cyclodextrin can be used as the cylcodextrin. After the desired substance is separated, the reaction system is acidified, it is precipitated and directly can be reused.

Description

【発明の詳細な説明】 本発明は4位に置換あるいは非置換アリル基を有スζ2
,5−’/クロー・キサジェノン誘導体〔1〕〔式中A
、 B、 C,D、 Eは水素、置換および非置換アル
キル基、アリル基、アルコキシル基、またはアリール基
、Rは置換あるいは非置換アリル基〕を選択的に製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an allyl group having a substituted or unsubstituted allyl group at the 4-position.
,5-'/Clo-xagenone derivative [1] [in the formula A
, B, C, D, E are hydrogen, substituted and unsubstituted alkyl groups, allyl groups, alkoxyl groups, or aryl groups, and R is a substituted or unsubstituted allyl group].

4位にアリル基を有する2、5−シクロヘキサジエノン
誘導体は、2個のC−C二重結合とカルボニル基が共役
しているために反応性に富み、−!、だ分子内で環化す
るのに適した位置にアリル基があるために、生理活性物
質その他の有用な物質の合成原料となる重要な化合物で
ある。たとえば。
A 2,5-cyclohexadienone derivative having an allyl group at the 4-position has high reactivity because two C-C double bonds and a carbonyl group are conjugated, and -! Because it has an allyl group in a position suitable for cyclization within the molecule, it is an important compound that can be used as a raw material for the synthesis of physiologically active substances and other useful substances. for example.

Journal of American Chemi
cal 5ociety、第100巻、  1978年
発行、第4618頁に記載されているように、化合物〔
2〕 を出発原料として抗生物質エリスロマイシンが合成でき
る。
Journal of American Chemi
Cal 5ociety, Vol. 100, Published in 1978, p.
2] can be used as a starting material to synthesize the antibiotic erythromycin.

従来、4位にアリル基を有する2、5−シクロヘキサジ
エノン誘導体は、まず、芳香族溶媒中でナトリウムメト
キシドとパラ位置換フェノール類の1:1混合物にハロ
ゲン化アリルを作用させて6位がアリル化された2、4
−シクロへキサジェノン誘導体〔3〕 〔3〕 〔式中、 A、 B、 C,D、 Eは水素、置換およ
び非置換アルキル基、アリル基、アルコキシル基または
アリール基、Rは置換あるいは非置換アリル基〕を合成
し、つぎに、これをメタノール塩酸中で反応させてアリ
ル基を6位に転移せしめるという2段階の反応で合成さ
れていた。しかしながら、この方法は、特に第1段階目
の反応物〔3〕の分離精製が困難であること、および多
量の有機溶媒を使用するなどの欠点を有する。
Conventionally, 2,5-cyclohexadienone derivatives having an allyl group at the 4-position were prepared by first treating a 1:1 mixture of sodium methoxide and a phenol substituted at the para-position with an allyl halide in an aromatic solvent. is allylated 2,4
-Cyclohexagenone derivative [3] [3] [wherein A, B, C, D, and E are hydrogen, substituted and unsubstituted alkyl groups, allyl groups, alkoxyl groups, or aryl groups, R is substituted or unsubstituted allyl The allyl group was synthesized in a two-step reaction, in which the allyl group was synthesized and then reacted in methanol-hydrochloric acid to transfer the allyl group to the 6-position. However, this method has drawbacks, such as difficulty in separating and purifying reactant [3], particularly in the first stage, and the use of a large amount of organic solvent.

本発明は、環状オリゴ糖であるシクロデキストリンを触
媒として使用することによシ、パラ位置換フェノール類
とハロゲン化アリルとの、水溶液中の1段階の反応によ
シ、目的生成物である2、5−シクロへキサジェノン誘
導体〔1〕を高収率および高選択的に合成することを可
能とするものである。
The present invention uses cyclodextrin, which is a cyclic oligosaccharide, as a catalyst to produce the desired product 2 through a one-step reaction of para-substituted phenols and allyl halides in an aqueous solution. , 5-cyclohexagenone derivative [1] can be synthesized in high yield and with high selectivity.

すなわち2本発明者らは、パラ位置換フェノール誘導体
と水酸化ナトリウムまたは水酸化カリウムの水溶液にシ
クロデキストリンを加え、溶解せしめた後にハロゲン化
アリルを滴下することにより、2,5−シクロヘキサジ
エノン誘導体を高収率および高選択性で合成することに
成功した。実施例1および2に示す通り2本発明におけ
る目的物〔1〕の収率は50〜60チであり1選択率は
40〜55チである。これに対し、比較例1に示すよう
に、シクロデキストリンを用いない反応における〔1〕
の収率は15〜25チであり2選択率は18〜28チで
ある。
Namely, the present inventors added cyclodextrin to an aqueous solution of a para-substituted phenol derivative and sodium hydroxide or potassium hydroxide, dissolved it, and then added dropwise allyl halide to produce a 2,5-cyclohexadienone derivative. were successfully synthesized in high yield and selectivity. As shown in Examples 1 and 2, the yield of the target product [1] in the present invention is 50 to 60%, and the selectivity is 40 to 55%. In contrast, as shown in Comparative Example 1, [1] in the reaction without using cyclodextrin
The yield is 15-25 and the 2 selectivity is 18-28.

シクロデキストリンとしては、α−シクロデキストリン
とβ−シクロデキストリンのいずれも用いbことができ
る。
As the cyclodextrin, both α-cyclodextrin and β-cyclodextrin can be used.

シクロデキストリンは反応中に変化せず2反応後そのま
ま再使用が可能である。エーテル抽出により2,5−シ
クロヘキサジエノン誘導体を分離後。
Cyclodextrin does not change during the reaction and can be reused as is after two reactions. After separation of the 2,5-cyclohexadienone derivative by ether extraction.

反応系を酸性にすると溶解度の減少のためにシクロデキ
ストリンが沈澱する。この簡便な方法でシクロデキスト
リンの7〜8割は回収され9回収されたシクロデキスト
リンは完全に再使用にたえるaつぎに本発明を具体的に
実施例をあげて説明するが、これにより本発明を制限す
るものではない。
When the reaction system is made acidic, cyclodextrin precipitates due to decreased solubility. With this simple method, 70 to 80% of the cyclodextrin is recovered, and the recovered cyclodextrin can be completely reused.Next, the present invention will be specifically explained with examples. It does not limit the invention.

実施例1 0.20gの2.4.6−)リメチルフェノール(東京
化成工業株式会社製、特級試薬)と7.5gのα−シク
ロデキストリン(半井化学薬品株式会社製。
Example 1 0.20 g of 2.4.6-)limethylphenol (manufactured by Tokyo Chemical Industry Co., Ltd., special grade reagent) and 7.5 g of α-cyclodextrin (manufactured by Hanui Chemical Co., Ltd.).

特級試薬)を50mA!の1チ水酸化ナトリウム水溶液
に溶かし、室温で0.99の臭化アリル(東京化成工業
株式会社製、特級試薬)を滴下しつつ24時間反応せし
める。反応後2反応液を50mのエーテルで5回抽出し
、エーテル層を乾燥した。このようにしてo、 i s
 IIの生成物を得、  H−NMR測定を行なった結
果、この生成物の53チは2,4゜6−ドリメチルー4
−アリル−2,5−シクロヘキサジエノンであり、  
2,4.6−ドリメチルー6−アリルー2,4−シクロ
ヘキサジエノンおよび2.4.6−トリメチルフェニル
−アリルエーテルはそれぞれ26%、21%であった。
special grade reagent) at 50mA! The solution was dissolved in an aqueous solution of sodium hydroxide, and reacted at room temperature for 24 hours while adding 0.99 allyl bromide (special grade reagent, manufactured by Tokyo Kasei Kogyo Co., Ltd.) dropwise. After the reaction, the two reaction solutions were extracted five times with 50 m of ether, and the ether layer was dried. In this way o, is
As a result of obtaining the product II and performing H-NMR measurement, it was found that 53 molecules of this product were 2,4°6-drimethyl-4
-allyl-2,5-cyclohexadienone,
2,4.6-dolimethyl-6-allyl-2,4-cyclohexadienone and 2,4.6-trimethylphenyl-allyl ether were 26% and 21%, respectively.

すなわち、目的物の収率および選択率はそれぞれ48%
および53チであった。
That is, the yield and selectivity of the target product were each 48%.
and 53 chi.

実施例2 実施例1と同様の操作により、7.5gのα−シクロデ
キストリンの代わりに7.5gのβ−シクロデキストリ
ン(半井化学薬品株式会社製、特級試薬)を使用し、 
 0.20.!i’の生成物を得た。H−NMR測定に
より、この生成物の41チは2,4.6−ドリメチルニ
2,5−シクロヘキサジエノンであり。
Example 2 By the same operation as in Example 1, 7.5 g of β-cyclodextrin (manufactured by Hanui Chemical Co., Ltd., special grade reagent) was used instead of 7.5 g of α-cyclodextrin,
0.20. ! The product i' was obtained. According to H-NMR measurement, 41% of this product was 2,4.6-drimethyldi-2,5-cyclohexadienone.

2、4.6− )サメチル−6−アリル−2,4−−シ
、クロヘキサジエノンおよび2.4.6− )リメチル
フェニルーアリルエーテルはそれぞれ34チおよび28
チであった。すなわち2、目的物の収率および選択率は
いずれも41%であった。
2,4.6-) samethyl-6-allyl-2,4-cy,chlorhexadienone and 2.4.6-)limethylphenyl-allyl ether are 34 and 28, respectively.
It was Chi. That is, 2. The yield and selectivity of the target product were both 41%.

比較例1 0、209の2.4.6− )リメチルフェノール(東
京化成工業株式会社製、特級試薬)を50m1の1%水
酸化ナトリウム水溶液に溶かし、室温で0.9gの臭化
アリル(東京化成工業株式会社製、特級試薬)を滴下し
つつ24時間反応せしめる。反応後1反応液を50 m
lのエーテルで5回抽出し、エーテル層を乾燥した。こ
のようにして0.199の生成物を得。
Comparative Example 1 0, 209, 2.4.6-) Limethylphenol (manufactured by Tokyo Kasei Kogyo Co., Ltd., special grade reagent) was dissolved in 50 ml of 1% aqueous sodium hydroxide solution, and 0.9 g of allyl bromide ( A special grade reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise to the mixture for 24 hours. After reaction, transfer one reaction solution to 50 m
The extract was extracted 5 times with 1 liter of ether, and the ether layer was dried. A product of 0.199 was thus obtained.

’H−NMR測定を行なった結果、この生成物の25チ
は2,4.6−1リメチル−2,5−シクロヘキサジェ
ノ/であシ、  2,4.6−)ジメチル−6−アリル
−2,4−シクロヘキサジエノンおよび2.4.6− 
トリメチルフェニル−アリルエーテルはそれぞれ50チ
および25チであった。すなわち、目的物の収率および
選択率はそれぞれ24チおよび25チであった。
As a result of 'H-NMR measurement, 25% of this product was 2,4.6-1-dimethyl-2,5-cyclohexageno/dehyde, 2,4.6-)dimethyl-6-allyl. -2,4-cyclohexadienone and 2.4.6-
Trimethylphenyl-allyl ether was 50 and 25, respectively. That is, the yield and selectivity of the target product were 24 and 25, respectively.

特許出願人 平井英史Patent applicant Hidefumi Hirai

Claims (1)

【特許請求の範囲】[Claims] バラ位置換フェノール誘導体に対してノ・ロゲン化アリ
ル誘導体を反応させるにあたシ、ンクロデキストリンを
触媒として用いることにより、4位のアリル化された2
、5−シクロへキサジェノン誘導体を高収率および高選
択的に製造する方法
When reacting the phenol derivative substituted at the 4-position with the allyl derivative substituted at the 4-position, nclodextrin is used as a catalyst.
, a method for producing 5-cyclohexagenone derivatives in high yield and with high selectivity
JP56127077A 1981-03-09 1981-08-13 Synthesis of 4-allyl-2,5-cyclohexadienone derivative Granted JPS5829736A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP56127077A JPS5829736A (en) 1981-08-13 1981-08-13 Synthesis of 4-allyl-2,5-cyclohexadienone derivative
EP82900665A EP0073837B1 (en) 1981-03-09 1982-03-09 Process for selectively producing para-substituted derivatives of phenols
DE8282900665T DE3274104D1 (en) 1981-03-09 1982-03-09 Process for selectively producing para-substituted derivatives of phenols
EP19840112783 EP0158709B1 (en) 1981-03-09 1982-03-09 A process for producing a para-substituted phenol derivative
DE8484112783T DE3276858D1 (en) 1981-03-09 1982-03-09 A process for producing a para-substituted phenol derivative
PCT/JP1982/000066 WO1982003073A1 (en) 1981-03-09 1982-03-09 Process for introducing substituent to p-position of phenols
US06/530,158 US4523031A (en) 1981-08-11 1983-09-07 Process for producing a para-substituted phenol derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127077A JPS5829736A (en) 1981-08-13 1981-08-13 Synthesis of 4-allyl-2,5-cyclohexadienone derivative

Publications (2)

Publication Number Publication Date
JPS5829736A true JPS5829736A (en) 1983-02-22
JPH0134212B2 JPH0134212B2 (en) 1989-07-18

Family

ID=14951000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127077A Granted JPS5829736A (en) 1981-03-09 1981-08-13 Synthesis of 4-allyl-2,5-cyclohexadienone derivative

Country Status (1)

Country Link
JP (1) JPS5829736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055225A (en) * 2005-07-29 2007-03-08 Asami Seisakusho:Kk Curing method for concrete, mold for concrete and curing apparatus for concrete product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055225A (en) * 2005-07-29 2007-03-08 Asami Seisakusho:Kk Curing method for concrete, mold for concrete and curing apparatus for concrete product

Also Published As

Publication number Publication date
JPH0134212B2 (en) 1989-07-18

Similar Documents

Publication Publication Date Title
US5173481A (en) Preparation of specifically substituted cyclodextrins
JPH07149801A (en) Preparation of alkylated cyclodextrin derivative, said derivative and solubili-zation of difficultly-water-soluble substance
JPS60152503A (en) Water-soluble mixed ether of beta-cyclodextrin and manufacture
JP2792610B2 (en) Area-selective substitution of cyclodextrin
EP0173748B1 (en) Process for producing substituted unsaturated six-membered ring compounds from phenol derivatives
JPS5829736A (en) Synthesis of 4-allyl-2,5-cyclohexadienone derivative
EP0158709B1 (en) A process for producing a para-substituted phenol derivative
JPS647062B2 (en)
JPS632270B2 (en)
US4523031A (en) Process for producing a para-substituted phenol derivative
US4523037A (en) Process for selectively producing para-substituted derivatives of phenols
JP3292536B2 (en) Method for producing orthohydroxymandelic acid or a salt thereof
JPH01106833A (en) Method for synthesizing p-hydroxymethylphenols
JPS5855441A (en) Synthesizing method of 2,4-dihydroxybenzaldehyde
JPS6259601A (en) Method for producing etherified cyclodextrin
JPH0136815B2 (en)
CA1234393A (en) Process for producing a para-substituted phenol derivative
JP3924027B2 (en) Sodium orthohydroxymandelate / phenol / water complex, process for its preparation and use for the separation of sodium orthohydroxymandelate
JPS58194842A (en) Synthesis of nitrovinylphenols
JPS5855442A (en) Synthesizing method of p-hydroxybenzaldehyde
JPS60222438A (en) Synthesis of hydroxy chalcone
JPS58105961A (en) Synthesis of indole-3-aldehyde
JPH03188036A (en) Method for producing parahydroxymethylphenols
JPS61111302A (en) Method for producing etherified cyclodextrin
JPS5826840A (en) Synthesizing method of p-hydroxybenzoic acid