[go: up one dir, main page]

JPS5827300B2 - Refrigerant for absorption refrigerators - Google Patents

Refrigerant for absorption refrigerators

Info

Publication number
JPS5827300B2
JPS5827300B2 JP54145774A JP14577479A JPS5827300B2 JP S5827300 B2 JPS5827300 B2 JP S5827300B2 JP 54145774 A JP54145774 A JP 54145774A JP 14577479 A JP14577479 A JP 14577479A JP S5827300 B2 JPS5827300 B2 JP S5827300B2
Authority
JP
Japan
Prior art keywords
refrigerant
absorption
trifluoroethanol
pyrrolidone
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54145774A
Other languages
Japanese (ja)
Other versions
JPS5688485A (en
Inventor
健 金井
正規 折井
敏男 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Chemical Industries Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Chemical Industries Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Chemical Industries Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP54145774A priority Critical patent/JPS5827300B2/en
Publication of JPS5688485A publication Critical patent/JPS5688485A/en
Publication of JPS5827300B2 publication Critical patent/JPS5827300B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 本発明は吸収冷凍機に使用する冷媒に関し、特に蒸発潜
熱が大きく、吸収剤と組み合わせたときの蒸気圧降下率
が大きく晶析点や粘性が低い冷媒に関するものである。
[Detailed Description of the Invention] The present invention relates to a refrigerant used in an absorption refrigerator, and particularly relates to a refrigerant that has a large latent heat of vaporization, a large vapor pressure drop rate when combined with an absorbent, and a low crystallization point and viscosity. .

吸収冷凍機は一般に第1図で示すような基本回路構成を
有し、1は冷媒を吸収して稀釈された吸収液から冷媒を
加熱分離する発生器、2は該発生器1から流入する気状
冷媒を冷却して液状冷媒にする凝縮器、3は該凝縮器2
の液冷媒を減圧器4で減圧し低圧条件下で散布すること
により気化させて所望の冷却機能を得る蒸発器、5は蒸
発器3で気化した冷媒を吸収液で吸収することにより蒸
発器3における連続した冷却運転を可能にする吸収器、
6は発生器1において冷媒が分離されて吸収器5fこ送
られる濃い吸収液と吸収器5から発生器1に戻る稀釈さ
れた吸収液との熱交換をする熱交換器、7は吸収液の循
環ポンプであり、斯る吸収冷凍機に使用される冷媒と吸
収液の組成は、発生器1における加熱温度がさ程に高い
温度でなくとも冷媒が吸収液から分離され、凝縮器2に
おける冷却温度がさ程に低い温度でなくとも冷媒が液化
することが好ましい。
Absorption refrigerators generally have a basic circuit configuration as shown in FIG. a condenser that cools a refrigerant into a liquid refrigerant; 3 is the condenser 2;
An evaporator 5 obtains a desired cooling function by reducing the pressure of the liquid refrigerant in a pressure reducer 4 and vaporizing it by dispersing it under low pressure conditions. absorber that enables continuous cooling operation in
6 is a heat exchanger for exchanging heat between the concentrated absorption liquid from which the refrigerant is separated in the generator 1 and sent to the absorber 5f, and the diluted absorption liquid returned from the absorber 5 to the generator 1; 7 is a heat exchanger for the absorption liquid; It is a circulation pump, and the composition of the refrigerant and absorption liquid used in such an absorption refrigerator is such that even if the heating temperature in the generator 1 is not very high, the refrigerant is separated from the absorption liquid and the cooling in the condenser 2 is maintained. It is preferable that the refrigerant liquefies even if the temperature is not very low.

例えば、発生器1において必要とされる加熱温度が80
乃至120℃で吸収液から冷媒が分離されるなら太陽熱
を熱源として比較的容易に発生器の駆動が可能となり、
又、凝縮温度が40乃至60℃で冷媒が液化できるなら
、空冷の凝縮器でも充分に凝縮器として機能する他、斯
る条件を満足しつつ冷媒の気化温度を5乃至10℃にで
きる蒸発潜熱の大きい冷媒が人体への危害の少ない形で
得られるなら小型の吸収冷凍機の応用範囲は極めて大き
くなるものである。
For example, the heating temperature required in generator 1 is 80
If the refrigerant is separated from the absorption liquid at temperatures between 120°C and 120°C, it becomes possible to drive the generator relatively easily using solar heat as a heat source.
In addition, if the refrigerant can be liquefied at a condensation temperature of 40 to 60°C, an air-cooled condenser can function sufficiently as a condenser, and the latent heat of vaporization allows the refrigerant to vaporize at a temperature of 5 to 10°C while satisfying such conditions. If a refrigerant with a high refrigerant temperature could be obtained in a form that poses less harm to the human body, the range of applications for small-sized absorption refrigerators would be extremely widened.

例えば、水やメチルアルコールを冷媒とする冷媒〜吸収
液系においては冷媒の蒸発潜熱が大きく成績係数を大き
くとりやすいものの、吸収剤としてハロゲン化リチウム
(LiBrやLiC1等)の選定が普通であり、吸収剤
の晶析が問題となる。
For example, in a refrigerant-absorbing liquid system using water or methyl alcohol as a refrigerant, the latent heat of vaporization of the refrigerant is large and the coefficient of performance tends to be large, but lithium halides (LiBr, LiC1, etc.) are usually selected as the absorbent. Crystallization of the absorbent becomes a problem.

又、アンモニアを冷媒とするときは、アンモニアの毒性
が吸収冷凍機の普及の障害となっており、その他に知ら
れている冷媒吸収液系も上記のすべての条件を満足する
ようなものは未だ得られていない。
Furthermore, when ammonia is used as a refrigerant, the toxicity of ammonia is an obstacle to the widespread use of absorption refrigerators, and there are still no other known refrigerant absorption liquid systems that satisfy all of the above conditions. Not obtained.

本発明は斯る点に鑑み、蒸気圧降下率や蒸発潜熱が大き
く、低粘性である特性をもった冷媒を吸収冷凍機に採用
するものであり、第2図に本発明の一実施例であるトリ
フルオロエタノール(CF3CH20H)を冷媒とし、
斯る冷媒の吸収剤としてN−メチル−2−ピロリドン(
己≧HO)t−用いた種々濃度における蒸気圧温度線図
を示す。
In view of these points, the present invention employs a refrigerant having the characteristics of high vapor pressure drop rate, high latent heat of vaporization, and low viscosity in an absorption refrigerator. A certain trifluoroethanol (CF3CH20H) is used as a refrigerant,
N-methyl-2-pyrrolidone (
Vapor pressure temperature diagrams at various concentrations using t- (self≧HO)t- are shown.

図中線Aは、トリフルオロエタノールの各温度に対する
飽和蒸気圧を求め、線B1. B2. B3は、N−メ
チル−2−ピロリドンのトルフルオロエタノールの60
wt%溶液、70wt%溶液、g□wt%溶液の各温度
に対する蒸気圧を測定して得た値を基に描いたもの(但
し、機器の腐蝕抑制のために少量の水(B20 )を添
加している)であり、図に示されていないがトリフルオ
ロエタノールの沸点は75℃、N−メチル−2−ピロリ
ドンの沸点は202℃であることも確認された。
In the figure, line A indicates the saturated vapor pressure of trifluoroethanol at each temperature, and line B1. B2. B3 is N-methyl-2-pyrrolidone trifluoroethanol 60
Based on the values obtained by measuring the vapor pressure at each temperature for wt% solution, 70wt% solution, and g□wt% solution (However, a small amount of water (B20) is added to suppress corrosion of equipment. Although not shown in the figure, it was also confirmed that the boiling point of trifluoroethanol is 75°C and the boiling point of N-methyl-2-pyrrolidone is 202°C.

トリフルオロエタノールとN−メチル−2−ピロリドン
とから戒る吸収冷凍剤は、通常の運転条件下においては
、吸収冷凍機分野で広く使用されているハロゲン化リチ
ウム水溶液と比較して結晶或いは吸収液凝固の蓄熱性は
低く、従って各種の吸収液濃度の条件下で吸収冷凍サイ
クルを循環させることができる。
Absorption refrigerants made from trifluoroethanol and N-methyl-2-pyrrolidone do not produce crystals or absorb liquid under normal operating conditions, compared to lithium halide aqueous solutions widely used in the absorption refrigerating machine field. The heat storage property of solidification is low, and therefore the absorption refrigeration cycle can be circulated under various absorbent concentration conditions.

而して、第1図の吸収冷凍サイクルに冷媒にトリフルオ
ロエタノール、吸収剤にN−メチル−2ピロリドンを用
いた64%混合溶液(吸収液)を封入して駆動するとき
、概略太い実線で示すごとくに吸収冷凍機の運転のでき
ることが実験的に確認された。
When the absorption refrigeration cycle shown in Fig. 1 is operated with a 64% mixed solution (absorption liquid) containing trifluoroethanol as a refrigerant and N-methyl-2-pyrrolidone as an absorbent, it is approximately indicated by a thick solid line. It was experimentally confirmed that the absorption refrigerator could be operated as shown.

すなわち、発生器1では、トリフルオロエタノールで稀
釈されて流入する〔第2図a点〕N−メチルー2−ピロ
リドンの64%溶液(以下稀吸収溶液という)を約12
5℃に加熱しトリフルオロエタノールを気化分離〔b点
〕して凝縮器2に送る一方、略72%に濃縮されたN−
メチル−2−ピロリドン(以下製吸収溶液という)は熱
交換器6を介して冷却し吸収器5に供給する〔C点〕。
That is, in the generator 1, a 64% solution of N-methyl-2-pyrrolidone (hereinafter referred to as dilute absorption solution) diluted with trifluoroethanol and flowing in [point a in Figure 2] is about 12% diluted with trifluoroethanol.
The trifluoroethanol is vaporized and separated by heating to 5°C [point b] and sent to the condenser 2, while the N-
Methyl-2-pyrrolidone (hereinafter referred to as absorption solution) is cooled through a heat exchanger 6 and supplied to the absorber 5 [point C].

凝縮器2に流入したトリフルオロエタノールは約50℃
に冷却されて液化し、減圧装置4を経て約19mmHg
の圧力にある蒸発器3に供給散布され、ここで気化する
際に、該蒸発器3の周囲の物体を約5℃に冷却する。
Trifluoroethanol flowing into condenser 2 has a temperature of approximately 50°C.
It is cooled to liquefy and passed through the pressure reducing device 4 to about 19 mmHg.
The evaporator 3 is supplied to the evaporator 3 at a pressure of about 5° C., and when vaporized there, it cools the objects around the evaporator 3 to about 5° C.

気化したトリフルオロエタノールは吸収器5において散
布される濃吸収溶液で吸収されるため、蒸発器3内は略
197nr/LHgに保たれ、トリフルオロエタノール
のガスを吸収して稀釈された〔d点〕稀吸収溶液は、熱
交換器6において吸収器5に流入する濃吸収溶液と熱交
換し昇温した後再び再生器1に流入する〔a点〕。
Since the vaporized trifluoroethanol is absorbed by the concentrated absorption solution sprayed in the absorber 5, the inside of the evaporator 3 is maintained at approximately 197nr/LHg, and the trifluoroethanol gas is absorbed and diluted [point d] ] The dilute absorption solution exchanges heat with the concentrated absorption solution flowing into the absorber 5 in the heat exchanger 6 to raise its temperature, and then flows into the regenerator 1 again [point a].

本発明において極めて特徴的なのは吸収冷凍機の運転圧
力が、発生器1のある高圧側において約250mmH9
、蒸発器3のある低圧側では約20mmHgといずれの
部分も大気圧より低く、従来のアンモニア−水系やフロ
ンーテトラエチレングリコールジメルエーテル系のよう
に運転圧力が高圧側で10乃至20kg/m2低圧側に
おいてさえ約5kg/m2と高圧条件で運転される冷媒
系と違って、吸収冷凍機からの液やガスの漏出の危険は
なく、又冷凍機の構成機器の強度の軽減や保守管理の簡
素化もはかれるものである。
A very characteristic feature of the present invention is that the operating pressure of the absorption refrigerator is approximately 250 mmH9 on the high pressure side where the generator 1 is located.
On the low pressure side where the evaporator 3 is located, the pressure is approximately 20 mmHg, which is lower than atmospheric pressure in all parts, and the operating pressure is 10 to 20 kg/m2 on the high pressure side, as in conventional ammonia-water systems and Freon-tetraethylene glycol dimel ether systems. Unlike refrigerant systems that operate under high pressure conditions of approximately 5 kg/m2 even on the side, there is no risk of liquid or gas leaking from the absorption chiller, and the strength of the chiller components is reduced and maintenance management is simplified. It can also be measured.

更に又、吸収剤にN−メチル−2−ピロリドン或いは後
述するような吸収液を用いるときは、通常の吸収冷凍機
の運転条件下での吸収液の晶析がなく粘度の極端な上昇
はなく、寒冷地での運転が不能になることはなく、又、
凝縮器2および吸収器3を空冷化できるため従来の水−
臭化リチウム系のような水冷却機構やクーリングタワー
が不要となり、水事情の悪い地域での吸収冷凍機の運転
も可能になるものである。
Furthermore, when N-methyl-2-pyrrolidone or an absorption liquid as described below is used as an absorbent, there is no crystallization of the absorption liquid under normal operating conditions of an absorption refrigerator, and there is no extreme increase in viscosity. , it will not become impossible to drive in cold regions, and
Since the condenser 2 and absorber 3 can be air-cooled, conventional water
This eliminates the need for water cooling mechanisms or cooling towers like those for lithium bromide systems, making it possible to operate absorption chillers in areas with poor water conditions.

尚、上記説明においては、本発明の冷媒と組み合わせて
使用するN−メチル−2−ピロリドンの稀吸収溶液と濃
吸収溶液との濃度差を8%の例の実験結果として説明し
たが、この濃度および濃度差は一実施例であり、他の濃
度でも同様に運転できることは、第2図の線図から容易
に確認できるものである。
In the above explanation, the difference in concentration between a dilute absorption solution and a concentrated absorption solution of N-methyl-2-pyrrolidone used in combination with the refrigerant of the present invention was explained as an experimental result of 8%. The differences in concentration and concentration are just examples, and it can be easily confirmed from the diagram in FIG. 2 that the same operation can be performed with other concentrations.

本発明の冷媒としては、トリフルオロエタノールの他に
、エタノール、プロパツール等の低級アルコールにハロ
ゲン原子を付加したモノフルオロエタノール〔CFH2
CH20H〕、ジフルオロエタノール〔CF2HCH2
0H〕、トリフルオロプロパノノール〔CF3CH2C
H20H〕、モノクロロジフルオオロエタノール〔CC
lF2CH20H〕等のハロゲン原子を有する低級アル
コール、があり、その特性の一部を例示すると次のよう
になる。
In addition to trifluoroethanol, the refrigerant of the present invention includes monofluoroethanol [CFH2
CH20H], difluoroethanol [CF2HCH2
0H], trifluoropropanonol [CF3CH2C
H20H], monochlorodifluorooroethanol [CC
There are lower alcohols having a halogen atom such as 1F2CH20H], and some of their properties are as follows.

実施例 I TFEの濃度が30重量%で、下記表−1に示した各種
吸収剤の有機化合物が70重量%の組成物中でのTFE
の還流沸点を測定し表−1に示し中本た。
Example I TFE in a composition with a concentration of 30% by weight of TFE and 70% by weight of organic compounds of various absorbents shown in Table 1 below
The reflux boiling point of Nakamoto was measured and shown in Table 1.

表−■より明らかなように、アルカノールアミン系、ア
ミド系、エーテル系などの化合物がTFEと錯体を形成
し、著しくTFEの沸点を上昇させていることが分かる
As is clear from Table 1, it can be seen that alkanolamine-based, amide-based, ether-based, and other compounds form complexes with TFE and significantly raise the boiling point of TFE.

換言すれば錯体生成により、これら化合物は著しく優れ
たTFE吸収能を有することを示している。
In other words, due to complex formation, these compounds have been shown to have significantly superior TFE absorption ability.

なお、この沸点上昇は共沸によるものではなく錯体形成
によるものであることを確認した。
It was confirmed that this boiling point increase was not due to azeotropy but to complex formation.

実施例 2 2−ピロリドン65重量%と各種弗素化アルコール35
重量%の組成物中での各種弗素化アルコールの還流沸点
を測定し表−2に示した。
Example 2 65% by weight of 2-pyrrolidone and 35% of various fluorinated alcohols
The reflux boiling points of various fluorinated alcohols in the weight percent composition were measured and shown in Table 2.

この結果から明らかなようにこれら弗素化アルコール類
※※は2−ピロリドン中で著しい沸点上昇を示し錯体を
生成していることが分かる。
As is clear from this result, these fluorinated alcohols* show a significant increase in boiling point in 2-pyrrolidone and form a complex.

なお、この場合の沸点上昇は共沸によるものでなく錯体
生成によって起っていることを確認した。
It was confirmed that the boiling point increase in this case was not due to azeotropy but due to complex formation.

尚、 吸収剤としては、 N−メチル−2−ピロリ トン(己?ro)の他にジエチレングリコールモノメチ
ルエーテル〔CH30CH2CH20CH2CH20H
〕、N、N−ジメチルアセトアミド〔(CH3)2NC
OCH3〕、N、N−ジメチルホルムアミド〔(CH3
)2NCOH〕、ジエチレングリコールジメチルエーテ
ル 〔CH30CH2CH20CH2CH20CH3〕、モ
ノエタノールアミン〔H2NCH2CH20H〕、ブチ
ロラクトン〔〔二]\ 〕等が有効であることが実験的
に O 確認できた。
In addition, as an absorbent, in addition to N-methyl-2-pyrrolitone (self?ro), diethylene glycol monomethyl ether [CH30CH2CH20CH2CH20H
], N, N-dimethylacetamide [(CH3)2NC
OCH3], N,N-dimethylformamide [(CH3
)2NCOH], diethylene glycol dimethyl ether [CH30CH2CH20CH2CH20CH3], monoethanolamine [H2NCH2CH20H], butyrolactone [[2]\], etc. were experimentally confirmed to be effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸収冷凍機の基本的サイクルを示す構成図、第
2図は本発明の冷媒による吸収液の種々の濃度における
蒸気圧、温度線図である。 1〜発生器、3〜蒸発器、5〜吸収器。
FIG. 1 is a block diagram showing the basic cycle of an absorption refrigerator, and FIG. 2 is a diagram of vapor pressure and temperature at various concentrations of an absorption liquid using the refrigerant of the present invention. 1 - generator, 3 - evaporator, 5 - absorber.

Claims (1)

【特許請求の範囲】 1 弗素原子を有するエタノール又はプロパツールを冷
媒として用い、斯る冷媒を吸収する吸収剤と組み合わせ
て冷凍サイクル中を循環使用される吸収冷凍機用冷媒。 2、特許請求の範囲第1項の弗素原子を有するエタノー
ルがトリフルオロエタノール、モノフルオロエタノール
、ジフルオロエタノール、モノクロロジフルオロエタノ
ール等沸点が120℃以下の化合物である吸収冷凍機用
冷媒。 3 特許請求の範囲第1項の弗素原子を有するプロパツ
ールがトリフルオロプロパツール等沸点が120℃以下
の化合物である吸収冷凍機用冷媒。
[Scope of Claims] 1. A refrigerant for an absorption refrigerator that uses ethanol or propatool containing fluorine atoms as a refrigerant and is used in combination with an absorbent that absorbs the refrigerant in a refrigeration cycle. 2. A refrigerant for an absorption refrigerator, wherein the ethanol having a fluorine atom according to claim 1 is a compound having a boiling point of 120° C. or lower, such as trifluoroethanol, monofluoroethanol, difluoroethanol, or monochlorodifluoroethanol. 3. A refrigerant for an absorption refrigerator, wherein the fluorine atom-containing propazole according to claim 1 is a compound having a boiling point of 120° C. or lower, such as trifluoropropatol.
JP54145774A 1979-11-09 1979-11-09 Refrigerant for absorption refrigerators Expired JPS5827300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54145774A JPS5827300B2 (en) 1979-11-09 1979-11-09 Refrigerant for absorption refrigerators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54145774A JPS5827300B2 (en) 1979-11-09 1979-11-09 Refrigerant for absorption refrigerators

Publications (2)

Publication Number Publication Date
JPS5688485A JPS5688485A (en) 1981-07-17
JPS5827300B2 true JPS5827300B2 (en) 1983-06-08

Family

ID=15392847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54145774A Expired JPS5827300B2 (en) 1979-11-09 1979-11-09 Refrigerant for absorption refrigerators

Country Status (1)

Country Link
JP (1) JPS5827300B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183397U (en) * 1985-05-07 1986-11-15
JPH02120174A (en) * 1988-10-31 1990-05-08 Nippon Petrochem Co Ltd Cargo handling equipment for sheet pallets
JPH03200700A (en) * 1989-12-28 1991-09-02 Nippon Petrochem Co Ltd forklift push pull device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609426C2 (en) * 1986-03-20 1997-04-24 Kali Chemie Ag Solvent mixtures
CN115340459B (en) * 2021-05-13 2023-12-26 中昊晨光化工研究院有限公司 Industrial method for removing impurities in trifluoromethyl fluoacid ester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183397U (en) * 1985-05-07 1986-11-15
JPH02120174A (en) * 1988-10-31 1990-05-08 Nippon Petrochem Co Ltd Cargo handling equipment for sheet pallets
JPH03200700A (en) * 1989-12-28 1991-09-02 Nippon Petrochem Co Ltd forklift push pull device

Also Published As

Publication number Publication date
JPS5688485A (en) 1981-07-17

Similar Documents

Publication Publication Date Title
JPS592477B2 (en) Absorption liquid for absorption refrigerators
US3478530A (en) Absorption refrigeration system
JP6161717B2 (en) Absorption heat pump and absorbent for absorption heat pump containing methanesulfonic acid
US3541013A (en) Lithium bromide-lithium thiocyanatewater composition for an absorbentrefrigeration system
JPS5827300B2 (en) Refrigerant for absorption refrigerators
US3643455A (en) Compositions for absorption refrigeration system
CA1082907A (en) Absorption refrigerant composition
JP2011196580A (en) Absorbing liquid for absorption refrigeration machine
JPS6356918B2 (en)
JPS6114282A (en) Medium for absorption type refrigerator
JPS606779A (en) Composition for absorption refrigerator
JPS5991188A (en) Absorbing solution
JP2022517053A (en) Ionic liquid additives for use as absorbents in absorption chillers
JPS60118785A (en) Absorbing solution for absorption refrigerator
JPS58219938A (en) Absorbent for absorbing type heat pump
JPS6356915B2 (en)
JP2000319646A (en) Absorption liquid for absorption refrigerator and absorption refrigerator
JPS6111985B2 (en)
JPH03269083A (en) Refrigerant composition
JPS6040185A (en) Freezing composition for absorption refrigerators
JPS6040186A (en) Refrigerant composition for absorption refrigerator
JPS6120598B2 (en)
JPS606778A (en) Composition for absorption refrigerator
JPS6241564A (en) Freezing composition for absorption refrigerators
JP3801784B2 (en) Absorption-type heat pump aqueous solution composition