JPS5827988A - Electrolyzing method for hydrochloric acid - Google Patents
Electrolyzing method for hydrochloric acidInfo
- Publication number
- JPS5827988A JPS5827988A JP56125867A JP12586781A JPS5827988A JP S5827988 A JPS5827988 A JP S5827988A JP 56125867 A JP56125867 A JP 56125867A JP 12586781 A JP12586781 A JP 12586781A JP S5827988 A JPS5827988 A JP S5827988A
- Authority
- JP
- Japan
- Prior art keywords
- hydrochloric acid
- chamber
- concentration
- supplied
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims description 13
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 29
- 238000005341 cation exchange Methods 0.000 claims abstract description 10
- 239000012528 membrane Substances 0.000 claims abstract description 10
- -1 platinum group metal oxide Chemical class 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 7
- 238000000354 decomposition reaction Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 20
- 239000007864 aqueous solution Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は塩酸を電解して陽極室で塩素を、陰極室で水素
を得る方法に関し、低電圧且つ高電流効率で塩酸を電解
する方法を提供するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrolyzing hydrochloric acid to obtain chlorine in an anode chamber and hydrogen in a cathode chamber, and provides a method for electrolyzing hydrochloric acid at low voltage and high current efficiency.
従来、合成塩酸、副生塩酸、廃塩酸等の塩酸溶液から電
解によシ塩素と水素を得る場合、中性隔膜によって仕切
られた電解槽で陽陰極ともグラファイト電極を使用して
電解する方法が一般に行なわれてきたが、中性隔膜を用
いるため陽極室と陰極室の塩酸濃度は同程度となシ、電
力消費の点から塩酸濃度を20チ前後と高く保持しなけ
ればならなかった。このため、塩素ガスの発生に伴い塩
酸が消費される陽極室に循環供給される塩酸水溶液に塩
化水素ガスを吹き込んで濃度を維持する必要がある一方
、塩tガスが発生しない陰極室の塩酸も高濃度としてお
かなければならないので材質上の制限がある上、排出さ
れる塩酸が高濃度であるため、投棄の際中和しなければ
ならない惰偏題があった。更にグラファイト電極は電極
電位が高いので、電解液中に金属塩を添加して電位を下
げる方法が採られているが、この場合、排出塩酸の投棄
の際に金属塩除去の処理が必要であった。Conventionally, when obtaining chlorine and hydrogen from hydrochloric acid solutions such as synthetic hydrochloric acid, by-product hydrochloric acid, and waste hydrochloric acid, electrolysis was carried out using graphite electrodes for both anode and cathode in an electrolytic tank separated by a neutral diaphragm. This has generally been done, but since a neutral diaphragm is used, the concentrations of hydrochloric acid in the anode and cathode chambers are at the same level, and from the viewpoint of power consumption, the concentration of hydrochloric acid must be maintained at a high level of around 20%. For this reason, it is necessary to maintain the concentration by blowing hydrogen chloride gas into the aqueous hydrochloric acid solution that is circulated and supplied to the anode chamber, where hydrochloric acid is consumed as chlorine gas is generated, while the concentration of hydrochloric acid in the cathode chamber, where salt gas is not generated, must be maintained. Because it has to be kept at a high concentration, there are restrictions on the material, and because the hydrochloric acid discharged is of high concentration, it has to be neutralized before dumping. Furthermore, since graphite electrodes have a high electrode potential, a method is used to lower the potential by adding metal salts to the electrolyte, but in this case, treatment to remove the metal salts is required before dumping the discharged hydrochloric acid. Ta.
これら、中性隔膜電解槽による塩酸電解の問題を解決す
べく、複数の単位電解槽からなるイオン交換膜法竜解装
置において、陽極液を各陽極室に順次カスケード式に流
通させる方法が提案されている(特開昭55−1077
88)。この方法は塩酸電解の分野においては画期的な
発明であるが、電解槽の構造が複雑となることや、陽極
液及び陰極液の濃度が安定しない等なお不十分な点もあ
る。In order to solve these problems of hydrochloric acid electrolysis using a neutral diaphragm electrolytic cell, a method has been proposed in which the anolyte is sequentially distributed to each anode chamber in a cascade manner in an ion-exchange membrane electrolysis device consisting of a plurality of unit electrolytic cells. (Unexamined Japanese Patent Publication No. 55-1077)
88). Although this method is an epoch-making invention in the field of hydrochloric acid electrolysis, it still has some disadvantages, such as the complicated structure of the electrolytic cell and the instability of the concentrations of the anolyte and catholyte.
本発明は以上の点に鑑みてなされたものであり、比較的
平易な構造の電解槽を使用しつつ、優れた電解条件を見
い出すことによって、従来方法では達成し得なかった高
電流効率且つ低電圧による塩酸の電解方法を可能とした
ものである。The present invention has been made in view of the above points, and by finding excellent electrolytic conditions while using an electrolytic cell with a relatively simple structure, it has achieved high current efficiency and low current efficiency that could not be achieved with conventional methods. This method made it possible to electrolyze hydrochloric acid using voltage.
本発明は陽イオン交換膜により陽極室と陰極室とに区画
された電解槽において、陰極室に3.0〜6.5重量−
の濃度の塩酸水溶液を循環供給し、陽極室から抜き出さ
れる塩酸水溶液が2〜15重量%に維持されるように陽
極室に塩酸水溶液を供給しながら電解することを特徴と
する塩酸の電解方法に関する。The present invention provides an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane, in which the cathode chamber has a weight of 3.0 to 6.5.
A method for electrolyzing hydrochloric acid, which comprises circulating and supplying an aqueous solution of hydrochloric acid with a concentration of Regarding.
以下図面に従って本発明を説明する。The present invention will be explained below with reference to the drawings.
第1図は、本発明を実施する塩酸電解の工程の一例を示
す図である。FIG. 1 is a diagram showing an example of the process of hydrochloric acid electrolysis for carrying out the present invention.
図において1は電解槽であり、陽イオン交換膜2によっ
て陽極室6と陰極室4とに区画されている。陰極室4に
はタンク5からポンプ6によって3.0〜6.5チの濃
度の塩酸水溶液が供給され、電解によシ陰極室で発生す
る水素ガスとともに陰極室4から抜き出される塩酸水溶
液は気液分離器7で水素ガスと分離されて、タンク5に
循環される。In the figure, 1 is an electrolytic cell, which is divided by a cation exchange membrane 2 into an anode chamber 6 and a cathode chamber 4. An aqueous hydrochloric acid solution with a concentration of 3.0 to 6.5 g is supplied from a tank 5 to the cathode chamber 4 by a pump 6, and the aqueous hydrochloric acid solution is extracted from the cathode chamber 4 along with hydrogen gas generated in the cathode chamber by electrolysis. It is separated from hydrogen gas in the gas-liquid separator 7 and circulated to the tank 5.
陽極室3には、タンク8からポンプ9によって塩酸水溶
液が供給され、電解によシ陽極室で発生する塩素ガスと
ともに陽極室6から抜き出される塩酸水溶液は、気液分
離器10で塩素ガスと分離されて、一部タンク8に循環
される他、配管11によシ取シ出される。タンク8には
、高濃度塩酸が配管12よシ供給されて陽極室3に供給
される塩酸水溶液の濃度が調整される。陽極室3に供給
される塩酸水溶液の濃度や電解槽1内での塩酸の分解率
は、陽極室3から抜き出される塩酸水溶液濃度が2〜1
5チに維持されるように設定される。Hydrochloric acid aqueous solution is supplied to the anode chamber 3 by a pump 9 from a tank 8, and the hydrochloric acid aqueous solution extracted from the anode chamber 6 together with chlorine gas generated in the anode chamber by electrolysis is separated into chlorine gas and chlorine gas by a gas-liquid separator 10. It is separated and partially circulated to the tank 8 and also taken out through the piping 11. Highly concentrated hydrochloric acid is supplied to the tank 8 through a pipe 12, and the concentration of the aqueous hydrochloric acid solution supplied to the anode chamber 3 is adjusted. The concentration of the hydrochloric acid aqueous solution supplied to the anode chamber 3 and the decomposition rate of hydrochloric acid in the electrolytic cell 1 are determined when the concentration of the hydrochloric acid aqueous solution extracted from the anode chamber 3 is 2 to 1.
It is set to be maintained at 5.
陽極室6から抜き出される塩酸水溶液濃度は高く維持す
るほど陽極室内の液の電気伝導度が太きくな9、溶液抵
抗が小さくなる。しかし、陽極室6から抜き出される塩
酸水溶液濃度と電解電圧との関係を調べてみると、塩酸
水溶液濃度が2〜5重1tq6付近では、塩酸水溶液濃
度が高くなるに従い電解電圧は急激に低下するが、5〜
10重xisでは徐々に低下し、10重量−以上となる
とほぼ横ばいに近くなり、15重蓋チ以上では変化がな
くなる。従って、低電圧での電解を行うための陽極室か
らの塩酸水溶液の抜き出し濃度は、好ましくは10〜1
5重fチである。しかし、陽極室からの塩酸水溶液濃度
は低いほど、その後の処理がよシ容易であるため、電解
電圧との兼ね合いから2重itチ付近まで低くすること
もできる。The higher the concentration of the aqueous hydrochloric acid solution extracted from the anode chamber 6, the higher the electrical conductivity of the liquid in the anode chamber 9 and the lower the solution resistance. However, when we examine the relationship between the concentration of the aqueous hydrochloric acid solution extracted from the anode chamber 6 and the electrolysis voltage, we find that when the concentration of the aqueous hydrochloric acid solution is around 2 to 5 times 1 tq6, the electrolysis voltage decreases rapidly as the concentration of the aqueous hydrochloric acid solution increases. But 5~
At 10 weights xis, it gradually decreases, when it is 10 weights or more, it is almost flat, and when it is 15 weights or more, there is no change. Therefore, the concentration of the hydrochloric acid aqueous solution extracted from the anode chamber for electrolysis at low voltage is preferably 10 to 1.
It is a 5-fold f-chi. However, since the lower the concentration of the aqueous hydrochloric acid solution from the anode chamber, the easier the subsequent treatment, it can be lowered to around double it in consideration of the electrolysis voltage.
また、陰極における水素発生電位は、陰極液のpH値が
大きくなるほど、つまbm極室内の塩酸水溶液濃度が低
いほど卑となる。陰極として使用する金属の溶出電位が
、水素発生電位よシ責ガ値であることが陰極として使用
される金属の条件となるから、陰極室内の塩酸水溶液濃
度が低いならば、特定の金属を陰極として使用すること
が可能となる。しかし、一方陰極液の塩酸濃度が低くす
ぎると電解電圧が上昇する。実験によシ、陰極室に循環
供給される塩酸水溶液濃度と電解電圧との関係を調べた
ところ、陰極室に循環供給される塩酸水溶液濃度が3.
0〜6.51i′チの範囲のときに電解電圧が最も低い
ことが見い出された。電解電圧は、陰極として使用され
る金属によシ異なるが、上記陰極液の塩酸濃度に基づく
傾向は、陰極材質にかかわらず同等であった。Further, the hydrogen generation potential at the cathode becomes more base as the pH value of the catholyte increases and as the concentration of the hydrochloric acid aqueous solution in the bm electrode chamber decreases. The metal used as a cathode must have an elution potential that is higher than the hydrogen generation potential, so if the concentration of the hydrochloric acid aqueous solution in the cathode chamber is low, it is necessary to use a specific metal as a cathode. It becomes possible to use it as However, if the concentration of hydrochloric acid in the catholyte is too low, the electrolysis voltage will increase. Through experiments, we investigated the relationship between the concentration of the hydrochloric acid aqueous solution circulated to the cathode chamber and the electrolysis voltage, and found that the concentration of the hydrochloric acid aqueous solution circulated to the cathode chamber was 3.
It has been found that the electrolytic voltage is lowest in the range of 0 to 6.51 i'. Although the electrolysis voltage differed depending on the metal used as the cathode, the tendency based on the hydrochloric acid concentration of the catholyte was the same regardless of the cathode material.
本発明方法では、陽極室と陰極室が陽イオン交換膜によ
って仕切られておシ、陽極室から水素イオンが陽イオン
交換膜を透過して陰極室へ移行し、陰極上で水素が発生
するが、水素イオンが陰極室へ移行する際水分子を同伴
する。水素イオンに同伴して移行する水分子の量は、陽
極側塩酸水溶液濃度と陰極側塩酸水溶液濃度の比が大き
くなるにつれて減少する。従って、濃度比を大とすれば
陰極液の容量変化を防止することができ、また逆に濃度
比を小とすれば、陰極液量を増加させ、陽極液量を減少
させることができるので、前記した低電圧での電解を達
成できる陽極室から抜き出される塩酸水溶液濃度及び陰
極室に循環供給される塩酸水溶液濃度の範囲内において
、希望する運転条件にあわせて、適宜濃度比を選定する
ことができる。In the method of the present invention, an anode chamber and a cathode chamber are separated by a cation exchange membrane, and hydrogen ions from the anode chamber pass through the cation exchange membrane and move to the cathode chamber, and hydrogen is generated on the cathode. , when hydrogen ions migrate to the cathode chamber, they are accompanied by water molecules. The amount of water molecules that migrate together with hydrogen ions decreases as the ratio of the concentration of the aqueous hydrochloric acid solution on the anode side to the concentration of the aqueous hydrochloric acid solution on the cathode side increases. Therefore, by increasing the concentration ratio, it is possible to prevent changes in the volume of the catholyte, and conversely, by decreasing the concentration ratio, the amount of catholyte can be increased and the amount of anolyte can be decreased. The concentration ratio should be appropriately selected according to the desired operating conditions within the range of the concentration of the aqueous hydrochloric acid solution extracted from the anode chamber and the concentration of the aqueous hydrochloric acid solution circulated and supplied to the cathode chamber, which can achieve electrolysis at the low voltage mentioned above. I can do it.
本発明において、陽極としては、塩素発生反応に優れた
電気化学的特性と耐久性を有する、チタン基体上に白金
族金属酸化物含有被覆を形成した陽極を使用する。陽極
の被覆層は、白金族金属の単独の酸化物又は混合酸化物
、及び白金族金属とチタン、タンタル、ニオブ等の薄膜
形成金属との混合酸化物からなシ、必要に応じて他の金
属酸化物を含みうるものでアシ、これらの金属を含む化
合物をチタン基体上に塗布して熱分解する等の方法で形
成される。陰極としては、チタン、ニッケル、銅、並び
に白金族金属、金、銀等の貴金属、及びこれらの合金か
ら選ばれるものが使用可能であるが、陰極電位、耐食性
、経済性尋総合的に判断するとこれらのうちでは銅が最
も望ましい。In the present invention, the anode used is an anode in which a platinum group metal oxide-containing coating is formed on a titanium substrate, which has excellent electrochemical properties and durability for chlorine generation reactions. The coating layer of the anode is made of a single oxide or a mixed oxide of a platinum group metal, or a mixed oxide of a platinum group metal and a thin film-forming metal such as titanium, tantalum, or niobium. It is formed by applying a compound containing these metals onto a titanium substrate and thermally decomposing it. As the cathode, materials selected from titanium, nickel, copper, platinum group metals, precious metals such as gold and silver, and alloys thereof can be used; Of these, copper is the most desirable.
本発明において使用される陽イオン交換膜としては、ス
ルフォン酸基、又はスルフォン酸基に転換しうる基を有
するフルオロカーボンビニルエーテルモノマーとテトラ
フルオロエチレンとの共重合体からなる膜等が使用され
うる。As the cation exchange membrane used in the present invention, a membrane made of a copolymer of tetrafluoroethylene and a fluorocarbon vinyl ether monomer having a sulfonic acid group or a group convertible to a sulfonic acid group can be used.
本発明によれば、陰極室に循環供給される塩酸水溶液濃
度及び陽極室から抜き出される塩酸水溶液濃度として、
低電圧での電解を可能とする最適範囲を見い出すととに
よシ、陽イオン交換膜で仕切られた単一の電解槽で効率
よく塩酸を電解することができ、陽極液及び陰極液の塩
酸濃度を安定した状態で電解を続けることができる。According to the present invention, the concentration of the aqueous hydrochloric acid solution circulated to the cathode chamber and the concentration of the aqueous hydrochloric acid extracted from the anode chamber are as follows:
By finding the optimal range that enables electrolysis at low voltage, hydrochloric acid can be efficiently electrolyzed in a single electrolytic cell separated by a cation exchange membrane, and the hydrochloric acid in the anolyte and catholyte can be electrolyzed efficiently. Electrolysis can be continued with a stable concentration.
実施例1
チタン基体上に白金族金属酸化物含有被覆を形成した陽
極と銅からなる陰極を使用し、陽イオン交換膜としてデ
ーボン社製ナフィオン415を用いた二基電解槽におい
て、第1図に示す工程で下記の電解条件下に塩酸の電解
を行った。Example 1 In a two-base electrolytic cell using an anode with a coating containing a platinum group metal oxide formed on a titanium substrate and a cathode made of copper, and using Nafion 415 manufactured by Devon as a cation exchange membrane, the electrolytic cell shown in Fig. 1 was used. In the steps shown, hydrochloric acid electrolysis was performed under the following electrolytic conditions.
陰極室に循環供給される塩酸水溶液濃度 5.2重量
%陽極室から抜き出される塩酸水溶液濃度 10重量
%電流密度 20 A/dm’極間距離
2m/m
電解温度 55℃
電解電圧は2.00 Vに保持され、塩素ガス基準の電
流効率は99%であった。Concentration of aqueous hydrochloric acid solution circulated to the cathode chamber: 5.2% by weight Concentration of aqueous hydrochloric acid extracted from the anode chamber: 10% by weight Current density: 20 A/dm' Distance between poles
2 m/m Electrolysis temperature: 55° C. Electrolysis voltage was maintained at 2.00 V, and current efficiency based on chlorine gas was 99%.
実施例2
陰極室に循環供給される塩酸水溶液濃度を以下の各位に
した以外は、実施例1と同様にして塩酸の電解を行った
ところ、塩酸水溶液濃度の各位について、電解電圧は次
のとおシであった。Example 2 Hydrochloric acid electrolysis was carried out in the same manner as in Example 1, except that the concentration of the aqueous hydrochloric acid solution circulated to the cathode chamber was changed to the following values. For each concentration of the aqueous hydrochloric acid solution, the electrolysis voltage was as follows. It was shi.
陰極室に循環供給される 電解電圧塩酸水溶液濃度
(重Jilc%) 、 ff)3.02.02
3.1 2.013.3
2.02
3.5 2.03
比較例1
陰極室に循環供給される塩酸水溶液濃度を02.0重量
%又は04.5重量%とした以外は実施例1と同様にし
て塩酸の電解を行ったところ、■の場合の電解電圧は2
.10V、@の場合は2.07 Vであった◇
実施例3
陽極室から抜き出される塩酸水溶液濃度を5重thtq
b付近に維持した以外は実施例1と同様にして塩酸の電
解を行ったところ、電解電圧は2.25 V、塩素ガス
基準の電流効率は9a5チであった。また、この場合、
陽極室から陰極室への透水量が多く、陽極室から抜き出
される塩酸水溶液は少量であシ、陰極室の液量は増加す
るので、陰極液タンクにレベル計を取シ付け、陰極液濃
度を保ちつつ増加する液を系外に取り出した。Electrolytic voltage hydrochloric acid aqueous solution concentration (heavy Jilc%), ff) 3.02.02 3.1 2.013.3 circulated and supplied to the cathode chamber
2.02 3.5 2.03 Comparative Example 1 Hydrochloric acid electrolysis was carried out in the same manner as in Example 1 except that the concentration of the hydrochloric acid aqueous solution circulated and supplied to the cathode chamber was changed to 02.0% by weight or 04.5% by weight. However, the electrolytic voltage in case ■ is 2
.. In the case of 10 V and @, it was 2.07 V ◇ Example 3 The concentration of the hydrochloric acid aqueous solution extracted from the anode chamber was
When hydrochloric acid electrolysis was carried out in the same manner as in Example 1 except that the voltage was maintained near b, the electrolytic voltage was 2.25 V, and the current efficiency based on chlorine gas was 9a5. Also, in this case,
A large amount of water permeates from the anode chamber to the cathode chamber, and only a small amount of hydrochloric acid solution is extracted from the anode chamber, while the amount of liquid in the cathode chamber increases. Therefore, a level meter is installed in the catholyte tank to measure the catholyte concentration. The increasing liquid was taken out of the system while maintaining the temperature.
比較例2
陽極室から抜き出される塩酸水溶液濃度を5重量%付近
に維持し、陰極室に循環供給される塩酸水溶液濃度を(
1) 2. 、o重量%又は04.5重量%とした以外
は実施例1と同様にして塩酸の電解を行ったところ、■
の場合の電解電圧は2.3/)V、@の場合は2.32
Vであった。Comparative Example 2 The concentration of the hydrochloric acid aqueous solution extracted from the anode chamber was maintained at around 5% by weight, and the concentration of the hydrochloric acid aqueous solution circulated and supplied to the cathode chamber was maintained at (
1) 2. When hydrochloric acid electrolysis was carried out in the same manner as in Example 1 except that , o weight % or 04.5 weight % was used, ■
The electrolytic voltage is 2.3/) V in the case of , and 2.32 in the case of @
It was V.
第1図は、本発明を実施する塩酸電解の工程の一例を示
す図である。FIG. 1 is a diagram showing an example of the process of hydrochloric acid electrolysis for carrying out the present invention.
Claims (2)
れた電解槽において、陰極室に6.0〜五5重*Sの濃
度の塩酸水溶液を循環供給し、陽極室から抜き出される
塩酸水溶液が2〜15重量%に維持されるように陽極室
に塩酸水溶液を供給しながら電解することを特徴とする
塩酸の電解方法。(1) In an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane, an aqueous hydrochloric acid solution with a concentration of 6.0 to 55*S is circulated and supplied to the cathode chamber, and extracted from the anode chamber. A method for electrolyzing hydrochloric acid, which comprises carrying out electrolysis while supplying an aqueous hydrochloric acid solution to an anode chamber so that the aqueous hydrochloric acid solution produced is maintained at 2 to 15% by weight.
被覆を形成したもの、陰極として銅を使用する特許請求
の範囲第(1)項記載の塩酸の電解方法。(2) The method for electrolyzing hydrochloric acid according to claim (1), wherein a coating containing a platinum group metal oxide is formed on a titanium substrate as an anode, and copper is used as a cathode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56125867A JPS5827988A (en) | 1981-08-13 | 1981-08-13 | Electrolyzing method for hydrochloric acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56125867A JPS5827988A (en) | 1981-08-13 | 1981-08-13 | Electrolyzing method for hydrochloric acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5827988A true JPS5827988A (en) | 1983-02-18 |
Family
ID=14920892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56125867A Pending JPS5827988A (en) | 1981-08-13 | 1981-08-13 | Electrolyzing method for hydrochloric acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5827988A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6289887A (en) * | 1985-10-16 | 1987-04-24 | Idemitsu Kosan Co Ltd | How to recover hydrogen from hydrogen sulfide |
-
1981
- 1981-08-13 JP JP56125867A patent/JPS5827988A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6289887A (en) * | 1985-10-16 | 1987-04-24 | Idemitsu Kosan Co Ltd | How to recover hydrogen from hydrogen sulfide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2648313B2 (en) | Electrolysis method | |
JPH10314740A (en) | Electrolytic bath for acidic water production | |
RU97100560A (en) | METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID | |
EP0425582A1 (en) | Improved process for preparing quaternary ammonium hydroxides | |
KR910001138B1 (en) | Combined process for production of clorine dioxine and sodium hydroxide | |
RU2181150C2 (en) | Method of pickling steel | |
Schuetz et al. | Electrolysis of hydrobromic acid | |
US4578159A (en) | Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode | |
JPS6039757B2 (en) | Hydrochloric acid electrolysis method | |
JPH04501885A (en) | Purification method of quaternary ammonium hydroxide | |
JP2001271193A (en) | Synthesis of tetramethylammonium hydroxide | |
Krstajić et al. | Hypochlorite production. I. A model of the cathodic reactions | |
US6402929B1 (en) | Method of operating alkali chloride electrolytic cell | |
US4919791A (en) | Controlled operation of high current density oxygen consuming cathode cells to prevent hydrogen formation | |
CA1252753A (en) | Selective removal of chlorine from solutions of chlorine dioxide and chlorine | |
FI82078C (en) | ELEKTROKEMISKT AVLAEGSNANDE AV HYPOKLORITER UR KLORATCELLOESNINGAR. | |
JPS5827988A (en) | Electrolyzing method for hydrochloric acid | |
JP6847477B1 (en) | Electrolyzed water production equipment and method for producing electrolyzed water using this | |
Jalbout et al. | New paired electrosynthesis route for glyoxalic acid | |
JPH1018062A (en) | Method for regenerating etching solution, device for regenerating etching solution and etching device | |
JPS62297476A (en) | Method and device for regenerating copper chloride etching waste solution | |
WO2004055243A1 (en) | Process for the electrolytic production of inorganic peroxy compounds | |
Grinberg et al. | Electrochemical production of medicinal sodium hypochlorite solutions in a flow-through electrolyzing cell | |
Girenko et al. | Low concentrated green NaClO: influence of cathode material on kinetic regularities of electrolysis | |
JP2004256911A (en) | Water electrolysis device and its operation method |